JPS60182790A - Semiconductor laser array device - Google Patents
Semiconductor laser array deviceInfo
- Publication number
- JPS60182790A JPS60182790A JP4073584A JP4073584A JPS60182790A JP S60182790 A JPS60182790 A JP S60182790A JP 4073584 A JP4073584 A JP 4073584A JP 4073584 A JP4073584 A JP 4073584A JP S60182790 A JPS60182790 A JP S60182790A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- action parts
- action
- phase
- numbered stages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本発明は半導体レーザアレイの構造に関し、特に隣設す
るレーザ動作部間の電界に90度の位相差に設け、1つ
おきのレーザ動作部のレーザ光音零度位相同期させた生
根体位相同期レーザアレイ装置に関するものである。Detailed Description of the Invention Technical Field> The present invention relates to the structure of a semiconductor laser array, and in particular, the present invention relates to the structure of a semiconductor laser array, and in particular, the electric field between adjacent laser operating sections is provided with a phase difference of 90 degrees, so that the laser beams of every other laser operating section are This invention relates to a root-body phase-locked laser array device that is phase-locked to zero degrees.
〈従来技術〉
光デイスク情報処理装置やレーザプリンタ等の情報処理
光源として半導体レーザ装置は最も適した条件を備えて
おり、実用化が促進さしている。<Prior Art> Semiconductor laser devices have the most suitable conditions as information processing light sources for optical disk information processing devices, laser printers, etc., and their practical use is being promoted.
捷だ処理すべき情報の漸増に伴なって処理速度の迅速化
が要求さnるようになり、そのため半導体レーザ素子は
安定な動作特性葡有する範囲内で極力高出力化を達成し
得るように技術開発が堆し進めら扛ている。しかしなが
ら、現在のところ活性領域が単体の半3Hp体レーザ累
子では、実用性を考慮すると最大出力50mWi度の素
子しか得らnていないのが実状である。With the gradual increase in the amount of information to be processed, there has been a demand for faster processing speed, and for this reason semiconductor laser devices have been designed to achieve as high output as possible within the range of stable operating characteristics. Technological development is progressing rapidly. However, at present, in consideration of practicality, only a device with a maximum output of 50 mWi degrees can be obtained with a semi-3Hp laser compound having a single active region.
一方、多数の半導体レーザ素子ケ平行に配設し、各々を
光学的に位相結合させて単一位相の大出力レーザ装置奮
イ(Jようとする試みがなされている。On the other hand, attempts have been made to create a single-phase, high-output laser device by arranging a large number of semiconductor laser elements in parallel and optically phase-coupling them.
これは位相同期レーザアレイと称さ汎ている。しかしな
がら、従来、利得導波型レーザアレイでは個々のレーザ
動作部間に位置する結合領域での利得の減少による損失
の増大のため、1iAf)合ったレーザ動作部間で電界
位相が180度の差を有し、遠視野像が第1図に示す様
に多くのピークをもつこととなって応用上不都合が生じ
る。これを改善するためには屈折率導波型レーザアレイ
とすることが考えられる。This is commonly referred to as a phase-locked laser array. However, conventionally, in gain-guided laser arrays, due to the increase in loss due to the decrease in gain in the coupling region located between individual laser operating sections, the electric field phase difference between matched laser operating sections is 180 degrees. As a result, the far-field image has many peaks as shown in FIG. 1, which is inconvenient in terms of application. In order to improve this problem, it is possible to use a refractive index guided laser array.
ヒユーレット・パラカード社のり、 E、Ack le
y等ld IJ−キーモー、ドの埋め込み型レーザ素子
をアレイ化することを提唱している(Appl 、Ph
ys、LetEers。Heuret Paracard Glue, E, Ackle
y, etc. IJ-key mode, proposes to form an array of implantable laser elements (Appl, Ph.
ys, Let Eers.
39(1) 1. July 1981 P27)o
しかしながら、この構造のレーザアレイは各レーザ動作
部間の結合効率は高くなるが、本質的にリーキーモード
であるため、遠視野像は2本のピーク全有するものとな
る。39(1) 1. July 1981 P27)o
However, although the laser array with this structure has a high coupling efficiency between each laser operating section, it is essentially a leaky mode, so the far-field pattern has two peaks.
