JPS60182721A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS60182721A
JPS60182721A JP3783584A JP3783584A JPS60182721A JP S60182721 A JPS60182721 A JP S60182721A JP 3783584 A JP3783584 A JP 3783584A JP 3783584 A JP3783584 A JP 3783584A JP S60182721 A JPS60182721 A JP S60182721A
Authority
JP
Japan
Prior art keywords
reaction
susceptor
partition wall
pipe
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3783584A
Other languages
Japanese (ja)
Other versions
JPH0516168B2 (en
Inventor
Kazumi Kasai
和美 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3783584A priority Critical patent/JPS60182721A/en
Publication of JPS60182721A publication Critical patent/JPS60182721A/en
Publication of JPH0516168B2 publication Critical patent/JPH0516168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To obtain a growth layer having steep impurity distribution by housing a liner pipe with a partition wall hanging down up to the central section of a reaction pipe of the inner circumference of the reaction pipe, inserting a susceptor with a stopper being in contact with the partition wall to the bottom of the liner pipe and moving a substrate to be treated in the reaction pipe partitioned by these partition wall, liner pipe and susceptor through a through-hole formed to the stopper. CONSTITUTION:A liner pipe 2 made of quartz is housed in a cylindrical reaction pipe 1 on which a high-frequency coil 17 is wound, and a susceptor 5 made of carbon on which a substrate to the treated 10 is placed is taken into and out of the base of the liner pipe 2 by using an inserting bar 6 made of quartz. In the constitution, a semicircular partition wall 3 is hung down from the lower surface of the liner pipe 2, a stopper 7 is projected and formed to the surface of the susceptor 5, a base thereof takes a semicircle, and the inside of the liner pipe 2 is partitioned into reaction chambers I and II by these partition wall, susceptor and stopper. A raw material gas introducing port and a discharge port are shaped previously in the reaction pipe 1, the substrate 10 treated in the reaction chamber I is passed through a through-hole 11 formed to the stopper 7 and moved into the reaction chamber II, and an upper layer is grown.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は急峻な界面組成およびドーピングプロファイル
をもつ気相成長層の成長が可能な気相成長方法に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a vapor phase growth method capable of growing a vapor phase growth layer having a steep interfacial composition and doping profile.

(b) 技術の背景 IC,LSIや半導体レーザなどの半導体装置はシリコ
ン(St)などの半導体或はガリウム砒素(GaAs)
のような化合物半導体を基板とし、この上にキャリヤm
度の異なるエピタキシャル層を形成するか或いはへテロ
エピタキシャル層を形成し、写真蝕刻技術(ホトリック
ラフィ)を用いてパターン形JRを行うなどの手法を用
いて製造されている。
(b) Technical background Semiconductor devices such as ICs, LSIs, and semiconductor lasers are made of semiconductors such as silicon (St) or gallium arsenide (GaAs).
The substrate is a compound semiconductor such as
It is manufactured by forming epitaxial layers with different degrees of hardness or by forming a heteroepitaxial layer and performing pattern JR using photolithography.

こ\でエピタキシャル或いはへテロエピタキシャル層の
形成法としては本発明に係る化学気相成長法(以後時し
てCVD法)によるものと液相法及び分子N’:Aエピ
タキシー法(MBE)によるもの等があり、それぞれ特
徴を活して使い分けされている。
Here, the epitaxial or heteroepitaxial layer is formed by the chemical vapor deposition method (hereinafter sometimes referred to as the CVD method) according to the present invention, the liquid phase method, and the molecular N':A epitaxy method (MBE). etc., and each is used depending on its characteristics.

また半導体;(ル子の形成には基板上に絶縁層を形成す
ることが必要であり、この形成にもCVD法が多く用い
られ二酸化硅素(SiO2)、窒化硅素(SiaN+)
などの薄膜を用いてノー絶縁を行うことが多い。
In addition, semiconductors; (For the formation of semiconductors, it is necessary to form an insulating layer on the substrate, and the CVD method is often used for this formation. Silicon dioxide (SiO2), silicon nitride (SiaN+)
No-insulation is often performed using thin films such as.

本発明はCVD法を用いて半番体基板上に異なる組成の
成JJ!、層を連続して作るのに適したCVD装置の構
成に関するものである。
The present invention uses the CVD method to form JJ! , relates to a configuration of a CVD apparatus suitable for producing layers in succession.

