JPH0213744A - Operation control device for heat storage airconditioner - Google Patents

Operation control device for heat storage airconditioner

Info

Publication number
JPH0213744A
JPH0213744A JP63164230A JP16423088A JPH0213744A JP H0213744 A JPH0213744 A JP H0213744A JP 63164230 A JP63164230 A JP 63164230A JP 16423088 A JP16423088 A JP 16423088A JP H0213744 A JPH0213744 A JP H0213744A
Authority
JP
Japan
Prior art keywords
heat storage
heating capacity
heat
heat exchanger
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63164230A
Other languages
Japanese (ja)
Other versions
JPH0578734B2 (en
Inventor
Nobuhide Yoshida
吉田 信英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63164230A priority Critical patent/JPH0213744A/en
Publication of JPH0213744A publication Critical patent/JPH0213744A/en
Publication of JPH0578734B2 publication Critical patent/JPH0578734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make effective use of heat storage and hence improve a capacity factor by taking measures to decide which has a higher heating capacity either regeneration collection operation or ordinary heating operation. CONSTITUTION:A detector P1 detects a heating capacity when an outdoor heat exchanger 3 and a heat exchange coil 13 are used while a detector Th1 detects a required heating capacity. When the heating capacity detected by a comparator 53 where the heat exchanger 3 is used exceeds the heating capacity available when the heat exchange coil 13 is used, and it exceeds the required heating capacity even if it is smaller than the heating capacity available where the heat exchange coil 13 is used, the ordinary heating operation is carried out. Then, a ordinary heating capacity, a heat storage collection capacity and a required load in proportion to each temperature are calculated based on the stored contents of a first to third memory means 23 to 25, having received the output of the room temperature detector Th1, th open air temperature detector Th2, and the heat storage detector Th3. When the comparator 53 indicates that the ordinary heating capacity exceeds the heat storage collection capacity, or is less than the heat storage collection capacity, but exceeds the required load, the ordinary heating operation is carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄熱槽を備えた蓄熱式空気調和装置の運転制
御装置に係り、特に蓄暖熱の利用効率の向上対策に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an operation control device for a regenerative air conditioner equipped with a heat storage tank, and particularly to measures for improving the efficiency of use of stored heat.

(従来の技術) 従来より、例えば特開昭59−208367号公報に開
示される如く、圧縮機、室外熱交換器、減圧機構および
室内熱交換器を接続した冷媒回路を備え、上記室外熱交
換器と室内熱交換器の間液管に一時的に冷媒回路をバイ
パスするバイパス路を設けて、該バイパス路に蓄熱槽の
熱交換コイルを介設、つまり室外熱交換器および室内熱
交換器と直列に熱交換コイルを配置して、装置の暖房運
転時、暖房負荷に応じ、暖房負荷が大きい場合には熱交
換コイルを蒸発器として、暖房負荷の小さい場合は熱交
換コイルを凝縮器として使用することにより、使用電力
の節減を図ろうとするものは知られている。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Unexamined Patent Publication No. 59-208367, a refrigerant circuit connected to a compressor, an outdoor heat exchanger, a pressure reduction mechanism, and an indoor heat exchanger is provided, and the outdoor heat exchanger A bypass path that temporarily bypasses the refrigerant circuit is provided in the liquid pipe between the heat exchanger and the indoor heat exchanger, and a heat exchange coil of the heat storage tank is interposed in the bypass path. By arranging heat exchange coils in series, during heating operation of the equipment, depending on the heating load, the heat exchange coil is used as an evaporator when the heating load is large, and the heat exchange coil is used as a condenser when the heating load is small. It is known that attempts are made to reduce power consumption by doing so.

また、例えば特開昭61−125555号公報に開示さ
れる如く、上記と同様の冷媒回路の液管とガス管との間
をバイパスするバイパス管に蓄熱槽の熱交換コイルを介
設、つまり室外熱交換器および室内熱交換器に対して並
列に熱交換コイルを配置して、例えば暖房運転時、室内
熱交換器で凝縮された冷媒を直接熱交換コイルで蒸発さ
せることにより、蓄熱を利用した高い暖房能力を得よう
とするものも知られている。
Furthermore, as disclosed in JP-A-61-125555, for example, a heat exchange coil of a heat storage tank is interposed in a bypass pipe that bypasses between a liquid pipe and a gas pipe of a refrigerant circuit similar to the above, that is, an outdoor By arranging a heat exchange coil in parallel with the heat exchanger and the indoor heat exchanger, for example, during heating operation, the refrigerant condensed in the indoor heat exchanger is directly evaporated in the heat exchange coil, thereby utilizing heat storage. There are also known devices that attempt to obtain high heating capacity.

(発明が解決しようとする課題) ところで、上記従来のもののうち前者のものでは、蓄熱
コイルが室外熱交換器、室内熱交換器と直列に配置され
ているために、暖房運転時、室内熱交換器でいったん凝
縮された冷媒と蓄熱媒体との熱交換により凝縮されるこ
とになり、その凝縮効果が小さい。したがって、蓄熱槽
内の蓄熱媒体により大きな暖熱を蓄えて使用電力の低減
効果を増大しようとすれば、上記後者のもののように、
熱交換コイルを室外熱交換器、室内熱交換器と並列に配
置することが望ましい。
(Problems to be Solved by the Invention) By the way, in the former of the above-mentioned conventional devices, since the heat storage coil is arranged in series with the outdoor heat exchanger and the indoor heat exchanger, the indoor heat exchange is not performed during heating operation. The condensation occurs through heat exchange between the refrigerant once condensed in the refrigerant and the heat storage medium, and the condensation effect is small. Therefore, if you try to increase the effect of reducing power consumption by storing a large amount of warm heat with the heat storage medium in the heat storage tank, as in the latter case,
It is desirable to arrange the heat exchange coil in parallel with the outdoor heat exchanger and the indoor heat exchanger.

しかるに、蓄熱槽内の蓄熱を回収する蓄熱回収運転時、
蓄熱量の減少により蒸発能力が低下した場合等、蓄熱コ
イルにおける蒸発能力が室外熱交換器の蒸発能力よりも
低くなることがある。かかる場合、室内熱交換器におけ
る暖房能力が不足することとなり、そのまま蓄熱回収運
転を続行すると空調感を損ねる虞れがある。
However, during heat storage recovery operation to recover heat stored in the heat storage tank,
When the evaporation capacity decreases due to a decrease in the amount of heat storage, the evaporation capacity of the heat storage coil may become lower than the evaporation capacity of the outdoor heat exchanger. In such a case, the heating capacity of the indoor heat exchanger will be insufficient, and if the heat storage and recovery operation is continued as it is, there is a risk that the feeling of air conditioning will be impaired.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、蓄熱回収運転と通常の暖房運転とでいずれの暖房
能力が高いかを判断する手段を講することにより、蓄熱
を有利に利用してその利用率の向上を図ることにある。
The present invention has been made in view of the above, and its purpose is to advantageously utilize heat storage by providing a means for determining which heating capacity is higher between heat storage recovery operation and normal heating operation. The aim is to improve the utilization rate.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、圧縮機(1)、室外熱交換器(3)および
室内熱交換器(6)を接続してなる冷媒回路(10)と
、蓄暖熱可能な蓄熱媒体を内蔵する蓄熱槽(12)と、
上記冷媒回路(10)の液管(8c)とガス管(8d)
との間のバイパス路(16)に介設され、上記蓄熱槽(
12)の蓄熱媒体と冷媒との熱交換を行う熱交換コイル
(13)と、暖房運転時に上記室外熱交換器(3)およ
び熱交換コイル(13)への冷媒の減圧を行う減圧機構
(4)、[17)とを備えた蓄熱式空気調和装置を前提
とする。
(Means for Solving the Problem) In order to achieve the above object, the solving means of the present invention includes a compressor (1), an outdoor heat exchanger (3), and an indoor heat exchanger (6), as shown in FIG. ), and a heat storage tank (12) containing a heat storage medium capable of storing heat and heat.
Liquid pipe (8c) and gas pipe (8d) of the refrigerant circuit (10)
The heat storage tank (
A heat exchange coil (13) that exchanges heat between the heat storage medium and the refrigerant (12), and a pressure reduction mechanism (4) that reduces the pressure of the refrigerant to the outdoor heat exchanger (3) and the heat exchange coil (13) during heating operation. ) and [17).