RCA研究所のり、Botez等は基板にチャンネルを
形成したC S P −L QC(Channeled
−5ubstratelarge−optiral−c
avity) Lノーザ累子を提唱している(docu
ment of 100Cl98B ’29B5−2)
。RCA Laboratory Nori, Botez et al. have developed CSP-L QC (Channeled QC) with channels formed on the substrate.
-5ubstrate large-optiral-c
avity) Advocates L Noza Yuko (docu)
ment of 100Cl98B '29B5-2)
.
こnはCaAs 基板との結合によジ形成される等価屈
折率分布會利用するものであるため、各レーザ動作部間
の領域は吸収係数が大きくなり、これを小さくすると屈
折率差が付かないといった矛盾した構造になっている。Since this utilizes the equivalent refractive index distribution formed by bonding with the CaAs substrate, the region between each laser operating section has a large absorption coefficient, and if this is made small, there will be no refractive index difference. It has a contradictory structure.
従って各レーザ動作部間の位相差を零度にすることは容
易ではない。Therefore, it is not easy to reduce the phase difference between each laser operating section to zero degrees.
ヒユーレット・パラカード社のり、E、Ackley等
は上記以外にリッジ型のレーザアレイを提唱している(
Appl、Phys、Letters、42(2)、1
5 January1983、P152)。しかしなが
ら、この構造では各レーザ動作部間の領域で電極による
吸収の増大により各レーザ動作部間の位相が180度ず
れた結合になる。In addition to the above, ridge-type laser arrays have been proposed by Hewlett-Paracard Co., Ltd., E., Ackley, and others (
Appl, Phys, Letters, 42(2), 1
5 January 1983, P152). However, in this structure, due to increased absorption by the electrodes in the region between each laser operating section, the phases between the laser operating sections are shifted by 180 degrees.
〈発明の目的〉
本発明は上述の問題点に鑑み、各レーザ動作部間の位相
差を共振面の反射率で選択されるようにし、1つおきの
ストライプから零度位相同期さ扛たレーザ光を出力させ
ることを可能とした新規有用な半導体レーザアレイ装置
を提供すること全目的とする。<Object of the Invention> In view of the above-mentioned problems, the present invention allows the phase difference between each laser operating part to be selected by the reflectance of the resonant surface, and laser beams emitted from every other stripe with zero degree phase synchronization. The overall purpose of the present invention is to provide a new and useful semiconductor laser array device that can output .
〈実施例〉
第2図(イ)(B)に本発明の1実施例を示す半導体レ
ーザアレイ装置の平面図及び電界強度分布図である。<Embodiment> FIGS. 2A and 2B are a plan view and an electric field intensity distribution diagram of a semiconductor laser array device showing an embodiment of the present invention.
GaAs基板上に周知の液相エピタキシャル成長法でG
a1−XAtXAsクラッド層、Gal 、AtyAs
活性層、GaI XAIXASクラッド層(x>y )
、GaAsキャップ層を順次成長させ、ダブルへテロ接
合型のレーザ動作用多層結晶を構成する。キャップ層及
びGaAs基板裏面にはキャリア注入用の電極r設はレ
ーザ動作用多層結晶層内にはストライプ状の電流通路を
複数並設してレーザ動作部を第2図(イ)に示す如く平
行に配置する。ストライプ状(例えば幅4/IPn程度
〕の電流通路は、絶縁膜を介設して電流通路域を限定し
た電極ストライプ構造、不純物を拡散して電流通路を開
通させたプレーナストライプ構造、GaAs基板とレー
ザ動作用多層結晶層間に電流阻止層を介設して電流通路
域を限定した内部ストライプ構造等によって形成さn、
これらが一定ピツチ(例えば8μm程度)で平行に多数
本配列さnて1チツプのレーザアレイが作製さ扛る。G is grown on a GaAs substrate by the well-known liquid phase epitaxial growth method.
a1-XAtXAs cladding layer, Gal, AtyAs
Active layer, GaI XAIXAS cladding layer (x>y)
, GaAs cap layers are sequentially grown to form a double heterojunction type multilayer crystal for laser operation. Electrodes for carrier injection are provided on the cap layer and the back surface of the GaAs substrate, and a plurality of stripe-shaped current paths are arranged in parallel in the multilayer crystal layer for laser operation, so that the laser operation section is arranged in parallel as shown in Figure 2 (A). Place it in A striped current path (for example, width of about 4/IPn) can be formed using an electrode stripe structure in which the current path area is limited by interposing an insulating film, a planar stripe structure in which the current path is opened by diffusing impurities, or a GaAs substrate. Formed by an internal stripe structure, etc., in which a current blocking layer is interposed between multilayer crystal layers for laser operation to limit the current path area.
