JPS60182302A - Gas turbine cooling blade - Google Patents

Gas turbine cooling blade

Info

Publication number
JPS60182302A
JPS60182302A JP3517184A JP3517184A JPS60182302A JP S60182302 A JPS60182302 A JP S60182302A JP 3517184 A JP3517184 A JP 3517184A JP 3517184 A JP3517184 A JP 3517184A JP S60182302 A JPS60182302 A JP S60182302A
Authority
JP
Japan
Prior art keywords
blade
insert
cooling
cold air
air duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3517184A
Other languages
Japanese (ja)
Inventor
Hideo Iwasaki
秀夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3517184A priority Critical patent/JPS60182302A/en
Publication of JPS60182302A publication Critical patent/JPS60182302A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve cooling performance by forming a cooling passage making at least one reciprocating lead in the blade height direction on an insert in a blade and connecting the passage to a cool air duct between the inner wall of the blade and the insert. CONSTITUTION:A cooling passage 3 which makes at least one reciprocating lead in the blade height direction as shown by arrows is formed on an insert 2 in a blade. The cooling passage 3 is connected to a cool air duct 6 between the inner wall 1 of the blade and the insert 2, and the cool air is discharged from cooling holes on the rear edge of the blade. Thus, larger heat transfer rate can be realized in the cooling passage 3 of the insert 2 to improve cooling performance.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、タービンの翼に係り、特に工業用タービン・
エンジンの第1段に使用されるような冷却を必要とする
タービンの翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to turbine blades, and particularly to industrial turbine blades.
It relates to turbine blades requiring cooling, such as those used in the first stage of an engine.

〔従来技術とその問題点〕[Prior art and its problems]

タービン・エンジン等では、一般に燃焼するガスによっ
て駆動されるタービン自身が、燃焼器へ空気を供給する
送風機又は圧縮機を駆動する、自刃的駆動方式が採用さ
れている。かかるタービンの出力効率を高めるために、
最も有効な方法は、タービン入口における燃焼ガス温度
を高めることであるが、上記温度は、タービンの翼を構
成する材料の耐熱応力性或いは、高温酸化・腐食等に耐
える能力により制限される。
Turbine engines and the like generally employ a self-propelled drive system in which the turbine itself, which is driven by combustion gas, drives a blower or compressor that supplies air to a combustor. In order to increase the output efficiency of such a turbine,
The most effective method is to increase the temperature of the combustion gas at the turbine inlet, but this temperature is limited by the thermal stress resistance of the materials forming the turbine blades or their ability to withstand high temperature oxidation, corrosion, etc.

そこで、従来よシ翼の内部に冷却流体を通流させる流路
を備えた対流式のタービンの翼が用いられている。しか
し、この従来からのタービンの翼にあっては所定のター
ビン入口ガス温度に対して、タービン翼の温度を許容値
以内に保つために使用される冷却流体の量が過大であり
、満足できるものではなかった。すなわち、冷却流体の
量が多いと翼の温度は明らかに低下するが、逆に翼の空
力損失が増大し、また、タービン出力効率も低下する。
Therefore, conventionally, a convection type turbine blade is used, which has a flow path through which a cooling fluid flows inside the blade. However, in this conventional turbine blade, the amount of cooling fluid used to maintain the turbine blade temperature within an allowable value is too large for a given turbine inlet gas temperature, and the amount of cooling fluid used is unsatisfactory. It wasn't. That is, a large amount of cooling fluid obviously lowers the temperature of the blade, but conversely increases the aerodynamic loss of the blade and also reduces the turbine output efficiency.

このため、少ない冷却流体で翼を良好に冷却できるもの
の出現が望まれているのが実状である。
For this reason, the current situation is that there is a desire for the development of a device that can effectively cool the blades with a small amount of cooling fluid.

また、不純物が混在する粗悪燃料を使用した場合にも良
好々冷却性能を保持できるよう翼表面、特に前縁部には
いわゆるフィルム冷却孔を設けない、主に対流式の高い
冷却性能をもつ冷却翼が望まれている。
In addition, in order to maintain good cooling performance even when using poor-quality fuel containing impurities, we do not provide so-called film cooling holes on the blade surface, especially at the leading edge. Wings are desired.