(c) 従来技術と問題点 半導体素子の形成においてPN接合など導電型の異なる
半導体層を成長させる場合、或いは高抵抗基板上に半導
体層を成長させる場合であっても半導体層の中の濃度分
布はでき得る限り急峻な傾斜をもって構成されているこ
とが必要である。
(c) Prior art and problems In the formation of semiconductor elements, even when growing semiconductor layers of different conductivity types such as PN junctions, or when growing semiconductor layers on high-resistance substrates, the concentration distribution in the semiconductor layer is It is necessary that the slope is as steep as possible.

そのため従来は気相成長が終った被処理基板の取り出し
を容易に行えるようにしたり、或いは被処理基板に蓋を
するなどの方法が構じられている。
Conventionally, therefore, methods have been proposed in which the substrate to be processed after vapor phase growth can be easily taken out, or the substrate to be processed is covered with a lid.

すなわち、被処理基板を載fdL、たサセプタを2重構
造としハンドラーを用いてサセプタ毎に交換できるよう
にしたり、或いはハンドラーを用いて被処理基板に蓋を
して気相成長を抑制するなどの方法もとられている。
In other words, the susceptor on which the substrate to be processed is placed has a double structure so that each susceptor can be replaced using a handler, or the handler can be used to cover the substrate to suppress vapor phase growth. There are also methods in place.

然しこれらの方法は機構が複雑であり充分な効果をあげ
るに到っていない。
However, these methods have complicated mechanisms and have not achieved sufficient effects.

(d) 発明の目的 本発明の目的は大聖の基板を用い急峻なドーピングプロ
ファイルをもつ半導体層の形成が可能な気相成長方法を
揚供するにある。
(d) Object of the Invention The object of the present invention is to provide a vapor phase growth method capable of forming a semiconductor layer having a steep doping profile using a Daisei substrate.

(e) 発明の構成 本発明の目的は被処理基板が載置された基板ホルダーを
、隔壁により複数個の空間に分離された反応室内に挿入
し、該隔壁に設けられた前記基板ホルダーが挿通可能な
貫通孔を通して該基板ホルダーを前記各空間内に移動し
、前記貫通孔を前記基板ホルダーの一部で塞ぐことによ
り、他の空間から所望の空間を略完全に分離した後、該
所望の空間内で前記基板ホルダー上に載置された被処理
基板上に半導体屑を気相成長させることを特徴とする気
相成長方法により達成することができる。
(e) Structure of the Invention The purpose of the present invention is to insert a substrate holder on which a substrate to be processed is placed into a reaction chamber separated into a plurality of spaces by a partition, and to insert the substrate holder provided in the partition into a reaction chamber. After almost completely separating the desired space from other spaces by moving the substrate holder into each of the spaces through possible through-holes and blocking the through-holes with a portion of the substrate holder, This can be achieved by a vapor phase growth method characterized by vapor phase growing semiconductor chips on a substrate to be processed placed on the substrate holder in a space.

(f) 発明の実施例 本発明は反応管の中に隔壁を設けて複数個の反応室に分
割し、一方この隔壁を貫いて被処理基板を載置したサセ
プタを移動することにより急峻なドーピングプロファイ
ルをもつ半導体層を形成するものである。
(f) Embodiments of the Invention The present invention provides a partition wall in a reaction tube to divide it into a plurality of reaction chambers, and a susceptor carrying a substrate to be processed is moved through the partition wall, thereby achieving steep doping. A semiconductor layer having a profile is formed.

第1図(4)は本発明の実施に用いる半導体成長装置の
側断面図また同図の)はXX′線における縦断面図であ
る。
FIG. 1(4) is a side cross-sectional view of a semiconductor growth apparatus used for carrying out the present invention, and FIG. 1(4) is a vertical cross-sectional view taken along the line XX'.

すなわち、本発明に係る成長装置は反応管1の内側に石
英製のライナ管2があり、このライナ管2には反応管1
をV数個(この場合2個)の反応室に分割するための半
円形の隔壁3が設けられている。
That is, the growth apparatus according to the present invention has a liner tube 2 made of quartz inside the reaction tube 1, and the liner tube 2 includes the reaction tube 1.
A semicircular partition wall 3 is provided to divide the reaction chamber into V number (in this case, two) of reaction chambers.