そして、該空気調和装置の運転制御装置として、暖房運
転時、冷媒の循環を、室内熱交換器(6)で凝縮された
冷媒が室外熱交換器(3)で蒸発するように循環する通
常暖房運転の経路と、室内熱交換器(6)で凝縮された
冷媒がバイパス路(16)の熱交換コイル(13)で蒸
発するように循環する蓄熱回収暖房運転の経路とに択一
的に切換える接続切換機構(51)と、該接続切換機構
(51)を作動させて、蓄熱回収運転を所定時間行った
後通常暖房運転を行うように制御する予備運転制御手段
(52)と、該予備運転制御手段(52)による運転時
に上記室外熱交換器(3)および熱交換コイル(13)
を蒸発器として用いた場合の暖房能力を検出する暖房能
力検出手段(P1)と、室温に基づき室内の要求暖房能
力を検出する要求能力検出手段(T h1)と、該要求
能力検出手段(T h1)および上記暖房能力検出手段
(P1)の出力を受け、要求暖房能力、室外熱交換器(
2)を蒸発器として用いた場合の暖房能力および熱交換
コイル(13)を蒸発器として用いた場合の暖房能力を
比較する比較手段(53)と、該比較手段(53)の出
力を受け、熱交換コイル(3)を蒸発器として用いた場
合の暖房能力および要求暖房能力がいずれも室外熱交換
器(3)を蒸発器として用いた場合の暖房能力よりも大
きい時は上記蓄熱回収暖房運転を、それ以外の時には通
常暖房運転を行うように上記接続切換機構(51)の作
動を制御する運転制御手段(54)とを設ける構成とし
たものである。
As an operation control device for the air conditioner, during heating operation, the refrigerant is circulated so that the refrigerant condensed in the indoor heat exchanger (6) is evaporated in the outdoor heat exchanger (3). operation route and a heat storage recovery heating operation route in which the refrigerant condensed in the indoor heat exchanger (6) circulates so as to evaporate in the heat exchange coil (13) of the bypass path (16). a connection switching mechanism (51); a preliminary operation control means (52) for controlling the connection switching mechanism (51) to perform normal heating operation after performing heat storage recovery operation for a predetermined time; The outdoor heat exchanger (3) and the heat exchange coil (13) during operation by the control means (52)
heating capacity detection means (P1) that detects the heating capacity when used as an evaporator, required capacity detection means (T h1) that detects the required indoor heating capacity based on room temperature, and the required capacity detection means (T h1) and the output of the heating capacity detection means (P1), the required heating capacity and the outdoor heat exchanger (
2) as an evaporator and a comparison means (53) for comparing the heating capacity when the heat exchange coil (13) is used as an evaporator; receiving the output of the comparison means (53); When the heating capacity when the heat exchange coil (3) is used as an evaporator and the required heating capacity are both greater than the heating capacity when the outdoor heat exchanger (3) is used as an evaporator, the above heat storage recovery heating operation is performed. and an operation control means (54) for controlling the operation of the connection switching mechanism (51) so that normal heating operation is performed at other times.

また、第2の解決手段は、第2図に示すように、上記第
1の解決手段と同様の空気調和装置を前提とし、その運
転制御装置として、上記第1の解決手段と同様の接続切
換機構(51)と、室内空気温度を検出する室温検出手
段(T h1)と、室外空気の温度を検出する外気温検
出手段(T h2)と、上記蓄熱槽(12)内の蓄熱媒
体の温度を検出する蓄熱温検出手段(T h3)と、室
外空気温度と室内空気温度とをパラメータとする通常暖
房運転能力を記憶する第1記憶手段(23)と、蓄熱媒
体温度と室内空気温度とをパラメータとする蓄熱回収暖
房能力を記憶する第2記憶手段(24)と、室内空気温
度および設定温度をパラータとする暖房の要求負荷を記
憶する第3記憶手段(25)と、上記各検出手段(’T
h1) 、  (Th2) 、  (Th3)の出力を
受け、対応する温度における各記憶手段(23)、  
(24)、  (25)の記憶内容から通常暖房能力、
蓄熱回収暖房能力および要求負荷を演算する演算手段(
55)と、該演算手段(55)の出力を受け、通常暖房
能力、蓄熱回収暖房能力および要求負荷の大小を比較す
る比較手段(53)と、該比較手段(53)の出力を受
け、蓄熱回収暖房能力および要求負荷が蓄熱回収暖房能
力よりも大きいときのみ蓄熱回収暖房運転を、それ以外
の時は通常暖房運転を行うように上記接続切換機構(5
1)の作動を制御する運転制御手段(54)とを設けた
ものである。
Furthermore, as shown in FIG. 2, the second solution is based on the same air conditioner as the first solution, and uses the same connection switching device as the first solution as its operation control device. A mechanism (51), a room temperature detection means (Th1) for detecting the indoor air temperature, an outside temperature detection means (Th2) for detecting the temperature of the outdoor air, and a temperature of the heat storage medium in the heat storage tank (12). a heat storage temperature detection means (T h3) for detecting the temperature of the heat storage medium; a first storage means (23) for storing the normal heating operation capacity using the outdoor air temperature and the indoor air temperature as parameters; a second storage means (24) for storing the heat storage recovery heating capacity as a parameter, a third storage means (25) for storing the required load for heating using the indoor air temperature and the set temperature as parameters, and each of the above-mentioned detection means ( 'T
h1), (Th2), and (Th3), each storage means (23) at the corresponding temperature;
Normal heating capacity from the memory contents of (24) and (25),
Calculation means for calculating heat storage recovery heating capacity and required load (
55), a comparison means (53) which receives the output of the calculation means (55) and compares the normal heating capacity, the heat storage recovery heating capacity, and the required load; The connection switching mechanism (5) is configured to perform the heat storage recovery heating operation only when the recovery heating capacity and the required load are greater than the heat storage recovery heating capacity, and to perform the normal heating operation at other times.
1) is provided with an operation control means (54) for controlling the operation of step 1).

(作用) 以上の構成により、請求項(1)の発明では、予備運転
制御手段(52)により接続切換機構(51)の作動が
制御されて、冷媒が室内熱交換器(6)で凝縮され、バ
イパス路(16)の熱交換コイル(13)で蒸発するよ
うに循環する蓄熱回収暖房運転が所定時間待われた後、
室内熱交換器(6)で凝縮された冷媒が室外熱交換器(
3)で蒸発するように循環する通常暖房運転が行われる
。そのとき、暖房能力検出手段(P1)により室外熱交
換器(3)および熱交換コイル(13)を用いた場合の
暖房能力が検知され、要求能力検出手段(T h1)に
より要求暖房能力が検知される。そして、比較手段(5
3)により、それらの大小が比較され、運転制御手段(
54)により、室外熱交換器(3)を用いた場合の暖房
能力が熱交換コイル(13)を用いた場合の暖房能力以
上の時、および室外熱交換器(3)を用いた場合の暖房
能力が熱交換コイル(13)を用いた場合よりも小さ(
でも要求暖房能力以上のときには通常暖房運転が行われ
るので、蓄熱が必要なときに備えて温存される。一方、
第1コイル(13)を用いた場合の暖房能力が室外熱交
換器(3)を用いた場合の暖房能力よりも大きい場合に
は、蓄熱回収暖房運転が行われるので、空調感を損ねる
ことがない。
(Function) With the above configuration, in the invention of claim (1), the operation of the connection switching mechanism (51) is controlled by the preliminary operation control means (52), and the refrigerant is condensed in the indoor heat exchanger (6). , After waiting for a predetermined time for the heat storage recovery heating operation in which the heat is circulated so as to evaporate in the heat exchange coil (13) of the bypass path (16),
The refrigerant condensed in the indoor heat exchanger (6) is transferred to the outdoor heat exchanger (
In step 3), a normal heating operation is performed in which the air is circulated to evaporate. At that time, the heating capacity detection means (P1) detects the heating capacity when using the outdoor heat exchanger (3) and the heat exchange coil (13), and the required capacity detection means (T h1) detects the required heating capacity. be done. And comparison means (5
3), their sizes are compared and the operation control means (
54), when the heating capacity when using the outdoor heat exchanger (3) is greater than the heating capacity when using the heat exchange coil (13), and when the heating capacity when using the outdoor heat exchanger (3) The capacity is smaller than when using the heat exchange coil (13) (
However, when the required heating capacity is exceeded, normal heating operation is performed, so heat storage is saved in case it is needed. on the other hand,
If the heating capacity when using the first coil (13) is larger than the heating capacity when using the outdoor heat exchanger (3), heat storage recovery heating operation is performed, so that the feeling of air conditioning is not impaired. do not have.

よって、必要な空調効果を維持しながら、蓄熱を有利に
利用することができ、その利用効率が向上することにな
る。
Therefore, the heat storage can be used advantageously while maintaining the necessary air conditioning effect, and its utilization efficiency is improved.

