JPS601845A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPS601845A
JPS601845A JP11032383A JP11032383A JPS601845A JP S601845 A JPS601845 A JP S601845A JP 11032383 A JP11032383 A JP 11032383A JP 11032383 A JP11032383 A JP 11032383A JP S601845 A JPS601845 A JP S601845A
Authority
JP
Japan
Prior art keywords
block
wiring
shape
pattern
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11032383A
Other languages
Japanese (ja)
Inventor
Yukio Ozawa
幸雄 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11032383A priority Critical patent/JPS601845A/en
Publication of JPS601845A publication Critical patent/JPS601845A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the area of a chip by forming the occupying area of a circuit pattern having gathered functions in one chip in superposed shape by symmetrical conversion, thereby improving the wiring efficiency, raising the signal transmitting speed by the reduction of the wiring length and reducing necessary wiring area. CONSTITUTION:The shape that a block profile 1A and X-axis symmetrical shape 2A are superposed is provided. The symmetrical shape is not limited to axial symmetry. If such a shape is provided, the position of a terminal can be altered without substantially altering the block pattern without varying the block position and the occupying region shape even after the disposition of the block is decided. In this manner, the position of the terminal is selected in response to the interblock wiring pattern, thereby alleviating the wasteful creepage of the wirings between the blocks.

Description

【発明の詳細な説明】 本発明は集積回路装置(以下IC)に係り、特にブロッ
ク方式による設計方法の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit device (hereinafter referred to as an IC), and particularly to an improvement in a design method using a block method.

ICのパターン設計をする場合、通常まとまった機能を
有する区画ごとに区切り、この区画相互のレイアウト決
定と、さらに細部のパターン設計とは異なる次元で進め
られる。これをさらに規格化したものにビルディング、
ブロック方式がある。
When designing a pattern for an IC, the IC is usually divided into sections having a set of functions, and the mutual layout of these sections and the detailed pattern design are carried out in different dimensions. Building a more standardized version of this,
There is a block method.

単位機能をもつ素子、又はそれを組み合わせたブロック
をあらかじめ設計、登録しておき、実際に全体を設計す
る段階ではブロックのレイアウト及びブロック間配線だ
けを行なうことで作業の効率化をはかるのである。特に
ゲートアレイ等で用いられているマスタースライス方式
では、多品種にわたる共通の下地パターンが用意され、
それに配線系のみに限定されたビルディングブロック方
式により設計を行なっている。
Elements with unit functions, or blocks that combine them, are designed and registered in advance, and when the entire design is actually designed, only the layout of the blocks and the wiring between the blocks are done to improve work efficiency. In particular, in the master slicing method used in gate arrays, etc., a common base pattern is prepared for a wide variety of products.
Additionally, the design is carried out using the building block method, which is limited to the wiring system only.

しかしパターン設計をこの様にブロック相互m」のレベ
ルとブロック内部のレベルに分離したことによシ、不都
合な点も出てきた。ブロック間の配線を行う場合、実際
はブロック毎に設定された端子間を結線することになる
。このブロック端子の位置は、ブロック間配線パターン
に大きく影響するにもかかわらず、ブロック内部の設計
段階ではほとんど考慮されない。ブロック配置前ではど
の方向からの配線と接続されるか不定だからでるる。
However, by separating the pattern design into the inter-block level and the block-internal level, some disadvantages have arisen. When wiring between blocks, actually the terminals set for each block are connected. Although the position of this block terminal has a great influence on the wiring pattern between blocks, it is hardly considered at the stage of designing the inside of the block. This occurs because before block placement, it is uncertain which direction the wiring will be connected to.

端子位置が不適当でめったルすると、配線の無駄な回シ
込み及び多層配線間の交叉数の増加が起こシ、さらに配
線の局所的な過密により、配線領域の不足をまねく。そ
の様な例を第1図に示す。ブロックAとブロック群Bの
間で端子a1.a2・・・と、対応する端子b1.b2
・・・の間で結線されているが、ブロックAを回する配
線が多くみられる。
Inappropriate terminal positions cause unnecessary wiring and an increase in the number of crossovers between multilayer wiring, and local overcrowding of wiring leads to a shortage of wiring area. Such an example is shown in FIG. Between block A and block group B, terminal a1. a2... and the corresponding terminal b1. b2
Although the wires are connected between ..., there are many wires that go around block A.