従来のフィルム冷却孔を設け々い対流冷却を主にした冷
却翼は翼内部に挿入体を設け、挿入体外被と翼内壁との
間に冷気ダクトを設け、冷却流体を挿入体の一ケ所ある
いは数ケ所から挿入体と翼内壁とで構成する乱流室を介
しあるいは直接、冷気ダクトに流し翼外へ流出させる構
造をとる例が多く考えられている。しかし、これらの構
造では冷却ダクトに沿って流れるにしたがい、冷却流体
の温度上昇により、翼面温度の不均一をまねきやすい。
Conventional cooling blades with film cooling holes and mainly convection cooling have an insert inside the blade, a cold air duct between the outer cover of the insert and the inner wall of the blade, and the cooling fluid is directed to one place in the insert or Many examples have been considered in which cold air flows into a cold air duct from several locations through a turbulence chamber made up of an insert and the inner wall of the blade, or directly into a cold air duct and flows out of the blade. However, in these structures, as the cooling fluid flows along the cooling duct, the temperature of the cooling fluid increases, which tends to cause unevenness in the temperature of the blade surface.

また、挿入体と翼内壁との接合は冷却ダクトを形成する
目的が主であシ、また挿入体内の冷却流路は比較的流路
断面積が大きなブレナムとなっているため熱伝達率が小
さく、挿入体の突出部と翼内壁の接合による熱伝導の冷
却効果が小さいという欠点がある。
In addition, the main purpose of the connection between the insert and the inner wall of the blade is to form a cooling duct, and the cooling flow path inside the insert is a blenheim with a relatively large cross-sectional area, so the heat transfer coefficient is low. However, there is a drawback that the cooling effect of heat conduction due to the connection between the protrusion of the insert and the inner wall of the blade is small.

さらに、従来の挿入体は弾力性があるもので材質が翼と
は異なり、製作も別々であり、組立に際しても一つ一つ
翼に挿入体を挿入するという工程をとっている例が多い
Furthermore, conventional inserts are elastic and are made of a different material from the wings, and are manufactured separately, and in many cases, the assembly process involves inserting the inserts into each wing one by one.

〔本発明の目的〕[Object of the present invention]

本発明は、このような事情を鑑みてなされたもので、そ
の目的とするところは高度な冷却性能を有し、また、比
較的製作が容易なガスタービンの冷却翼を提供すること
にある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a cooling blade for a gas turbine that has high cooling performance and is relatively easy to manufacture.

〔発明の概要〕[Summary of the invention]

本発明は、従来から知られている翼内部に挿入体を有し
、挿入体外被の突出部と翼内壁とで冷気ダクトを形成す
る型の冷却翼に属するものであるが、挿入体の構成にい
ちじるしい特徴を有する。
The present invention belongs to a conventionally known type of cooling blade that has an insert inside the blade and forms a cold air duct with the protrusion of the insert's outer cover and the inner wall of the blade. It has very distinctive characteristics.

すなわち、従来のものでは挿入体内の冷却流路は比較的
断面積が大きく、プレナムとなっており、挿入体内の熱
伝達率が小さく、また挿入体の突出部と翼内壁との接合
も冷気ダクトを形成する目的が主であり、挿入体突出部
と翼内壁との接合による熱伝導の冷却効果がほとんどな
い。これに対し本発明では、挿入体内の冷却流路は翼高
き方向に少なくとも一度往復するリターン・フロー流路
となっており、冷却流体は挿入体内のリターン・フロー
の冷却流路を流れた後、挿入体先端部あるいは他の場所
の穿孔を通して挿入体外被の突出部と翼内壁よ多構成さ
れる冷気ダクトに通じる乱流室に流れる構造となってい
る。
In other words, in the conventional type, the cooling flow path inside the insert has a relatively large cross-sectional area and is a plenum, so the heat transfer coefficient inside the insert is low, and the connection between the protruding part of the insert and the inner wall of the blade is also a cold air duct. The main purpose is to form a blade, and there is almost no cooling effect of heat conduction due to the connection between the insert protrusion and the blade inner wall. In contrast, in the present invention, the cooling channel in the insert is a return flow channel that reciprocates at least once in the blade height direction, and after the cooling fluid flows through the return flow cooling channel in the insert, The cold air flows through a perforation in the tip of the insert or elsewhere into a turbulent chamber that leads to a cold air duct consisting of a protrusion on the insert jacket and the inner wall of the blade.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷却流体はまず挿入体内のリターンフ
ローする冷却流路内を流れるが、この際従来のプレナム
型の冷却流路と異なり、挿入体内の冷却流路で大きな熱
伝達率を実現することができ、挿入体外被の突出部と翼
内壁との接合による熱伝導の冷却効果がいちじるしく増
大する。
According to the present invention, the cooling fluid first flows through the return-flow cooling channel within the insert, and unlike the conventional plenum-type cooling channel, the cooling channel within the insert achieves a large heat transfer coefficient. As a result, the cooling effect of heat conduction due to the connection between the protrusion of the insert jacket and the inner wall of the blade is significantly increased.