A large number of these are arranged in parallel at a constant pitch (for example, about 8 μm) to produce a one-chip laser array.
平行配列さ扛たレーザ動作部1.2.3.4.・・・の
うち、偶数番目のレーザ動作部2,4.・・・の共振器
の片端には分布ブラッグ反射器2C4<−・・がホログ
ラフィックに形成されている。分布ブラック反射器2.
/ 4./・・・は活性層に続いて形成さ扛る回折格子
で構成さnた導波路層であり、この部分でレーザ作用が
行なわnる〇一方、奇数番目のレーザ動作部1.3.5
.・・・の片端は反応性イオンエツチングにより共振面
全形成し、Aj’20a等から成る誘電体透過膜金00
1で被覆することにより構成されている。偶数及び奇数
番目のレーザ動作部1.2,3,4,5.・・・の他方
の共振面は発振閾値孕下げるため、AI!203とS
i02 とから成る高反射率の多層膜002で被覆され
ている。Laser operating section arranged in parallel 1.2.3.4. . . , even-numbered laser operating units 2, 4 . A distributed Bragg reflector 2C4<-- is holographically formed at one end of the resonator. Distributed black reflector 2.
/ 4. /... is a waveguide layer composed of a diffraction grating formed following the active layer, and the laser action is performed in this part.On the other hand, the odd-numbered laser operation parts 1.3. 5
.. One end of .
1. Even-numbered and odd-numbered laser operating units 1.2, 3, 4, 5. Since the other resonance surface of ... lowers the oscillation threshold, AI! 203 and S
It is coated with a multilayer film 002 of high reflectivity consisting of i02.
上記構造から成る半導体レーザアレイ装置では、レーザ
出射面011に於いて奇数番目のレーザ動作部1・3・
5・・・・の電界強度分布(01,03,05,−・°
)と偶数番目のレーザ動作部2,4.・・・の電界強度
分布(02,04,・・・)が180度反転していゐ。In the semiconductor laser array device having the above structure, the odd-numbered laser operating parts 1, 3, and
5... electric field strength distribution (01,03,05,-・°
) and even-numbered laser operating units 2, 4 . The electric field strength distribution (02, 04, . . .) is reversed by 180 degrees.
捷だ、偶叡番目のレーザ動作部2.4.・・・からはレ
ーザ光が放射されないため、出力さ牡るレーザ光は第2
図CB)に示す如く零度で位相同期さnていることにな
る0
第3図因り)は上記構造の半導体レーザアレイ装置の光
出力−電流特性及び遠視野を示す特性図であ%出力20
9mWまで1本の鋭い遠視野像が得られている。Laser operation part 2.4. Since no laser light is emitted from ..., the output laser light is from the second
As shown in Figure CB), the phase is synchronized at zero degree. Figure 3) is a characteristic diagram showing the optical output-current characteristics and far field of the semiconductor laser array device with the above structure.
One sharp far-field image was obtained up to 9 mW.
〈発明の効果〉
以上詳説した如く、本発明によれば1つおきのレーザ動
作部から零度位相同期されたレーザ光が出力さn、高出
力で安定なモードのレーザ発振を得ることができる。<Effects of the Invention> As described in detail above, according to the present invention, laser beams phase-locked at zero degrees are output from every other laser operating section, and laser oscillation in a stable mode with high output can be obtained.