その対策として現&等’14位端子の設置がよ〈実施さ
れている。通′辞は第2図(6)の様にブロック枠4の
上の相対する側に同一電位端子を多設し、他のブロック
からの配線方向に応じて、等電位端子(11,12)と
(21,22)から各1つずつ選択できる。第2図(ロ
)にその実施例を示す。ブロックC,Dが図の様に配置
されている。吟電位端子(CII C2)と(dl、d
2)の間だけの結線を考えた場合、経路tよシ経路mの
方が短かく、cl−d2と配線した方が有利となる。し
かしブロック内の等電位端子間の配線はある程度の各賞
を常にブロック間配組に付加し、ブロック間の信号伝達
速度を悪化させる。また第2図(5)に示すその配線パ
ターン3は等電位端子の目的上、ブロック内部を横切る
ことになシ他の内部配線の障害となる。実際にブロック
内配線のパターンが複雑になるにつれて、等電位端子の
設定は困難になってくる。
As a countermeasure, the installation of 14th terminals is currently being implemented. As shown in Fig. 2 (6), common terminals have the same potential terminals on opposite sides of the block frame 4, and equipotential terminals (11, 12) depending on the wiring direction from other blocks. You can select one each from and (21, 22). An example of this is shown in FIG. 2 (b). Blocks C and D are arranged as shown in the figure. Gin potential terminal (CII C2) and (dl, d
When considering the connection only between 2), route m is shorter than route t, and it is more advantageous to wire it with cl-d2. However, wiring between equipotential terminals within a block always adds some amount of each award to the inter-block arrangement, deteriorating the signal transmission speed between blocks. Moreover, the wiring pattern 3 shown in FIG. 2(5) is intended to be an equipotential terminal, and does not cross the inside of the block, thus becoming a hindrance to other internal wiring. In fact, as the intra-block wiring pattern becomes more complex, it becomes more difficult to set equipotential terminals.

配線の混みぐあいに応じてブロック位置を変えれば、以
上のような方法は不必要であるが、配置決定されたブロ
ック群の一部ブロックを移動させると他のブロックとの
相対関係等によシ、さらに広範囲にわたるブロック再配
置が必要になってくる。
If you change the block position according to the wiring congestion, the above method is unnecessary, but if you move some blocks of the block group whose placement has been determined, it may change the relative relationship with other blocks, etc. More extensive block rearrangement becomes necessary.

本発明はこれらのブロックの占有領域の形状が対称変換
波と対称変換前で重なり合うようなパターンをMするこ
とを特徴とする。
The present invention is characterized in that the shapes of the areas occupied by these blocks form a pattern M in which the symmetrical transformation wave and the symmetrical transformation wave overlap before the symmetrical transformation.

これにより、等電位端子を多設したのと同等の効果を得
ることができる。
This makes it possible to obtain the same effect as providing multiple equipotential terminals.

以下にその例を掲げ、説明をする。まずブロックパター
ン設計時に第3図に示すとおりブロック外形IAとその
X軸対称形の2人が重なる様な形状をもたせておく。対
称形は軸対称に限らない。
An example is given below and explained. First, when designing a block pattern, as shown in FIG. 3, a shape is provided so that the block outer shape IA and its X-axis symmetrical shape overlap. Symmetry is not limited to axial symmetry.