また、請求項(凹の発明では、演算手段(55)により
、室温検出手段(Th1) 、外気温検出手段(T h
2)および蓄熱温検出手段(T h3)の出力を受けて
、第1〜第3記憶手段(23)〜(25)の記憶内容に
基づいて、各温度に対応する通常暖房能力、蓄熱回収暖
房能力および要求負荷が演算され、比較手段(53)に
よりそれらの大小が比較される。そして、上記請求項(
1)の発明と同様の作用で、運転制御手段(54)によ
り、通常暖房能力が蓄熱回収暖房能力以上の場合、ある
いは通常暖房能力が蓄熱回収暖房能力より小さくても要
求負荷以上の場合には、いずれも通常暖房運転が行われ
る。よって、予備運転を行うことなく、上記請求項(1
)の発明と同様の効果が得られることになる。
In addition, in the claimed invention, the calculating means (55) detects the room temperature detecting means (Th1) and the outside temperature detecting means (Th1).
2) and the output of the heat storage temperature detection means (Th3), the normal heating capacity and heat storage recovery heating corresponding to each temperature are determined based on the stored contents of the first to third storage means (23) to (25). Capacity and required load are calculated, and their magnitudes are compared by comparison means (53). And the above claim (
With the same effect as in the invention of 1), the operation control means (54) controls whether the normal heating capacity is greater than or equal to the heat storage recovery heating capacity, or even if the normal heating capacity is smaller than the heat storage recovery heating capacity, it is greater than or equal to the required load. , normal heating operation is performed in both cases. Therefore, without performing preliminary operation, the above claim (1)
), the same effect as the invention can be obtained.

(実施例) 以下、本発明の実施例について、第3図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 3 onwards.

第3図は請求項(1)の発明の実施例に係る空気調和装
置の全体構成を示し、1台の室外ユニット(A)に2台
の室内ユニット(B)、(C)が接続されたいわゆるマ
ルチ形空気調和装置が構成されている。上記室外ユニッ
) (A)には、圧縮機(1)と、暖房運転時には図中
実線のごとく、冷房運転時には図中破線のごとく接続を
切換える第1四路切換弁(2)と、冷房運転時には凝縮
器、暖房運転時には蒸発器となる室外熱交換器(3)と
、冷房運転時には冷媒流量を調節し、暖房運転時には冷
媒を減圧する減圧機構としての第1電動膨張弁(4)と
、圧縮機(1)への吸入ガス中の液冷媒を分離するため
のアキュムレータ(7)と、液冷媒を貯溜するためのレ
シーバ(9)とが主要機器として配置されている。また
、上記各室内ユニット(B)、  (C)は同一構成で
あって、冷房運転時には冷媒の減圧を行い、暖房運転時
には冷媒の流量を調節する第2電動膨張弁(5)と、冷
房運転時には蒸発器、暖房運転時には凝縮器となる室内
熱交換器(6)とが主要機器として配置されている。そ
して、上記各機器(1)〜(7)および(9)は冷媒配
管(8)によって順次冷媒の流通可能に接続されており
、室外熱交換器(3)で空気との熱交換により冷媒に付
与された熱を室内熱交換器(6)で室内空気に付与する
主冷媒回路(10)が構成されている。
FIG. 3 shows the overall configuration of an air conditioner according to an embodiment of the invention of claim (1), in which two indoor units (B) and (C) are connected to one outdoor unit (A). A so-called multi-type air conditioner is configured. The above outdoor unit (A) includes a compressor (1), a first four-way switching valve (2) that switches the connection as shown in the solid line in the figure during heating operation, and as shown in the broken line in the figure during cooling operation, and an outdoor heat exchanger (3) that sometimes functions as a condenser and as an evaporator during heating operation; a first electric expansion valve (4) that functions as a pressure reduction mechanism that adjusts the refrigerant flow rate during cooling operation and reduces the pressure of the refrigerant during heating operation; An accumulator (7) for separating liquid refrigerant in the suction gas to the compressor (1) and a receiver (9) for storing the liquid refrigerant are arranged as main equipment. In addition, each of the above indoor units (B) and (C) has the same configuration, and includes a second electric expansion valve (5) that reduces the pressure of the refrigerant during cooling operation and adjusts the flow rate of the refrigerant during heating operation, and An indoor heat exchanger (6), which sometimes functions as an evaporator and functions as a condenser during heating operation, is arranged as the main equipment. The above-mentioned devices (1) to (7) and (9) are sequentially connected through refrigerant piping (8) so that the refrigerant can flow, and the refrigerant is converted to air through heat exchange with air in the outdoor heat exchanger (3). A main refrigerant circuit (10) is configured that applies the applied heat to indoor air using an indoor heat exchanger (6).

一方、上記室外ユニット(A)と室内ユニット(B)、
  (C)との間には、蓄熱媒体としての水を内蔵して
なる蓄熱槽(12)を備えた蓄熱ユニット(D)が配置
されており、上記蓄熱槽(12)には、蓄熱媒体と配管
内部の媒体との熱交換を行うための熱交換コイルとして
の第1コイル(13)と冷媒の過冷却用の第2コイル(
14)とが設けられている。また、上記主冷媒回路(1
0)の液管(8c)に介設されたレシーバ(9)からガ
ス管(8d)側まで冷媒回路(10)の冷媒をガス管(
8d)側にバイパスする第1バイパス路(16)が分岐
していて、該第1バイパス路(16)に上記蓄熱槽(1
2)内の第1コイル(13)が設けられ、該第1コイル
(13)と液管(8c)との間に、第1コイル(13)
への冷媒を減圧する減圧機構としての第3電動膨張弁(
17)が介設されている。
On the other hand, the outdoor unit (A) and the indoor unit (B),
A heat storage unit (D) equipped with a heat storage tank (12) containing water as a heat storage medium is arranged between the heat storage tank (C) and the heat storage tank (12). A first coil (13) as a heat exchange coil for exchanging heat with the medium inside the piping, and a second coil (13) for supercooling the refrigerant.
14) are provided. In addition, the main refrigerant circuit (1
The refrigerant of the refrigerant circuit (10) is routed from the receiver (9) interposed in the liquid pipe (8c) of the refrigerant circuit (10) to the gas pipe (8d) side of the gas pipe (0).
A first bypass path (16) that bypasses to the 8d) side is branched, and the heat storage tank (16) is connected to the first bypass path (16).
2), a first coil (13) is provided between the first coil (13) and the liquid pipe (8c).
A third electric expansion valve (
17) is provided.

ここで、上記蓄熱ユニット(D)のガス管(8d)側に
は、第2四路切換弁(19)が上記第1四路切換弁(2
)と並列に配置されていて、該第2四路切換弁(19)
により、上記第1バイパス路(16)のガス管側端部が
圧縮機(1)の吐出ライン(8a)と吸入ライン(8b
)とに切換え可能に接続されている。
Here, the second four-way switching valve (19) is connected to the first four-way switching valve (2) on the gas pipe (8d) side of the heat storage unit (D).
) is arranged in parallel with the second four-way switching valve (19).
Therefore, the gas pipe side end of the first bypass path (16) is connected to the discharge line (8a) and suction line (8b) of the compressor (1).
) and are switchably connected.

なお、上記蓄熱ユニット(D)の液管(8c)には液管
(8c)中の冷媒の流れを開閉制御する 。
Note that the flow of refrigerant in the liquid pipe (8c) of the heat storage unit (D) is controlled to open and close.

第1電磁開閉弁(11)が介設され、該第1電磁開閉弁
(11)の両端から主冷媒回路(10)をバイパスする
第2バイパス路(18)が分岐していて、該第2バイパ
ス路(18)に、冷媒の流れを開閉制御する第2電磁開
閉弁(15)と上記蓄熱槽(12)の第2コイル(14
)とが設けられている。
A first electromagnetic on-off valve (11) is interposed, and a second bypass path (18) that bypasses the main refrigerant circuit (10) branches from both ends of the first electromagnetic on-off valve (11). A second electromagnetic on-off valve (15) for controlling the opening and closing of the refrigerant flow and a second coil (14) of the heat storage tank (12) are provided in the bypass path (18).
) is provided.

一方、装置には各種センサ類が配置されていて、(T 
h1)は各室内ユニット(B)、  (C)に配置され
、室内熱交換器(6)への吸込空気温度から室内空気温
度を検出することにより設定温度Tsとの差温(Ts 
−Ta )に対応した要求暖房能力Tcsを検出する要
求能力検出手段としての室温センサであって、その−例
を下記の第1表に示すように、後述のコントローラ(2
2)に内蔵されたメモリ(図示せず)に、設定温度Ts
と室内温度Taとの差温(Ts −Ta )の1℃間隔
に設定された差温の各ステップ毎に、その要求暖房能力
が凝縮温度Tcsとして予め換算演算され、記憶されて
いる。
On the other hand, various sensors are installed in the device (T
h1) is placed in each indoor unit (B) and (C), and detects the indoor air temperature from the temperature of the air sucked into the indoor heat exchanger (6) to determine the temperature difference (Ts) from the set temperature Ts.
-Ta) is a room temperature sensor as a required capacity detection means for detecting the required heating capacity Tcs corresponding to
2) The set temperature Ts is stored in the built-in memory (not shown).
For each step of the temperature difference (Ts - Ta) set at 1° C. intervals between the temperature difference (Ts - Ta) and the room temperature Ta, the required heating capacity is calculated in advance as the condensing temperature Tcs and stored.