次に反応室の入口はステンレス製のマニホールド4によ
って密封されているが、この入口からカーボン環の半円
形のサセプタ5が挿入でき、このサセプタ5は石英製の
挿入棒6でライナ(I!I2の内側をスライドさせ隔壁
3と位置合わせすることにより、ライナ管2が別個の反
応室に分割されるよう構成されている。
Next, the inlet of the reaction chamber is sealed by a stainless steel manifold 4, and a semicircular carbon ring susceptor 5 can be inserted from this inlet.This susceptor 5 is inserted into the liner (I!I2 The liner tube 2 is configured to be divided into separate reaction chambers by sliding the inside of the liner tube 2 and aligning it with the partition wall 3.

尚、ライナ管2と反応管1との間にはわずかな透き間を
生じるが、この部分ではガスの流動抵抗が大きい為、例
えば反応室(1)内のガスが反応室(n)内に流れ込む
ことはない。
Note that there is a slight gap between the liner tube 2 and the reaction tube 1, but since the gas flow resistance is large in this area, for example, the gas in the reaction chamber (1) flows into the reaction chamber (n). Never.

すなわち、カーボン環のサセプタ5は半円形の断面形状
をもつと共に上面中央部7が突出していてストッパとし
て働らき、また下面も中央部まで削れていてライナ管2
に設けたストッパ8に当ることにより正確に隔壁3と位
置決めが行われている。
That is, the carbon ring susceptor 5 has a semicircular cross-sectional shape, and the upper surface central portion 7 protrudes to function as a stopper, and the lower surface is also shaved down to the central portion so that the liner tube 2
Accurate positioning with the partition wall 3 is achieved by hitting the stopper 8 provided at the partition wall 3.

次にカーボン環のサセプタ5の上部にはカーボン環の基
板ホルダ9が置かれ、被処理基板10は切削加工された
基板ホルダ9の上部凹部に嵌入されている。
Next, a carbon ring substrate holder 9 is placed on top of the carbon ring susceptor 5, and the substrate 10 to be processed is fitted into the cut upper recess of the substrate holder 9.

またカーボンサセプタ5の上面中央部7には第1図(B
)に示すように4.を板ホルダ9が嵌入可能な移動口1
1がおいており基板ホルダ9と接続して設けられている
石英製の操作棒12を用いてスライドさせることにより
隔壁3の下の移動口11を通って反応室(1)より反応
室(II)へ移すことができる。
In addition, the center portion 7 of the upper surface of the carbon susceptor 5 is shown in FIG.
) as shown in 4. The moving opening 1 into which the plate holder 9 can be inserted
The reaction chamber (II) is moved from the reaction chamber (1) through the transfer port 11 under the partition wall 3 by sliding it using a quartz operating rod 12 connected to the substrate holder 9. ).

この時、基板ホルダ9の位ht制御は、外部から自動的
に行ってもよいし、また反応室(II)内のサセプタ5
の端部に凸部を設はストッパとしてもよい。
At this time, the position of the substrate holder 9 may be automatically controlled from the outside, or the susceptor 5 in the reaction chamber (II) may be controlled automatically.
A convex portion may be provided at the end of the plate to serve as a stopper.

尚、反応室(r)および(11)にはそれぞれ独立した
反応ガス供給管13.14と排気口15.16が設けら
れている。
The reaction chambers (r) and (11) are provided with independent reaction gas supply pipes 13.14 and exhaust ports 15.16, respectively.

このように基板ホルダ9の端部をカーボンサセブタ5の
移動口11に挿入した状態で反応ガス供給管13よりガ
スを供給し排気口15より排出させる状態で高周波コイ
ル17に通電してカーボンサセプタ5を誘導加熱して気
相反応を行い、次に操作棒12を押して基板ホルダ9の
反対側の端部がカーボンサセプタ5の郡動口11に一敗
するまでスライドさせた状態で反応ガス供給管14より
供給されるガスにより気相成長を行えば急峻なドーピン
グプロファイルをもつ成長層の形成ができるO 例えば、電界効果l・ランジスタ(FET)を形成する
場合、半絶縁性ガリウム砒X (G aA s )基板
上にキャリヤ硅度の少いバッファ層を形成して基板の彫
物を遮断(7この上に動作層を形成することが必要であ
る。
In this manner, with the end of the substrate holder 9 inserted into the moving port 11 of the carbon susceptor 5, gas is supplied from the reaction gas supply pipe 13 and discharged from the exhaust port 15, and the high frequency coil 17 is energized to remove the carbon susceptor. 5 is induction heated to perform a gas phase reaction, and then the operating rod 12 is pushed and the opposite end of the substrate holder 9 is slid into the grouping opening 11 of the carbon susceptor 5 until the reaction gas is supplied. If vapor phase growth is performed using gas supplied from the tube 14, a grown layer with a steep doping profile can be formed.For example, when forming a field effect transistor (FET), semi-insulating gallium arsenide (G aA s ) It is necessary to form a buffer layer with low carrier density on the substrate to block the engravings on the substrate (7) to form an active layer on top of this.