この様な形状をそなえていれば、ブロック配置決定後も
ブロック位置及び占有領域形状を変えずに、実質的なブ
ロックパターン変更なしで端子位置を変えることが可能
となる。これによりブロック間配線パターンに応じて端
子位置を選択して、ブロック間配線の無駄な回シ込みを
軽減することができる。第1図のブロックAに本発明を
実施すると第4図に示す様に無駄な配線を減らすことが
できる。この場合(正方形を45°回した形◇)◇印の
ブロック端子はブロック占有形状に影響しない様にする
If such a shape is provided, it becomes possible to change the terminal position without changing the block position or occupied area shape even after the block arrangement is determined, and without changing the block pattern substantially. This makes it possible to select terminal positions according to the inter-block wiring pattern and reduce unnecessary routing of inter-block wiring. When the present invention is applied to block A in FIG. 1, unnecessary wiring can be reduced as shown in FIG. 4. In this case (a square turned 45 degrees ◇), the block terminals marked ◇ should not affect the block occupation shape.

本発明はマスタースライス方式においても大きな効果を
発揮する。下地となるパターンにあらかじめ対称性をも
たせておき、それに重ねる配線ノ(ターンを自由に方向
転換できるようにし、配線)くターンに含まれるブロッ
ク間接続端子の位置を選択することができる。
The present invention also exhibits great effects in the master slice method. By providing symmetry in advance to the pattern that serves as the base, it is possible to select the position of the inter-block connection terminal included in the wiring (by making the turns freely changeable) and the wiring overlaid thereon.

以下にマスタースライスの一品棟でめるゲートアレイに
ついて本発明の実施例を示す。ゲートアレイはブロック
の下地となるセルが規則正しく配置されており、このセ
ル領域の任意の場所に機能ブロックを置くことができる
。つまジブロック配置の組み会わせは無限に有り、当然
ブロック端子もめらゆる方向から結線が行なわれる。第
5図は3棟のブロックエ、tr、 Kの外枠4とその枠
上にある端子位置を示す。ブロック外枠コーナーにある
F印はブロック座標原点とブロックパターンの方向を示
す。第6図(4)はセルの対称形態を示す。
An embodiment of the present invention will be shown below regarding a gate array that can be assembled into one product of the master slice. In a gate array, cells forming the base of blocks are arranged regularly, and a functional block can be placed anywhere in this cell area. There are an infinite number of combinations of toothbrush block arrangements, and of course the block terminals can be connected from all directions. Figure 5 shows the outer frame 4 of the three blocks A, TR, and K and the terminal positions on the frame. The F mark at the corner of the block outer frame indicates the block coordinate origin and the direction of the block pattern. FIG. 6(4) shows the symmetrical form of the cell.

このセルパターン5はX、Y方向の対称軸をもち、それ
にプロックエを重ねた場合、第6図(13+に示すよう
にf’l、 F2. II’3. F4の4方向の選択
ができ、1つの端子に関して4つの位置を持つのと同等
になる。他のブロックl、 Jについても同様である。
This cell pattern 5 has symmetry axes in the X and Y directions, and when a block diagram is superimposed on it, four directions can be selected: f'l, F2, II'3, and F4, as shown in Figure 6 (13+). This is equivalent to having four positions for one terminal.The same goes for other blocks l and j.

第7図に示すように配線領域1とセルが配列式れた領域
2が父互に配し、そこへ図−3のブロックを配置、端子
間接続を同じにして本発明を実施しない場合(第7図(
6))と実施した場伍第7図(ハ))について比較検討
してみる。配線は二つのノーよシ成り、X方向及びブロ
ック内配線は第1ノーのみ、Y方向は第二ノーのみと使
用制限されている。第7図(5)に較べ第7図(ロ)は
端子間配線長が短かく、配線領域におけるX方向の配線
チャンネル使用数も一本少ない。配線チャンネル必要蓋
が減れば配線領域も縮少でき、配線長もさらに短かくで
きる。ICのチップ面積も小さくすることが可能となる
As shown in FIG. 7, the wiring area 1 and the area 2 in which the cells are arranged are arranged adjacent to each other, and the block shown in FIG. Figure 7 (
6)) and the actual situation in Figure 7 (c)). The wiring consists of two nodes, and the wiring in the X direction and within the block is limited to the first node, and the Y direction is limited to the second node. Compared to FIG. 7(5), the wiring length between terminals in FIG. 7(b) is shorter, and the number of wiring channels used in the X direction in the wiring area is one less. If the required cover for the wiring channel is reduced, the wiring area can be reduced, and the wiring length can also be further shortened. It is also possible to reduce the chip area of the IC.