第1表 また、(P1)は圧縮機(1)の吐出管(8a)に取付
けられ、高圧の値から室外熱交換器(3)のを用いた場
合の暖房能力Telおよび熱交換コイル(13)を用い
た場合の暖房能力Tc2を検出する暖房能力検出手段と
しての高圧センサであって、上記各センサ(Th1) 
、  (Th1)およびCP1)の信号は、装置全体の
運転を制御するためのコントローラ(22)に信号の入
力可能に接続されている。
Table 1 Also, (P1) is attached to the discharge pipe (8a) of the compressor (1), and from the high pressure value, the heating capacity Tel and the heat exchange coil (13 ) is used as a heating capacity detection means for detecting the heating capacity Tc2 when each of the above-mentioned sensors (Th1) is used.
, (Th1) and CP1) are connected to a controller (22) for controlling the operation of the entire device so that signals can be input.

なお、(20)は上記第2四路切換弁(19)の−接続
ボート(19d)と吸入ライン(8b)との間に介設さ
れたキャピラリーチューブ、(21a)〜(21e)は
、冷媒配管(8)の室外ユニット(A)出入口に介設さ
れた手動開閉弁である。
In addition, (20) is a capillary tube interposed between the connection boat (19d) of the second four-way switching valve (19) and the suction line (8b), and (21a) to (21e) are refrigerant tubes. This is a manual on-off valve installed at the outdoor unit (A) entrance and exit of the pipe (8).

以上の第1.第2.第3電動膨張弁(4)。Above 1st. Second. Third electric expansion valve (4).

(5)、(17)の開度制御、第1.第2電磁開閉弁(
11)、  (15)の開閉制御および第1゜第2四路
切換弁(2)、  (19)の切換えにより、冷暖房用
の蓄熱運転、蓄熱回収運転等の運転モードに応じて回路
の接続を切換える接続切換機構(51)が構成されてい
る。
(5), (17) opening degree control, 1st. Second electromagnetic on-off valve (
11), (15) and switching of the first and second four-way switching valves (2) and (19), circuit connections can be made according to the operation mode such as heat storage operation for heating and cooling, heat storage recovery operation, etc. A connection switching mechanism (51) for switching is configured.

その作動について説明するに、蓄熱槽(12)に暖熱を
蓄える蓄暖熱運転時、第4図に示すように、第1.第2
四路切換弁(2)、(19)が図中実線側に切換わり、
第2電磁開閉弁(15)が閉じた状態で、第1電動膨張
弁(4)の開度を適度に調節しながら運転が行われる。
To explain its operation, during the heat storage operation in which warm heat is stored in the heat storage tank (12), as shown in FIG. Second
The four-way switching valves (2) and (19) are switched to the solid line side in the diagram,
The operation is performed while the second electromagnetic on-off valve (15) is closed and the opening degree of the first electric expansion valve (4) is appropriately adjusted.

すなわち、吐出ガスが第2四路切換弁(19)から第1
バイパス路(16)側に流れ、第1コイル(13)で凝
縮された後、第1電動膨張弁(4)で減圧されて室外熱
交換器(3)で蒸発するように循環して(図中矢印参照
)、第1コイル(13)で、冷媒との熱交換により蓄熱
槽(12)内の蓄熱媒体である水に暖熱を付与する。
That is, the discharged gas is transferred from the second four-way switching valve (19) to the first four-way switching valve (19).
It flows to the bypass path (16) side, is condensed in the first coil (13), is depressurized in the first electric expansion valve (4), and is circulated to be evaporated in the outdoor heat exchanger (3) (Fig. (see middle arrow), the first coil (13) imparts warm heat to water, which is a heat storage medium in the heat storage tank (12), through heat exchange with the refrigerant.

なお、室内熱交換器(6)への冷媒の溜り込みを防止す
るために、第1電磁開閉弁(11)は開かれており、第
2電動膨張弁(5)もわずかに開かれている。
In addition, in order to prevent refrigerant from accumulating in the indoor heat exchanger (6), the first electromagnetic on-off valve (11) is opened, and the second electric expansion valve (5) is also slightly opened. .

また、通常の暖房運転時には、第5図に示すように、第
1.第2四路切換弁(2)、’(19)がいずれも図中
実線側に切換わり、かつ第1電磁開閉弁(11)が開き
第2電磁開閉弁(15)が閉じた状態で通常暖房運転が
行われる。すなわち、吐出された冷媒が主冷媒回路(1
0)を流れて、室内熱交換器(6)で凝縮された後、第
1電動膨張弁(4)で減圧され、室外熱交換器(3)で
蒸発するように(図中矢印参照)循環することにより、
各室内ユニット(B)、  (C)の設置された各室内
の暖房を行う。なお、第3電動膨張弁(17)は通常運
転時には閉じている。
Also, during normal heating operation, as shown in FIG. Normally, the second four-way switching valves (2) and '(19) are switched to the solid line side in the figure, and the first solenoid on-off valve (11) is open and the second solenoid on-off valve (15) is closed. Heating operation is performed. That is, the discharged refrigerant flows through the main refrigerant circuit (1
0), is condensed in the indoor heat exchanger (6), is depressurized in the first electric expansion valve (4), and is evaporated in the outdoor heat exchanger (3) (see arrow in the figure). By doing so,
Each indoor unit (B) and (C) heats each room in which it is installed. Note that the third electric expansion valve (17) is closed during normal operation.

そして、上述のように蓄えられた蓄熱媒体の熱を利用し
て暖房運転を行う蓄熱回収暖房運転時には、第6図に示
すように、第1.第2四路切換弁(2)、  (19)
がいずれも図中実線側に切換わり、第1電動膨張弁(4
)が閉じかつ第1.第2電磁開閉弁(11)、(15)
の開閉は通常の暖房運転時と同様の状態で、第3電動膨
張弁(17)の開度を適度に調節しながら運転が行われ
る。すなわち、室内熱交換器(6)、(6)で凝縮され
た冷媒が主冷媒回路(10)から第1バイパス路(16
)側にバイパスして流れ、第3電動膨張弁(17)で減
圧されて蓄熱槽(12)の第1コイル(13)で蒸発す
るように(図中矢印参照)循環することにより、蓄熱槽
(12)の蓄熱を利用して圧縮機(1)の低圧を上昇さ
せ運転効率を向上させるようになされている。
During the heat storage recovery heating operation in which the heating operation is performed using the heat of the heat storage medium stored as described above, as shown in FIG. Second four-way switching valve (2), (19)
are switched to the solid line side in the figure, and the first electric expansion valve (4
) is closed and the first. Second electromagnetic on-off valve (11), (15)
is opened and closed in the same manner as during normal heating operation, and operation is performed while appropriately adjusting the opening degree of the third electric expansion valve (17). That is, the refrigerant condensed in the indoor heat exchangers (6), (6) flows from the main refrigerant circuit (10) to the first bypass path (16).
) side, the pressure is reduced by the third electric expansion valve (17), and the heat storage tank (12) is evaporated by the first coil (13) (see arrow in the figure). The heat storage in (12) is used to increase the low pressure of the compressor (1) to improve operating efficiency.

次に、コントローラ(22)により行われる運転制御に
ついて説明する。
Next, the operation control performed by the controller (22) will be explained.

第7図は請求項(1)の発明に係る制御のフローを示し
、ステップSlで接続切換機構(51)により回路接続
を切換えて蓄熱回収暖房運転を行い、ステップS2で所
定時間(例えば10分程度)経過するのを待って、ステ
ップS3で上記高圧センサ(P1)の信号からその凝縮
圧力相当飽和温度(以下、凝縮温度とする)つまり鰯1
コイル(13)を用いた場合の暖房能力をTe2として
入力する。その後、ステップS4で接続切換機構(5ユ
)を切換えて通常暖房運転を行い、ステップS5で、上
記ステップS3と同様に、高圧センサ(P1)の信号か
らそのときの凝縮温度つまり室外熱交換器(3)を用い
た場合の暖房能力をTelとして入力する。しかる後、
ステップS6で、上記ステップS3およびS5で入力し
た第1コイル(13)および室外熱交換器(3)を用い
た場合の暖房能力T el、 T c2を比較し、Te
l≧Tc2であれば、蓄熱槽(12)内の蓄暖熱が少な
く暖房能力が不足すると判断してステップS7に進んで
、そのまま通常暖房運転を行う。一方、Tel<Tc2
のときには、蓄熱槽(12)の蓄暖熱量に余裕があると
判断してステップS6に進み、ステップS8で、さらに
室外熱交換器(3)を用いた場合の暖房能力Telと、
上記室内空気温度Taと設定温度Tsとの差温(Ts 
−Ta )から求まる要求暖房能力Tcsとを比較して
、Tel≧Tcsであれば、蓄暖熱を使用する必要がな
いと判断して、ステップS9で室外熱交換器(3)を用
いた場合の暖房能力Telを入力しながらそのまま通常
暖房運転を行い、TCl<TeSになった時のみステッ
プS1に移行して蓄熱回収暖房運転を所定時間行い、以
下、上記フローを繰り返す。
FIG. 7 shows a control flow according to the invention of claim (1), in which the circuit connection is switched by the connection switching mechanism (51) in step S1 to perform heat storage recovery heating operation, and in step S2 the circuit connection is switched for a predetermined period of time (for example, 10 minutes). Wait until the temperature has passed, and in step S3, calculate the saturation temperature (hereinafter referred to as condensation temperature) equivalent to the condensing pressure from the signal of the high pressure sensor (P1), that is, the sardine 1
The heating capacity when using the coil (13) is input as Te2. Thereafter, in step S4, the connection switching mechanism (5 units) is switched to perform normal heating operation, and in step S5, similarly to step S3, the condensing temperature at that time, that is, the outdoor heat exchanger Input the heating capacity when using (3) as Tel. After that,
In step S6, the heating capacities T el and T c2 when using the first coil (13) and the outdoor heat exchanger (3) input in steps S3 and S5 are compared, and the heating capacities T e
If l≧Tc2, it is determined that there is little heat stored in the heat storage tank (12) and the heating capacity is insufficient, and the process proceeds to step S7, where normal heating operation is performed. On the other hand, Tel<Tc2
In this case, it is determined that there is a surplus in the amount of heat stored in the heat storage tank (12), and the process proceeds to step S6. In step S8, the heating capacity Tel when using the outdoor heat exchanger (3) is further determined.
The temperature difference between the indoor air temperature Ta and the set temperature Ts (Ts
-Ta), and if Tel≧Tcs, it is determined that there is no need to use the stored heat, and the outdoor heat exchanger (3) is used in step S9. The normal heating operation is performed while inputting the heating capacity Tel, and only when TCl<TeS, the process moves to step S1 and the heat storage recovery heating operation is performed for a predetermined time, and the above flow is repeated thereafter.