さらに、挿入体内の冷却流路を流れる冷却流体の流れの
方向と挿入体外被の突出部と翼内壁とで構成される冷気
ダクトを流れる冷却流体の流れ方向を逆方向にすれば、
冷却流路内の冷却流体と冷気ダクト内の冷却流体の間で
熱交換がおこり、翼を均一に冷却せしめることが可能と
なる。
Furthermore, if the flow direction of the cooling fluid flowing through the cooling channel inside the insert body and the flow direction of the cooling fluid flowing through the cold air duct constituted by the protrusion of the insert body jacket and the blade inner wall are reversed,
Heat exchange occurs between the cooling fluid in the cooling flow path and the cooling fluid in the cold air duct, making it possible to uniformly cool the blades.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。第1図はコー
ド方向の断面図、第2図は第1図1−I断面の図、第3
図はスパン方向断面図、第4図は挿入体の見取シ図であ
る。
Examples of the present invention will be described below. Figure 1 is a cross-sectional view in the cord direction, Figure 2 is a cross-sectional view taken along the line I-I in Figure 1, and Figure 3 is a cross-sectional view taken along the cord direction.
The figure is a sectional view in the span direction, and FIG. 4 is a perspective view of the insert.

この実施例は、挿入体内の冷却流路がスパン方向に5本
ある5リターンでアシ、冷却流体は後縁側よシ流入し、
乱流室を前縁に設け、冷気ダクトを流れ、最終的に翼後
縁に設けられた穿孔よシ翼外に流出する形式のものであ
る。
In this embodiment, there are five cooling channels in the insert in the span direction, and the cooling fluid flows in from the trailing edge side.
A turbulent flow chamber is provided at the leading edge, the cold air flows through a duct, and finally flows out of the blade through a perforation provided at the trailing edge of the blade.

冷却流体は、第3図に示すように冷却流体流入口10よ
シ流入し、挿入体2の中の冷却流路3を通シ、リターン
部4を流れ、矢印で示したごとく前縁にむかってリター
ンしながら流れ、挿入体2に設けられた穿孔5より乱流
室6に流出する。しかる後第1図に示すように冷却ダク
ト7を流れ、後縁に設けられた冷却孔8を通り翼列へ流
出する。
The cooling fluid enters through the cooling fluid inlet 10 as shown in FIG. It flows while returning, and flows out into the turbulent flow chamber 6 through the perforation 5 provided in the insert body 2. Thereafter, as shown in FIG. 1, the air flows through the cooling duct 7, passes through the cooling holes 8 provided at the trailing edge, and flows out to the blade row.

ところで冷気ダクト7は翼1の内壁と挿入体2の突出部
9の接合により、第2図のように構成はれている。翼1
の内壁と突出部9の接合は良好な熱伝導効果があるよう
に接合した構造としておく。
By the way, the cold air duct 7 is constructed by joining the inner wall of the blade 1 and the protrusion 9 of the insert body 2, as shown in FIG. wing 1
The inner wall and the protrusion 9 are joined to each other so as to have a good heat conduction effect.

これは拡散接合、精密鋳造技術で充分可能な技術である
This is a technology that is fully possible with diffusion bonding and precision casting technology.