ゲートアレイの場合も全体のブロック配置を決定した俊
、一部ブロック位置の変更は非常に困難である。さらに
同じ下地パターンが〈シ返し配列されていない通常のマ
スタースライス品種ではブロックを移動させるのは不可
能である。そうした場合でも本発明を実施すれば、ブロ
ックの占有位置を変えずに端子位置を変更し、無駄な配
線を減少させることができる。
In the case of gate arrays, once the overall block arrangement has been determined, it is extremely difficult to change the position of some blocks. Furthermore, it is impossible to move blocks with ordinary master slice varieties in which the same underlying pattern is not arranged in a reverse pattern. Even in such a case, if the present invention is implemented, the terminal position can be changed without changing the occupied position of the block, and unnecessary wiring can be reduced.

以上説明したように本発明を実施することによシ、集積
回路内の配線効率を改善し、配線長の減少によ多信号伝
達速度をめげ、必要配線領域を減らしチップ面積の縮少
をはかることができる。よって本発明に集積回路の機能
向上に寄与することができる。
As explained above, by implementing the present invention, it is possible to improve the wiring efficiency in an integrated circuit, reduce the signal transmission speed by reducing the wiring length, reduce the required wiring area, and reduce the chip area. be able to. Therefore, the present invention can contribute to improving the functionality of integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のブロック間配線を示すパターン図。al
、a2.a3.a4.a5はブロックへの端子、bl、
b2.b3.b4.b5はブロック郡Bの内のal、a
2.a3.aCa5と接続される端子を示す。第2図(
へ)は1ブロツク内における等電位端子設定例を示すパ
ターン図。第2図(ハ)は2ブロツクにまたがる等電位
間の配線経路を示すパターン図。11と21.21と2
2. CIとc2.dlとd2は等電位端子の対、3は
等電位端子間のブロック内配線、4はブロック外枠を示
す。t、 mはブロックC,D間の2通シの配線経路を
示す。第3図#′iX軸に対するブロック形状IAと2
人の対称関係を示す。第4図は第1図のパターンに本発
明を実施した結果を示したパターン図。各端子名は第1
図と同じ。第5図は1.J。 K3種類のブロックの端子位置を示したパターン図。1
1.I2.I3はブロックエの端子、JIJ2.I3は
ブロックJの端子、Kl、に2はブロックにの端子を示
す。第6図(5)はセル形状5の対称軸X、 Yとその
セルに重なるブロックの外枠4のパターン図。第6図(
ハ)はブロックIの4つの対称形態Fl、F’2.F3
.F4を示したパターン図。第7図(5)はブロックI
、J、にのゲートアレイ上での配置、配線パターン図。 第7図(ロ)は第7図(5)に本発明を実施して改善さ
れた結果を示すパターン図。6は配線領域、7はセルア
レイ領域を示す。0印は1−2層間■iaホールを示す
。第5図、第6図、第7図においてブロック外枠4のコ
ーナーに口社印はブロック座標原点とブロックパターン
の方向を示す。 第 l 図 2A 熟3 閉 第 4 図 J 第S 図 A’/ に2 K 第 6 図(A) 第 6 図 (B) 〆 范 7 図 (A)
FIG. 1 is a pattern diagram showing normal inter-block wiring. al
, a2. a3. a4. a5 is the terminal to the block, bl,
b2. b3. b4. b5 is al, a in block group B
2. a3. A terminal connected to aCa5 is shown. Figure 2 (
(f) is a pattern diagram showing an example of setting equipotential terminals within one block. FIG. 2(c) is a pattern diagram showing a wiring route between equipotentials spanning two blocks. 11 and 21.21 and 2
2. CI and c2. dl and d2 are a pair of equipotential terminals, 3 is wiring within the block between the equipotential terminals, and 4 is an outer frame of the block. t and m indicate two wiring routes between blocks C and D. Figure 3 #'i Block shapes IA and 2 for the X axis
Showing symmetrical relationships between people. FIG. 4 is a pattern diagram showing the result of implementing the present invention on the pattern of FIG. 1. Each terminal name is
Same as figure. Figure 5 shows 1. J. A pattern diagram showing the terminal positions of K3 types of blocks. 1
1. I2. I3 is the block terminal, JIJ2. I3 indicates a terminal of block J, Kl, and 2 indicate a terminal of block. FIG. 6(5) is a pattern diagram of the symmetry axes X and Y of the cell shape 5 and the outer frame 4 of the block overlapping the cell. Figure 6 (
c) The four symmetric forms Fl, F'2. F3
.. A pattern diagram showing F4. Figure 7 (5) is block I
, J, on the gate array and wiring pattern diagram. FIG. 7(b) is a pattern diagram showing the improved results obtained by implementing the present invention on FIG. 7(5). Reference numeral 6 indicates a wiring area, and 7 indicates a cell array area. The 0 mark indicates the 1-2 interlayer ■ia hole. In FIGS. 5, 6, and 7, a seal at the corner of the block outer frame 4 indicates the block coordinate origin and the direction of the block pattern. Fig. l Fig. 2A Mature 3 Close Fig. 4 J Fig. S Fig. A'/ ni 2 K Fig. 6 (A) Fig. 6 (B) Closing Fig. 7 (A)