以上のフローにおいて、上記ステップ31.S2および
S4により、上記接続切換機構(51)を制御して、蓄
熱回収暖房運転を所定時間行った後通常暖房運転を行う
ように制御する予備運転制御手段(52)が構成され、
ステップS5およびS8により、室温センサ(要求能力
検出手段)(Th1) 、  (Th1)および高圧セ
ンサ(暖房能力検出手段)CP1)の出力を受け、要求
暖房能力TC8s室外熱交換器(3)および第1コイル
(熱交換コイル)(13)を蒸発器として用いた場合の
暖房能力T el、 T c2を比較する比較手段(5
3)が構成されている。また、ステップS1およびS7
により、上記比較手段(53)の出力を受け、第1コイ
ル(13)を用いた場合の暖房能力Tc2および要求暖
房能力Tcsがいずれも室外熱交換器(3)を用いた場
合の暖房能力Tciよりも大きい時は蓄熱回収暖房運転
に、それ以外の時には通常暖房運転を行うように上記接
続切換機構(51)の作動を制御する運転制御手段(5
4)が構成されている。
In the above flow, step 31. S2 and S4 constitute a preliminary operation control means (52) that controls the connection switching mechanism (51) to perform normal heating operation after performing heat storage recovery heating operation for a predetermined time,
In steps S5 and S8, the outputs of the room temperature sensor (required capacity detection means) (Th1), (Th1) and the high pressure sensor (heating capacity detection means) CP1) are received, and the required heating capacity TC8s outdoor heat exchanger (3) and the Comparison means (5
3) is configured. Also, steps S1 and S7
Based on the output of the comparison means (53), heating capacity Tc2 and required heating capacity Tcs when using the first coil (13) are both heating capacity Tci when using the outdoor heat exchanger (3). an operation control means (5) for controlling the operation of the connection switching mechanism (51) so as to perform the heat storage recovery heating operation when the value is larger than , and to perform the normal heating operation at other times;
4) is configured.

したがって、請求項(1)の発明では、予備運転制御手
段(52)により接続切換機構(51)の作動が制御さ
れて、冷媒が室内熱交換器(6)で凝縮され、バイパス
路(16)の熱交換コイル(13)で蒸発するように循
環する蓄熱回収暖房運転が所定時間行われた後、室内熱
交換器(6)で凝縮された冷媒が室外熱交換器(3)で
蒸発するように循環する通常暖房運転が行われる。その
とき、暖房能力検出手段(P1)により室外熱交換器(
3)を用いた場合の暖房能力Telと熱交換コイル(1
3)を用いた場合の暖房能力Tc2とが検知され、要求
能力検出手段(Th1) 、  (Th1)により合計
の要求暖房能力Tcsが検知される。そして、比較手段
(53)により、それらの大小が比較され、運転制御手
段(54)により、室外熱交換器(3)を用いた場合の
暖房能力Telが第1コイル(13)を用いた場合の暖
房能力Te2以上の時には、蓄熱回収運転を行うことな
く、通常暖房運転が行われる。また、室外熱交換器(3
)を用いた場合の暖房能力Telが第1コイル(13)
を用いた場合の暖房能力Tc2よりも小さくても、要求
暖房能力Tcsが室外熱交換器(3)を用いた場合の暖
房能力Telよりも小さいときには、通常暖房運転が行
われるので、蓄熱が必要なときに備えて温存される。一
方、第1コイル(13)を用いた場合の暖房能力Tc2
が室外熱交換器(3)を用いた場合の暖房能力Telよ
りも大きい場合には、蓄熱回収暖房運転が行われるので
、空調感を損ねることはない。
Therefore, in the invention of claim (1), the operation of the connection switching mechanism (51) is controlled by the preliminary operation control means (52), the refrigerant is condensed in the indoor heat exchanger (6), and the refrigerant is condensed in the indoor heat exchanger (6). After a heat storage recovery heating operation in which the refrigerant is circulated so as to evaporate in the heat exchange coil (13) of A normal heating operation in which the air is circulated is performed. At that time, the heating capacity detection means (P1) detects the outdoor heat exchanger (
3) heating capacity Tel and heat exchange coil (1
3) is detected, and the total required heating capacity Tcs is detected by the required capacity detection means (Th1) and (Th1). Then, the comparison means (53) compares their magnitude, and the operation control means (54) determines that the heating capacity Tel when using the outdoor heat exchanger (3) is the same as when using the first coil (13). When the heating capacity is equal to or higher than Te2, normal heating operation is performed without performing heat storage recovery operation. In addition, an outdoor heat exchanger (3
), the heating capacity Tel is the first coil (13)
Even if the required heating capacity Tcs is smaller than the heating capacity Tel when using the outdoor heat exchanger (3), heating operation is normally performed, so heat storage is necessary. It will be saved in case of emergencies. On the other hand, heating capacity Tc2 when using the first coil (13)
When the heating capacity Tel is larger than the heating capacity Tel when using the outdoor heat exchanger (3), the heat storage recovery heating operation is performed, so that the air-conditioned feeling is not impaired.

よって、空調効果を維持しながら、最も有利な運転を選
択することができ、蓄熱の有効利用を図ることができる
のである。
Therefore, the most advantageous operation can be selected while maintaining the air conditioning effect, and heat storage can be used effectively.

なお、上記実施例では、暖房能力検出手段として単一の
高圧センサ(P1)を配置したが、室外熱交換器(3)
側と第1コイル側とに別途配置してもよく、また、低圧
を検知する圧力センサ等で蒸発能力を検出してそれによ
り暖房能力を検知するようにしてもよい。
In addition, in the above embodiment, a single high pressure sensor (P1) is arranged as a heating capacity detection means, but the outdoor heat exchanger (3)
It may be arranged separately on the first coil side and the first coil side, or the heating capacity may be detected by detecting the evaporation capacity with a pressure sensor or the like that detects low pressure.

また、2つの減圧機構(4)、  (17)の代りに、
レシーバ(9)と室外熱交換器(3)との間の液管(8
c)に第1バイパス路(16)を接続して、その接続部
とレシーバ(9)との間の液管(8c)に単一の電動膨
張弁等を配置することもできる。
Also, instead of the two pressure reducing mechanisms (4) and (17),
Liquid pipe (8) between receiver (9) and outdoor heat exchanger (3)
It is also possible to connect the first bypass passage (16) to c) and arrange a single electric expansion valve or the like in the liquid pipe (8c) between the connection part and the receiver (9).

次に、請求項(aの発明の実施例について説明する。Next, an embodiment of the invention of claim (a) will be described.