〔発明の他の実施例〕[Other embodiments of the invention]

発明の他の実施例としては、第5図に示すように、挿入
体2の中の冷却流路を2つ以上の部分にわけることも可
能である。この例では、冷却流体流入口が2ケ所あシ、
一方は前縁に向って流れ穿孔5を介し乱流室6に流出し
、しかる後冷気ダクトを通り後縁よυ流出する系統と、
他の系統は挿入体2の後縁側にも穿孔5を設け、直接後
縁より流出する系統より成っている。この例では後縁に
ピン・フィン11をもつ構造となっている。
In other embodiments of the invention, the cooling channels in the insert 2 can be divided into two or more parts, as shown in FIG. In this example, there are two cooling fluid inlets.
One side flows toward the leading edge through the perforation 5 into the turbulent flow chamber 6, and then passes through the cold air duct and flows out to the trailing edge;
Another system has a perforation 5 also provided on the rear edge side of the insert body 2, and the flow directly flows out from the rear edge. This example has a structure with pin fins 11 at the rear edge.

さらに、挿入体2から冷気ダクト7につながる穿孔5ば
、挿入体2の前縁側および後縁側ばかりではなく、翼の
冷却性能に応じて遍在適所に設けることも可能である。
Further, the perforations 5 leading from the insert 2 to the cold air duct 7 can be provided not only on the leading edge side and the trailing edge side of the insert body 2, but also at arbitrary locations depending on the cooling performance of the blade.

また挿入体2の突出部9をピン・フィン構造とすること
も可能である。
It is also possible to form the protrusion 9 of the insert 2 into a pin-fin structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による冷却翼の一実施例のコード方向
の断面図、第2図は第1図の冷気ダクトのスパン方向の
断面図、第3図は第1図のスパン方向の断面図、第4図
は本発明の挿入体の斜視図、第5図は竿発明の他の実施
例の断面図である。 1・・・翼、2・・・挿入体、3・・・挿入体の中の冷
却流路、4・・・挿入体の中のリターン部、5・・・挿
入体の穿孔、6・・・乱流室、7・・・冷気ダクト、8
・・冷却孔、9・・・突出部、10・・・冷却流体流入
口、11・・・ピン・フィン。 代理人 弁理士 則 近 憲 佑 (ほか1名)第 2
 図 ム 特開昭GO−182302(4) 第 5 図 ノ 11
1 is a sectional view in the cord direction of an embodiment of a cooling blade according to the present invention, FIG. 2 is a sectional view in the span direction of the cold air duct in FIG. 1, and FIG. 3 is a sectional view in the span direction of the cold air duct in FIG. 1. 4 is a perspective view of the insert of the present invention, and FIG. 5 is a sectional view of another embodiment of the rod invention. DESCRIPTION OF SYMBOLS 1... Wing, 2... Insertion body, 3... Cooling channel in insert body, 4... Return part in insert body, 5... Perforation in insert body, 6...・Turbulence chamber, 7...cold air duct, 8
...Cooling hole, 9...Protrusion, 10...Cooling fluid inlet, 11...Pin fin. Agent Patent Attorney Kensuke Chika (and 1 other person) 2nd
Figure JP-A-182302 (4) Figure 5 No. 11

Claims (2)

【特許請求の範囲】[Claims] (1)冷却流体が翼根部から翼内部に流入し、翼有効部
内部を通過して翼外に流出する形式の中空構造をもつガ
スタービン冷却翼において、翼内部に挿入体を有し、該
挿入体外被には多数の突出部を有し、該突出部は翼内壁
と接合し、冷気ダクトを形成し、該挿入体の先端部ある
いは他の場所には穿孔を設け、該翼内壁と該挿入体との
間に前記冷気ダクトに通じる乱流室を構成し、前記冷気
ダクトは翼後縁あるいは他の場所に設けられた穿孔を通
し翼外に通じ、前記挿入体は翼高さ方向に少なくとも一
度は往復する冷却流路を有し、該挿入体先端部あるいは
他の場所に設けられた穿孔を通し前記乱流室に通じるこ
とを特徴としたガスタービン冷却翼。
(1) A gas turbine cooling blade having a hollow structure in which cooling fluid flows into the blade from the blade root, passes through the blade effective part and flows out of the blade, and has an insert inside the blade, and The insert jacket has a number of protrusions that connect with the inner wing wall to form cold air ducts, and the insert has perforations at the tip or other locations to connect with the inner wing wall. A turbulent flow chamber communicating with the cold air duct is formed between the insert and the cold air duct, and the cold air duct communicates with the outside of the blade through a perforation provided at the trailing edge of the blade or elsewhere, and the insert body is configured to extend in the blade height direction. A gas turbine cooling blade characterized in that it has a cooling passage that reciprocates at least once and communicates with the turbulence chamber through a hole provided at the tip of the insert or elsewhere.
(2)冷気ダクトを構成すべく、翼内壁に突出部を有す
ることを特徴とする特許請求の範囲第1項記載のガスタ
ービン冷却翼。
(2) The gas turbine cooling blade according to claim 1, further comprising a protrusion on the inner wall of the blade to form a cold air duct.
JP3517184A 1984-02-28 1984-02-28 Gas turbine cooling blade Pending JPS60182302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3517184A JPS60182302A (en) 1984-02-28 1984-02-28 Gas turbine cooling blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3517184A JPS60182302A (en) 1984-02-28 1984-02-28 Gas turbine cooling blade