第1図は利得桿e型レーザアレイの遠視野像を示す説明
図である。
第2図(A)([3)は本発明の1実施例を示す半導体
レーザアレイ装置の平面図及び電界強度分布図である0
第3図(イ)CB)U第2図に示す半導体レーザアレイ
装置の光出力−電流特性及び遠視野像を説明する説明図
である。
1.2,3,4.5.・・・レーザ動作部、2’、4’
・・・分布ブラッグ反射器。
代理人 弁理士 福 士 愛 彦(化2名)爪危
第1図
第3図
¥2FIG. 1 is an explanatory diagram showing a far-field image of a gain rod e-type laser array. FIG. 2(A) ([3) is a plan view and electric field intensity distribution diagram of a semiconductor laser array device showing one embodiment of the present invention.0 FIG. 3(A) CB) U Semiconductor laser shown in FIG. FIG. 2 is an explanatory diagram illustrating the optical output-current characteristics and far-field image of the array device. 1.2, 3, 4.5. ...Laser operating part, 2', 4'
...distributed Bragg reflector. Agent Patent Attorney Aihiko Fukushi (2 persons) Tsumeki Figure 1 Figure 3 ¥2
Claims (1)
数本平行に形成し、レーザ動作部の0161面に1つお
きに分布ブラック反射器を設け、121り合うレーザ動
作部間の電界に90度の位相差を付与したこと全特徴と
する半導体レーザアレイ装置。1. A plurality of laser operating parts are formed in parallel in a multilayer crystal structure for laser oscillation, and a distributed black reflector is provided on every other 0161 plane of the laser operating parts, so that the electric field between the laser operating parts that match 121 is A semiconductor laser array device characterized by providing a degree phase difference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4073584A JPS60182790A (en) | 1984-02-29 | 1984-02-29 | Semiconductor laser array device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4073584A JPS60182790A (en) | 1984-02-29 | 1984-02-29 | Semiconductor laser array device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60182790A true JPS60182790A (en) | 1985-09-18 |
Family
ID=12588888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4073584A Pending JPS60182790A (en) | 1984-02-29 | 1984-02-29 | Semiconductor laser array device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60182790A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0237812A2 (en) * | 1986-03-20 | 1987-09-23 | Siemens Aktiengesellschaft | Semiconductor laser array with a collimated beam |
US5189532A (en) * | 1988-10-21 | 1993-02-23 | Pilkington P.E. Limited | Edge-illuminated narrow bandwidth holographic filter |
-
1984
- 1984-02-29 JP JP4073584A patent/JPS60182790A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0237812A2 (en) * | 1986-03-20 | 1987-09-23 | Siemens Aktiengesellschaft | Semiconductor laser array with a collimated beam |
EP0237812A3 (en) * | 1986-03-20 | 1988-06-29 | Siemens Aktiengesellschaft | Semiconductor laser array with a collimated beam |
US5189532A (en) * | 1988-10-21 | 1993-02-23 | Pilkington P.E. Limited | Edge-illuminated narrow bandwidth holographic filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0363076B1 (en) | Semiconductor laser array having high power and high beam quality | |
JPS60182790A (en) | Semiconductor laser array device | |
JPH0431195B2 (en) | ||
JPH0147031B2 (en) | ||
JPS61190994A (en) | Semiconductor laser element | |
JPS61296785A (en) | Semiconductor laser array device | |
JPS6167286A (en) | Semiconductor laser array element | |
US4771433A (en) | Semiconductor laser device | |
JPS60182181A (en) | Semiconductor laser array | |
JPS61113293A (en) | Semiconductor laser array device | |
JPS63150981A (en) | Semiconductor laser | |
JPS59181588A (en) | Semiconductor luminescent device | |
JPS6257275A (en) | Semiconductor laser array device | |
JPS60152086A (en) | Semiconductor laser device | |
JP3151755B2 (en) | Distributed feedback semiconductor laser | |
JPS60214580A (en) | Semiconductor laser-array device | |
JPH0449273B2 (en) | ||
JPH10154845A (en) | Distributed reflection type semiconductor laser array and its manufacture | |
JPS62221182A (en) | Distributed reflection laser | |
JPS61171190A (en) | Distributed reflection type laser | |
JPS58199586A (en) | Semiconductor laser | |
JP2641296B2 (en) | Semiconductor laser with optical isolator | |
JPS63164379A (en) | Photo output device | |
JPS6066489A (en) | Distributed feedback and distributed bragg reflector type semiconductor laser | |
JPH0794827A (en) | Face light-emitting semiconductor laser element |