第8図は請求項(2)の発明に係る第2実施例の空気調
和装置の全体構成を示し、基本的な冷媒回路は上記第1
実施例と同様である。ここで、本実施例では、上記第1
実施例における要求能力検出手段としての室温セン埜(
Th1)、(Th1)は室温検出手段としての機能を果
たし、それ以外に、室外熱交換器(3)の空気吸込口に
は、吸込空気温度から室外空気温度Toを検出する外気
温検出手段としての外気温センサ(T h2)が配置さ
れ、蓄熱槽(12)には、蓄熱媒体たる水の温度を検出
する蓄熱温検出手段としての水温センサ(T h3)が
配置されている。
FIG. 8 shows the overall configuration of the air conditioner of the second embodiment according to the invention of claim (2), and the basic refrigerant circuit is the same as that of the first embodiment.
This is similar to the example. Here, in this example, the first
Room temperature sensor (
Th1), (Th1) function as a room temperature detection means, and in addition to that, the air suction port of the outdoor heat exchanger (3) is equipped with an outside temperature detection means for detecting the outdoor air temperature To from the intake air temperature. An outside air temperature sensor (Th2) is disposed in the heat storage tank (12), and a water temperature sensor (Th3) as a heat storage temperature detection means for detecting the temperature of water, which is a heat storage medium, is disposed in the heat storage tank (12).

さらに、上記コントローラ(22)には、室内空気温度
Taと外気温度Toとをパラメータとする室外熱交換器
(3)の通常暖房能力Q1を記憶する第1記憶手段とし
ての第1メモリ(23)と、蓄熱媒体温度Trと室内空
気温度Taとをパラメータとする第1コイル(13)の
蓄熱回収暖房能力Q2を記憶する第2記憶手段としての
第2メモリ(24)と、室温Taと設定温度Tsとの差
温(Ts −Ta )をパラメータとする要求負荷Q。
Further, the controller (22) includes a first memory (23) as a first storage means for storing the normal heating capacity Q1 of the outdoor heat exchanger (3) using the indoor air temperature Ta and the outside air temperature To as parameters. and a second memory (24) as a second storage means for storing the heat storage recovery heating capacity Q2 of the first coil (13) using the heat storage medium temperature Tr and the indoor air temperature Ta as parameters, and the room temperature Ta and the set temperature. Required load Q using the temperature difference (Ts - Ta) from Ts as a parameter.

を記憶する第3メモリ(25)とが内蔵されている。A third memory (25) for storing .

ここで、上記各メモリ(23)〜(25)の内容を、そ
の−例をそれぞれ次頁の第2表〜第4表に示す。すなわ
ち、第2表において、設定温度TSと室内温度Taとの
差温(Ts −Ta )の1℃間隔に設定された差温の
各ステップ毎にその要求負荷Qoが予め演算され、記憶
されている。また、第3表において、各室内温度Taめ
値に対して、外気温度To  (1℃単位)の値から室
外熱交換器(3)の熱交換容量としての通常暖房能力Q
1が予め演算され、記憶されている。そして、第4表に
示すように、各室内温度Taに対して、蓄熱媒体温度T
rの値(1℃単位)の値から第1コイル(13)の熱交
換容量としての蓄熱回収暖房能力Q2が予め演算され、
記憶されている。
Here, examples of the contents of each of the memories (23) to (25) are shown in Tables 2 to 4 on the next page, respectively. That is, in Table 2, the required load Qo is calculated and stored in advance for each step of the temperature difference (Ts - Ta) set at 1°C intervals between the set temperature TS and the room temperature Ta. There is. In addition, in Table 3, for each indoor temperature Ta value, the normal heating capacity Q as the heat exchange capacity of the outdoor heat exchanger (3) is calculated from the value of the outside air temperature To (1°C unit).
1 is calculated and stored in advance. As shown in Table 4, for each indoor temperature Ta, the heat storage medium temperature T
The heat storage recovery heating capacity Q2 as the heat exchange capacity of the first coil (13) is calculated in advance from the value of r (in units of 1°C),
remembered.

そして、本実施例においても、蓄熱運転、通常暖房運転
および蓄熱回収暖房運転の運転モードの切換機構(51
)および各運転モードにおける冷媒の流れは上記第4図
〜第6図に示す第1実施例の場合と同様である。
Also in this embodiment, the switching mechanism (51
) and the flow of the refrigerant in each operation mode are the same as in the first embodiment shown in FIGS. 4 to 6 above.

次に、請求項(′2Jの発明の制御について、第9図の
フローチャートに基づき説明するに、ステップSoで室
温Taを検知して、ステップS12で設定温度Tsと室
温Taとの差温(Ts −Ta )に基づき要求負荷Q
Dを演算決定する。同様に、ステップSI3+SI4で
それぞれ外気温度TOの検知と通常暖房能力Q+の予測
とを実行し、ステップ5151516でそれぞれ蓄熱媒
体温度Trの検知と蓄熱回収暖房能力Q2の予測とを実
行する。そして、ステップS+7で、通常暖房能力Q1
と蓄熱回収暖房能力Q2との比較を行い、Q1≧Q2で
あればステップS+8で通常暖房運転を行う一方、(h
 <Q2であれば、ステップSI9でさらに通常暖房能
力Q1と要求負荷Qoとの比較を行って、Q+ <Qo
であればステップ926で蓄熱回収暖房運転を、そうで
なければステップS2+で通常暖房運転をそれぞれ行っ
た後、ステップ・Slに戻って上記フローを繰り返す。
Next, the control of the invention of claim ('2J) will be explained based on the flowchart of FIG. 9. In step So, the room temperature Ta is detected, and in step S12, the temperature difference (Ts -Ta ) based on the required load Q
Calculate and determine D. Similarly, in steps SI3+SI4, the outside air temperature TO is detected and the normal heating capacity Q+ is predicted, and in step 5151516, the heat storage medium temperature Tr is detected and the heat storage recovery heating capacity Q2 is predicted. Then, in step S+7, normal heating capacity Q1
is compared with the heat storage recovery heating capacity Q2, and if Q1≧Q2, normal heating operation is performed in step S+8, while (h
If <Q2, the normal heating capacity Q1 is further compared with the required load Qo in step SI9, and Q+ <Qo
If so, the heat storage recovery heating operation is performed in step 926, and if not, the normal heating operation is performed in step S2+, and then the process returns to step Sl and repeats the above flow.

上記フローにおいて、上記ステップS!2、S14およ
び516により、上記各センサ(検出手段)(Th1)
 、  (Th2) 、  (Th3)の出力を受け、
対応する温度における各メモリ(記憶手段)(23)、
(24)、(25)の記憶内容から通常暖房能力、蓄熱
回収暖房能力および要求負荷を演算する演算手段(55
)が構成され、ステップS!7およびSl9により、上
記演算手段(55)の出力を受け、通常暖房能力QC1
蓄熱回収暖房能力Q2および要求負荷Qoの大小を比較
する比較手段(53)が構成されている。また、ステッ
プS’s、SnおよびS2+により、上記比較手段(5
3)の出力を受け、蓄熱回収暖房能力Q2および要求負
荷Qoが蓄熱回収暖房能力よりも大きいときのみ蓄熱回
収暖房運転を、それ以外の時は通常暖房運転を行うよう
に上記接続切換機構(51)を制御する運転制御手段(
54)が構成されている。
In the above flow, the above step S! 2. By S14 and 516, each of the above sensors (detection means) (Th1)
, (Th2), (Th3),
each memory (storage means) (23) at a corresponding temperature;
Calculating means (55) for calculating normal heating capacity, heat storage recovery heating capacity, and required load from the memory contents of (24) and (25)
) is configured and step S! 7 and Sl9 receive the output of the calculation means (55) and calculate the normal heating capacity QC1.
Comparison means (53) is configured to compare the magnitudes of the heat storage recovery heating capacity Q2 and the required load Qo. In addition, by steps S's, Sn and S2+, the comparison means (5
In response to the output of 3), the connection switching mechanism (51 ) to control the operation control means (
54) is configured.

したがって、上記第2実施例では、演算手段(55)に
より、室温検出手段(Th1) 、  (Th1)、外
気温検出手段(T h2)および蓄熱温検出手段(T 
h3)の出力を受けて、第1〜第3メモリ(記憶手段)
(23)〜(25)の記憶内容に基づいて、各温度に対
応する通常暖房能力Q1、蓄熱回収暖房能力Q2および
要求負荷Qoが演算され、比較手段(53)によりそれ
らの大小が比較される。そして、上記請求項(1)の発
明と同様の作用で、運転制御手段(54)により、通常
暖房能力Q1が蓄熱回収暖房能力92以上の場合、ある
いは通常暖房能力Q1が蓄熱回収暖房能力Q2より小さ
くても要求負荷Qo以上の場合には、いずれも通常暖房
運転が行われる。よりて、上記請求項(1)の発明と同
様の効果を得ることができ、特に、予備運転を行うこと
なく予め適切な運転モードを決定しうる利点がある。
Therefore, in the second embodiment, the calculation means (55) detects the room temperature detection means (Th1), (Th1), the outside temperature detection means (Th2), and the heat storage temperature detection means (T
h3), the first to third memories (storage means)
Based on the memory contents of (23) to (25), the normal heating capacity Q1, heat storage recovery heating capacity Q2, and required load Qo corresponding to each temperature are calculated, and their magnitudes are compared by the comparing means (53). . With the same effect as the invention of claim (1) above, the operation control means (54) controls whether the normal heating capacity Q1 is greater than or equal to the heat storage recovery heating capacity Q2 or when the normal heating capacity Q1 is higher than the heat storage recovery heating capacity Q2. Even if the load is smaller than the required load Qo, normal heating operation is performed in both cases. Therefore, the same effect as the invention of claim (1) above can be obtained, and there is particularly an advantage that an appropriate operation mode can be determined in advance without performing a preliminary operation.