この場合、反応室Iのガス供給管13からは水2 (H
z)、アルシン(AsHs)とトリメチルガリウム(略
称TMG)からなる混合ガスを供給し、一方反応室■の
ガス供給管14からはH* + ABH31TMGおよ
び硫化水素(aSS)からなる混合ガスを供給し乍ら先
に説明したように基板ホルダ9をスライドさせれば、バ
ッファ層から動作層へ急峻なドーピングプロファイルを
もつ半導体層を形成することができる。
In this case, water 2 (H
z), a mixed gas consisting of arsine (AsHs) and trimethyl gallium (abbreviated as TMG) was supplied, while a mixed gas consisting of H* + ABH31TMG and hydrogen sulfide (aSS) was supplied from the gas supply pipe 14 of the reaction chamber (2). By sliding the substrate holder 9 as described above, it is possible to form a semiconductor layer having a steep doping profile from the buffer layer to the active layer.

次に第1図は反応管1の加熱を高周波コイル17で行う
場合であるがランプを用いても行うこともできる。
Next, although FIG. 1 shows the case where the reaction tube 1 is heated with a high frequency coil 17, it can also be heated with a lamp.

第2図(5)と(B)はこれを用いた実施例で同図(5
)は(ill断面図また(B)はx−x’線における断
面図である。
Figure 2 (5) and (B) are examples using this.
) is a cross-sectional view taken along the line xx', and (B) is a cross-sectional view taken along the line xx'.

この方式をとる場合は加熱用ランプ20は反応管lをと
り囲んで設ける必要がないのでガス供給管21を上部に
設けることが可能であり、スペース的に余裕があり、こ
の実施例の場合3個の反応室を設けることができる。
When this method is adopted, the heating lamp 20 does not need to be provided surrounding the reaction tube 1, so the gas supply pipe 21 can be provided at the top, and there is sufficient space. It is possible to provide separate reaction chambers.

そしてこの実施例の場合、カーボンサセプタ22はライ
ナ管23の上下より突出して設けられている隔壁24と
接合することにより相互に隔離した反応室ができると共
に取り外し可能な構造となっている。
In the case of this embodiment, the carbon susceptor 22 is joined to partition walls 24 provided to protrude from the top and bottom of the liner tube 23, thereby creating mutually isolated reaction chambers and is also removable.

即ち、カーボンサセプタ22の隔壁を構成する部分に8
いて、反応室(川)と(I)間の隔壁は反応室(T)と
(111間のそれよりもひとまわり小さくなっており従
ってカーボンサセプタ22は取り外しを可能としている
In other words, 8.
The partition wall between the reaction chamber (river) and (I) is slightly smaller than that between the reaction chamber (T) and (111), so that the carbon susceptor 22 can be removed.

また、カーボンサセプタ22の上面で隔壁24と位置合
わされる突出部にはカーボンサセプタ22の上に載置さ
れている基板ホルダ9が通る移動口11が設けられてお
り、操作棒12により反応室(1)より(II)および
(I)と順次スライドさせて気相反応を行うことができ
る。
Further, a protruding portion on the upper surface of the carbon susceptor 22 that is aligned with the partition wall 24 is provided with a movement port 11 through which the substrate holder 9 placed on the carbon susceptor 22 passes, and the operation rod 12 can be used to move the reaction chamber ( A gas phase reaction can be carried out by sequentially sliding from 1) to (II) and (I).