Claims (1)

【特許請求の範囲】[Claims] 一つのチップ同で、まとまった機能を有する回路パター
ンの占有領域が対称変換によシ重なる形状を有すること
を特徴とする集積回路装置。
What is claimed is: 1. An integrated circuit device characterized in that, on a single chip, occupied areas of circuit patterns having a set of functions overlap each other through symmetrical transformation.
JP11032383A 1983-06-20 1983-06-20 Integrated circuit device Pending JPS601845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11032383A JPS601845A (en) 1983-06-20 1983-06-20 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11032383A JPS601845A (en) 1983-06-20 1983-06-20 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPS601845A true JPS601845A (en) 1985-01-08

Family

ID=14532812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11032383A Pending JPS601845A (en) 1983-06-20 1983-06-20 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPS601845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510549B1 (en) 1999-02-17 2003-01-21 Nec Corporation Method of designing a semiconductor integrated circuit device in a short time

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510549B1 (en) 1999-02-17 2003-01-21 Nec Corporation Method of designing a semiconductor integrated circuit device in a short time

Similar Documents

Publication Publication Date Title
US20020024143A1 (en) Semiconductor device
EP0203025A1 (en) Gate array with reduced isolation
JPS601845A (en) Integrated circuit device
JPS6247148A (en) Semiconductor integrated circuit device
EP0135019A2 (en) Interconnection of elements on integrated cirrcuit substrate
JPS61224341A (en) Semiconductor integrated circuit device
JPS63108746A (en) Programmable logic array
JPH08213466A (en) Semiconductor integrated circuit
JPS63151048A (en) Semiconductor integrated circuit
JPS5986248A (en) Multilayer wiring structure
CA1238986A (en) Integrated circuit chip manufacture
JPS6247149A (en) Manufacture of semiconductor integrated circuit
JPH06140566A (en) Semiconductor integrated circuit
JPH03142857A (en) Wiring method for semiconductor integrated circuit
JP2679034B2 (en) Semiconductor integrated device
JP2752152B2 (en) Standard cell library and automatic placement and routing method using it
JPH0560666B2 (en)
JPH10144794A (en) Macrocell and standard cell system semiconductor integrated circuit employing it
JPH04192543A (en) Programmable logic device
JPH0312963A (en) Gate array
JPH03116868A (en) Semiconductor integrated circuit device
JP2947219B2 (en) Wiring structure of standard cell type semiconductor integrated circuit
JP2682423B2 (en) Wiring method for multiple line widths of LSI
JPH02278748A (en) Power supply wiring method
JPS59149032A (en) Lsi functional block