なお、上記第1.第2実施例共にマルチ式空気調和装置
について説明したが、室外ユニットと室内ユニットとが
一台ずつ対応したいわゆるベア式空気調和装置について
も同様に適用できることはいうまでもない。
In addition, the above 1. Although both the second embodiment and the multi-type air conditioner have been described, it goes without saying that the present invention can be similarly applied to a so-called bare type air conditioner in which one outdoor unit and one indoor unit correspond to each other.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、蓄
熱槽の熱交換コイルを冷媒回路の室外熱交換器とは並列
に配置して、通常暖房運転と蓄熱回収暖房運転とに切換
可能に構成した空気調和装置の暖房運転時、予備運転で
蓄熱回収暖房運転と通常暖房運転とを順次行って、その
とき検知した室外熱交換器、熱交換コイルを用いた場合
の暖房能力および室内の要求暖房能力を比較して、熱交
換コイルを用いた場合の暖房能力および要求暖房能力が
室外熱交換器を蒸発器として用いた場合の暖房能力より
も大きい時のみ蓄熱回収暖房運転を行うようにしたので
、良好な空調感を維持しながら、蓄熱の利用効率の向上
を図ることができる。
(Effect of the invention) As explained above, according to the invention of claim (1), the heat exchange coil of the heat storage tank is arranged in parallel with the outdoor heat exchanger of the refrigerant circuit, and the normal heating operation and heat storage recovery are performed. During heating operation of an air conditioner configured to be able to switch between heating operation, when heat storage recovery heating operation and normal heating operation are sequentially performed in preliminary operation, and the outdoor heat exchanger and heat exchange coil detected at that time are used. Heat storage recovery is performed only when the heating capacity and required indoor heating capacity when using a heat exchange coil are greater than the heating capacity when using an outdoor heat exchanger as an evaporator. Since the heating operation is performed, it is possible to improve the utilization efficiency of heat storage while maintaining a good air-conditioned feeling.

また、請求項(aの発明によれば、室温、外気温度、蓄
熱媒体温度を検知して、予めこれらをパラメータとして
設定された通常暖房能力、蓄熱回収暖房能力および要求
負荷を予測し、これらの値を比較して上記請求項(1)
の発明と同様の判断による運転制御を行うようにしたの
で、予備運転を行うことなく、上記請求項(1)の発明
と同様の効果を得ることができる。
Further, according to the invention of claim (a), the room temperature, outside air temperature, and heat storage medium temperature are detected, and the normal heating capacity, heat storage recovery heating capacity, and required load, which are set in advance using these as parameters, are predicted, and these Claim (1) above by comparing the values
Since the operation control is performed based on the same judgment as in the invention of claim (1), it is possible to obtain the same effect as the invention of claim (1) without performing preliminary operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ請求項(1)および(
2)の発明の構成を示すブロック図である。第3図〜第
7図は請求項(1)の発明の実施例を示し、第3図はそ
の全体構成を示す冷媒系統図、第4図〜第6図は順に蓄
熱運転、通常暖房運転および蓄熱回収暖房運転の各運転
モードを示す図、第7図は制御の内容を示すフローチャ
ート図、第8図および第9図は請求項(2の発明の実施
例を示し、第8図はその全体構成を示す冷媒系統図、第
9図は制御の内容を示すフローチャート図である。 (1)・・・圧縮機、(3)・・・室外熱交換器、(4
)・・・第1電動膨張弁(減圧機構)、(6)・・・室
内熱交換器、(8c)・・・液管、(8d)・・・ガス
管、(10)・・・主冷媒回路、(12)・・・蓄熱槽
、(13)・・・第1コイル(熱交換コイル)、(16
)・・・第1バイパス路、(17)・・・第3電動膨張
弁(減圧機構)、(23)・・・第1メモリ(第1記憶
手段)、(24)・・・第2メモリ(第2記憶手段)、
(25)・・・第3メモリ(第3記憶手段)、(51)
・・・接続切換機構、(52)・・・予備運転制御手段
、(53)・・・比較手段、(54)・・・運転制御手
段、(55)・・・演算手段、(P1)・・・高圧セン
サ(暖房能力検出手段)、(T h1)・・・室温セン
サ(要求能力検出手段、室温検出手段)、(T h2)
・・・外気温センサ(外気温検出手段)、(T h3)
・・・水温センサ(蓄熱温検出手段)。 ]O 第4図 c主−一創コ路) 第3図 第9図 第7図
FIG. 1 and FIG. 2 represent claims (1) and (2), respectively.
2) is a block diagram showing the configuration of the invention; FIG. 3 to 7 show an embodiment of the invention of claim (1), FIG. 3 is a refrigerant system diagram showing the overall configuration, and FIGS. 4 to 6 show heat storage operation, normal heating operation, and FIG. 7 is a flowchart showing the details of control; FIGS. 8 and 9 show an embodiment of the invention of claim 2; FIG. A refrigerant system diagram showing the configuration, and FIG. 9 is a flowchart showing the details of control. (1) Compressor, (3) Outdoor heat exchanger, (4
)...First electric expansion valve (pressure reduction mechanism), (6)...Indoor heat exchanger, (8c)...Liquid pipe, (8d)...Gas pipe, (10)...Main Refrigerant circuit, (12)... Heat storage tank, (13)... First coil (heat exchange coil), (16
)...first bypass path, (17)...third electric expansion valve (pressure reducing mechanism), (23)...first memory (first storage means), (24)...second memory (second storage means),
(25)...Third memory (third storage means), (51)
... Connection switching mechanism, (52) ... Preliminary operation control means, (53) ... Comparison means, (54) ... Operation control means, (55) ... Calculation means, (P1). ... High pressure sensor (heating capacity detection means), (T h1)... Room temperature sensor (required capacity detection means, room temperature detection means), (T h2)
...Outside temperature sensor (outside temperature detection means), (T h3)
...Water temperature sensor (thermal storage temperature detection means). ]O Figure 4 c main - Issouko route) Figure 3 Figure 9 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機(1)、室外熱交換器(3)および室内熱
交換器(6)を接続してなる冷媒回路(10)と、蓄暖
熱可能な蓄熱媒体を内蔵する蓄熱槽(12)と、上記冷
媒回路(10)の液管(8c)とガス管(8d)との間
のバイパス路(16)に介設され、上記蓄熱槽(12)
の蓄熱媒体と冷媒との熱交換を行う熱交換コイル(13
)と、暖房運転時に上記室外熱交換器(3)および熱交
換コイル(13)への冷媒の減圧を行う減圧機構(4)
、(17)とを備えた蓄熱式空気調和装置において、暖
房運転時、冷媒の循環を、室内熱交換器(6)で凝縮さ
れた冷媒が室外熱交換器(3)で蒸発するように循環す
る通常暖房運転の経路と、室内熱交換器(6)で凝縮さ
れた冷媒がバイパス路(16)の熱交換コイル(13)
で蒸発するように循環する蓄熱回収暖房運転の経路とに
択一的に切換える接続切換機構(51)と、該接続切換
機構(51)を作動させて、蓄熱回収暖房運転を所定時
間行った後通常暖房運転を行うように制御する予備運転
制御手段(52)と、該予備運転制御手段(52)によ
る運転時に上記室外熱交換器(3)および熱交換コイル
(13)を蒸発器として用いた場合の暖房能力を検出す
る暖房能力検出手段(P_1)と、室温に基づき室内の
要求暖房能力を検出する要求能力検出手段(Th1)と
、該要求能力検出手段(Th1)および上記暖房能力検
出手段(P_1)の出力を受け、要求暖房能力、室外熱
交換器(2)を蒸発器として用いた場合の暖房能力およ
び熱交換コイル(13)を蒸発器として用いた場合の暖
房能力を比較する比較手段(53)と、該比較手段(5
3)の出力を受け、熱交換コイル(13)を蒸発器とし
て用いた場合の暖房能力および要求暖房能力がいずれも
室外熱交換器(3)を蒸発器として用いた場合の暖房能
力よりも大きい時は上記蓄熱回収暖房運転を、それ以外
の時には通常暖房運転を行うように上記接続切換機構(
51)の作動を制御する運転制御手段(54)とを備え
たことを特徴とする蓄熱式空気調和装置の運転制御装置
(1) A refrigerant circuit (10) formed by connecting a compressor (1), an outdoor heat exchanger (3), and an indoor heat exchanger (6), and a heat storage tank (12) containing a heat storage medium capable of storing heat and heat. ) is interposed in the bypass path (16) between the liquid pipe (8c) and the gas pipe (8d) of the refrigerant circuit (10), and the heat storage tank (12)
A heat exchange coil (13) that exchanges heat between the heat storage medium and the refrigerant
), and a pressure reduction mechanism (4) that reduces the pressure of the refrigerant to the outdoor heat exchanger (3) and heat exchange coil (13) during heating operation.
, (17), during heating operation, the refrigerant is circulated such that the refrigerant condensed in the indoor heat exchanger (6) is evaporated in the outdoor heat exchanger (3). The normal heating operation route and the refrigerant condensed in the indoor heat exchanger (6) are transferred to the heat exchange coil (13) in the bypass route (16).
A connection switching mechanism (51) that selectively switches to a path of heat storage recovery heating operation that circulates so as to be evaporated in A preliminary operation control means (52) that controls the normal heating operation, and the outdoor heat exchanger (3) and the heat exchange coil (13) are used as an evaporator during operation by the preliminary operation control means (52). a heating capacity detection means (P_1) that detects the heating capacity of the room; a required capacity detection means (Th1) that detects the required indoor heating capacity based on the room temperature; the required capacity detection means (Th1) and the above-mentioned heating capacity detection means. Comparison that receives the output of (P_1) and compares the required heating capacity, the heating capacity when the outdoor heat exchanger (2) is used as an evaporator, and the heating capacity when the heat exchange coil (13) is used as an evaporator. means (53) and the comparison means (5
3), the heating capacity when the heat exchange coil (13) is used as an evaporator and the required heating capacity are both larger than the heating capacity when the outdoor heat exchanger (3) is used as an evaporator. The above connection switching mechanism (
51) An operation control device for a regenerative air conditioner, comprising an operation control means (54) for controlling the operation of the regenerative air conditioner.
(2)圧縮機(1)、室外熱交換器(3)および室内熱
交換器(6)を接続してなる冷媒回路(10)と、蓄暖
熱可能な蓄熱媒体を内蔵する蓄熱槽(12)と、上記冷
媒回路(10)の液管(8c)とガス管(8d)との間
のバイパス路(16)に介設され、上記蓄熱槽(12)
の蓄熱媒体と冷媒との熱交換を行う熱交換コイル(13
)と、暖房運転時に上記室外熱交換器(3)および熱交
換コイル(13)への冷媒の減圧を行う減圧機構(4)
、(17)とを備えた蓄熱式空気調和装置において、暖
房運転時、冷媒の循環を、室内熱交換器(6)で凝縮さ
れた冷媒が室外熱交換器(3)で蒸発するように循環す
る通常暖房運転の経路と、室内熱交換器(6)で凝縮さ
れた冷媒がバイパス路(16)の熱交換コイル(13)
で蒸発するように循環する蓄熱回収暖房運転の経路とに
択一的に切換える接続切換機構(51)と、室内空気温
度を検出する室温検出手段(Th1)と、室外空気の温
度を検出する外気温検出手段(Th2)と、上記蓄熱槽
(12)内の蓄熱媒体の温度を検出する蓄熱温検出手段
(Th3)と、室外空気温度と室内空気温度とをパラメ
ータとする通常暖房運転能力を記憶する第1記憶手段(
23)と、蓄熱媒体温度と室内空気温度とをパラメータ
とする蓄熱回収暖房能力を記憶する第2記憶手段(24
)と、室内空気温度および設定温度をパラータとする暖
房の要求負荷を記憶する第3記憶手段(25)と、上記
各検出手段(Th1)、(Th2)、(Th3)の出力
を受け、対応する温度における各記憶手段(23)、(
24)、(25)の記憶内容から通常暖房能力、蓄熱回
収暖房能力および要求負荷を演算する演算手段(55)
と、該演算手段(55)の出力を受け、通常暖房能力、
蓄熱回収暖房能力および要求負荷の大小を比較する比較
手段(53)と、該比較手段(53)の出力を受け、蓄
熱回収暖房能力および要求負荷が蓄熱回収暖房能力より
も大きいときのみ蓄熱回収暖房運転を、それ以外の時は
通常暖房運転を行うように上記接続切換機構(51)の
作動を制御する運転制御手段(54)とを備えたことを
特徴とする蓄熱式空気調和装置の運転制御装置。
(2) A refrigerant circuit (10) formed by connecting a compressor (1), an outdoor heat exchanger (3), and an indoor heat exchanger (6), and a heat storage tank (12) containing a heat storage medium capable of storing heat and heat. ) is interposed in the bypass path (16) between the liquid pipe (8c) and the gas pipe (8d) of the refrigerant circuit (10), and the heat storage tank (12)
A heat exchange coil (13) that exchanges heat between the heat storage medium and the refrigerant
), and a pressure reduction mechanism (4) that reduces the pressure of the refrigerant to the outdoor heat exchanger (3) and heat exchange coil (13) during heating operation.
, (17), during heating operation, the refrigerant is circulated such that the refrigerant condensed in the indoor heat exchanger (6) is evaporated in the outdoor heat exchanger (3). The normal heating operation route and the refrigerant condensed in the indoor heat exchanger (6) are transferred to the heat exchange coil (13) in the bypass route (16).
a connection switching mechanism (51) that selectively switches to a heat storage recovery heating operation route that circulates so as to evaporate, a room temperature detection means (Th1) that detects indoor air temperature, and an outdoor Stores an air temperature detection means (Th2), a heat storage temperature detection means (Th3) that detects the temperature of the heat storage medium in the heat storage tank (12), and normal heating operation capacity using outdoor air temperature and indoor air temperature as parameters. The first storage means (
23), and a second storage means (24) that stores the heat storage recovery heating capacity using the heat storage medium temperature and the indoor air temperature as parameters.
), a third storage means (25) for storing the required heating load using the indoor air temperature and the set temperature as parameters, and a third storage means (25) that receives the outputs of the above-mentioned detection means (Th1), (Th2), and (Th3) and takes appropriate action. Each storage means (23), (
Calculating means (55) for calculating normal heating capacity, heat storage recovery heating capacity, and required load from the memory contents of 24) and (25);
and receiving the output of the calculation means (55), the normal heating capacity,
Comparing means (53) for comparing the magnitude of the heat storage recovery heating capacity and the required load, and receiving the output of the comparison means (53), performs heat storage recovery heating only when the heat storage recovery heating capacity and the required load are larger than the heat storage recovery heating capacity. and an operation control means (54) for controlling the operation of the connection switching mechanism (51) so that normal heating operation is performed at other times. Device.
JP63164230A 1988-07-01 1988-07-01 Operation control device for heat storage airconditioner Granted JPH0213744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63164230A JPH0213744A (en) 1988-07-01 1988-07-01 Operation control device for heat storage airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63164230A JPH0213744A (en) 1988-07-01 1988-07-01 Operation control device for heat storage airconditioner