(g) 発明の効果 本発明は隔壁により複数個の空間に分離された反応室内
に被処理基板が載置された基板ホルダーを挿入し、該隔
壁に設けられた貫通孔を通して各空間内に前記基板ホル
ダーを次々lこ移動し半導体層を成長させている為急峻
なドーピングプロファイルをもつ半導体層の形成が可能
となる。
(g) Effects of the Invention In the present invention, a substrate holder on which a substrate to be processed is mounted is inserted into a reaction chamber separated into a plurality of spaces by a partition wall, and the above-mentioned substrate is inserted into each space through a through hole provided in the partition wall. Since the semiconductor layer is grown by moving the substrate holder one after another, it is possible to form a semiconductor layer with a steep doping profile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(4)は本発明を実施した半導体成長装置のまた
第2図囚は別の実施例の側断面図また同図031はこの
x −x’における断面図である。 図において、1は反応管、2.23はライナ管。 3.24は隔壁、5.22はサセプタ、 9は基板ホル
ダ、10は被処理基板、11は移動口、12は操作棒、
13.14.21はガス供給管、15.16は排気口。
FIG. 1(4) is a side sectional view of a semiconductor growth apparatus embodying the present invention, FIG. 2 is a side sectional view of another embodiment, and FIG. In the figure, 1 is a reaction tube, and 2.23 is a liner tube. 3.24 is a partition wall, 5.22 is a susceptor, 9 is a substrate holder, 10 is a substrate to be processed, 11 is a moving port, 12 is an operating rod,
13, 14, and 21 are gas supply pipes, and 15.16 is an exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 被処理基板が載置された基板ホルダーを、隔壁により複
数個の空間に分離された反応室内に挿入し、該隔壁に設
けられた前記基板ホルダーが挿通可能な貫通孔を通して
該基板ホルダーを前記各空間内に移#I!l L、、前
記貫通孔を前記基板ホルダーの一部で塞ぐことにより、
他の空間から所望の空間を略完全に分離した後、該所望
の空間内で前記基板ホルダー上に載置された被処理基板
上に半導体層を気相成長させることを特徴とする気相成
長方法。
A substrate holder on which a substrate to be processed is mounted is inserted into a reaction chamber separated into a plurality of spaces by a partition wall, and the substrate holder is inserted into each space through a through hole provided in the partition wall through which the substrate holder can be inserted. Move into space #I! l L, by blocking the through hole with a part of the substrate holder,
Vapor phase growth, characterized in that after a desired space is almost completely separated from other spaces, a semiconductor layer is vapor phase grown on a substrate to be processed placed on the substrate holder within the desired space. Method.
JP3783584A 1984-02-29 1984-02-29 Vapor growth method Granted JPS60182721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3783584A JPS60182721A (en) 1984-02-29 1984-02-29 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3783584A JPS60182721A (en) 1984-02-29 1984-02-29 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS60182721A true JPS60182721A (en) 1985-09-18
JPH0516168B2 JPH0516168B2 (en) 1993-03-03

Family

ID=12508586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3783584A Granted JPS60182721A (en) 1984-02-29 1984-02-29 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS60182721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166352A (en) * 1986-01-18 1987-07-22 Canon Inc Photoreceptive member having ultrathin film lamination structure layer and apparatus for producing said member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166352A (en) * 1986-01-18 1987-07-22 Canon Inc Photoreceptive member having ultrathin film lamination structure layer and apparatus for producing said member

Also Published As

Publication number Publication date
JPH0516168B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
US8133322B2 (en) Apparatus for inverted multi-wafer MOCVD fabrication
US4907534A (en) Gas distributor for OMVPE Growth
US4253887A (en) Method of depositing layers of semi-insulating gallium arsenide
JPS60182721A (en) Vapor growth method
JP2528912B2 (en) Semiconductor growth equipment
EP0319121B1 (en) Apparatus for producing semiconductors
JPH03218621A (en) Method and device for selectively growing thin film
JPS63226917A (en) Vapor-phase treatment system for semiconductor
JPH0455155B2 (en)
JPH0971495A (en) Auxiliary equipment for mocvd deposition
JPS6134932A (en) Vapor growing process
EP0319122B1 (en) Apparatus and its use for producing semiconductors
JPH0529637B2 (en)
JPH03280419A (en) Method for formation of compound semiconductor thin film
KR950008843B1 (en) Apparatus for producing semiconductors
KR950008842B1 (en) Apparatus for producing semiconductors
JP2528165B2 (en) Semiconductor manufacturing equipment
KR950014604B1 (en) Manufacturing method of semiconductor
JPS6117494A (en) Device for vapor-phase growth
JPH06151339A (en) Apparatus and method for growth of semiconductor crystal
JPS63198322A (en) Semiconductor crystal growing apparatus
JPH01257322A (en) Manufacture of semiconductor
JPH0244800B2 (en) TANKETSUSHOSEICHOSOCHI
JPH0760803B2 (en) Method for manufacturing semiconductor wafer
JPS62205620A (en) Method and device for vapor growth