Publications (1)

Publication Number Publication Date
JPS60182302A true JPS60182302A (en) 1985-09-17

Family

ID=12434406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3517184A Pending JPS60182302A (en) 1984-02-28 1984-02-28 Gas turbine cooling blade

Country Status (1)

Country Link
JP (1) JPS60182302A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264706A (en) * 1990-03-14 1991-11-26 Toshiba Corp Turbine stationary blade
US5281084A (en) * 1990-07-13 1994-01-25 General Electric Company Curved film cooling holes for gas turbine engine vanes
US6174134B1 (en) * 1999-03-05 2001-01-16 General Electric Company Multiple impingement airfoil cooling
WO2003085235A1 (en) * 2002-04-08 2003-10-16 Siemens Aktiengesellschaft Turbine blade
US20190078446A1 (en) * 2017-09-11 2019-03-14 MTU Aero Engines AG Blade of a turbomachine, including a cooling channel and a displacement body situated therein, as well as a method for manufacturing
US10260359B2 (en) 2015-03-18 2019-04-16 Rolls-Royce Plc Vane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264706A (en) * 1990-03-14 1991-11-26 Toshiba Corp Turbine stationary blade
US5281084A (en) * 1990-07-13 1994-01-25 General Electric Company Curved film cooling holes for gas turbine engine vanes
US6174134B1 (en) * 1999-03-05 2001-01-16 General Electric Company Multiple impingement airfoil cooling
WO2003085235A1 (en) * 2002-04-08 2003-10-16 Siemens Aktiengesellschaft Turbine blade
US10260359B2 (en) 2015-03-18 2019-04-16 Rolls-Royce Plc Vane
US20190078446A1 (en) * 2017-09-11 2019-03-14 MTU Aero Engines AG Blade of a turbomachine, including a cooling channel and a displacement body situated therein, as well as a method for manufacturing

Similar Documents

Publication Publication Date Title
JP2668207B2 (en) Aerof oil section of gas turbine engine turbine
US4604031A (en) Hollow fluid cooled turbine blades
US6126396A (en) AFT flowing serpentine airfoil cooling circuit with side wall impingement cooling chambers
US5975850A (en) Turbulated cooling passages for turbine blades
US5387086A (en) Gas turbine blade with improved cooling
US5215431A (en) Cooled turbine guide vane
JP2862536B2 (en) Gas turbine blades
JP3486192B2 (en) Cooled turbine blades
US6129515A (en) Turbine airfoil suction aided film cooling means
JPS6196140A (en) Support structure of gas turbine engine
JPS62271902A (en) Cooled blade for gas turbine
JPH0370084B2 (en)
JPH0353442B2 (en)
JP4175669B2 (en) Cooling channel structure for cooling the trailing edge of gas turbine blades
JPS611805A (en) Blade used in gas turbine engine
US7665968B2 (en) Cooled rotor blade
US4462754A (en) Turbine blade for gas turbine engine
JPS60182302A (en) Gas turbine cooling blade
JPS59200001A (en) Gas turbine blade
JPS60135605A (en) Turbine cooling blade
JP2818266B2 (en) Gas turbine cooling blade
JPH11193701A (en) Turbine wing
JP3642537B2 (en) Gas turbine cooling blade
JPS61118502A (en) Turbine cooled blade
JPH0742842B2 (en) Gas turbine blades