Publications (2)

Publication Number Publication Date
JPH0213744A true JPH0213744A (en) 1990-01-18
JPH0578734B2 JPH0578734B2 (en) 1993-10-29

Family

ID=15789145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164230A Granted JPH0213744A (en) 1988-07-01 1988-07-01 Operation control device for heat storage airconditioner

Country Status (1)

Country Link
JP (1) JPH0213744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108237A1 (en) * 2010-03-01 2011-09-09 パナソニック株式会社 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637410U (en) * 1992-10-20 1994-05-20 大和ハウス工業株式会社 Joint structure of ALC plate and floor beam steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108237A1 (en) * 2010-03-01 2011-09-09 パナソニック株式会社 Refrigeration cycle device
JP2011202938A (en) * 2010-03-01 2011-10-13 Panasonic Corp Refrigeration cycle device
CN102378881A (en) * 2010-03-01 2012-03-14 松下电器产业株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPH0578734B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JPH0257875A (en) Operation controller for air conditioner
JP2522065B2 (en) Operation control device for air conditioner
JP2966641B2 (en) Air conditioner
JPH0213744A (en) Operation control device for heat storage airconditioner
JP2564905B2 (en) Operation controller for heat recovery type air conditioner
JPH04324069A (en) Refrigerating plant
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JP3059815B2 (en) Air conditioner
JPH0833245B2 (en) Refrigeration system operation controller
JPH0213743A (en) Operation control device for heat storage airconditioner
JP2541173B2 (en) Air conditioner
JPH06341719A (en) Operation controller for air conditioner
JP2755040B2 (en) Heat pump system
JPS60178271A (en) Refrigerator with electric expansion valve
JPH024162A (en) Air conditioning device
JPH0363468A (en) Operation controller for air conditioner
JPH02195145A (en) Device for controlling oil-recovery operation in air-conditioning apparatus
JPH0229560A (en) Regeneration type airconditioner
JPH0297853A (en) Air conditioner
JPH07113557A (en) Air conditioner
JPH03144245A (en) Operation control device for air conditioner
JPH06159845A (en) Water/hot water storage type water supply apparatus
JPH0257873A (en) Operation controller for heat recovery type air conditioner
JPH02272247A (en) Operation control device for heat storage type air conditioner
JPH0735446A (en) Freezer device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees