JPS60182128A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPS60182128A
JPS60182128A JP3604584A JP3604584A JPS60182128A JP S60182128 A JPS60182128 A JP S60182128A JP 3604584 A JP3604584 A JP 3604584A JP 3604584 A JP3604584 A JP 3604584A JP S60182128 A JPS60182128 A JP S60182128A
Authority
JP
Japan
Prior art keywords
gas
reaction vessel
window
reaction
entrance window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3604584A
Other languages
Japanese (ja)
Other versions
JPH0544818B2 (en
Inventor
Yasuhiro Mochizuki
康弘 望月
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3604584A priority Critical patent/JPS60182128A/en
Publication of JPS60182128A publication Critical patent/JPS60182128A/en
Publication of JPH0544818B2 publication Critical patent/JPH0544818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To prevent an undesired film from forming on the inner surface of a light incident window of a reaction vessel by blowing inert gas to the inner surface of the window, thereby preventing stock gas which contributes to the accumulation from contacting with the inner surface of the window. CONSTITUTION:A gas nozzle 17 for preventing the cloud of a light incident window is provided on the inner surface of a light incident window 12 of a reaction vessel 11. Inactive rare gas such as hydrogen or halogen is supplied to the nozzle 17. The nozzle 17 is formed of a stainless steel pipe, and a plurality of gas injection holes are formed toward the window 12 at the pipe. Thus, inactive gas is blown to the inner surface of the window 12 of the vessel 11, thereby eliminating the stock gas which contributes to the accumulation of the film on the inner surface of the window 12. Then, no undesired film is formed on the inner surface of the window 12.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光励起気相化学反応による薄膜形−成装置に係
り、特に量産性、作業性の優れた薄膜形成装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film forming apparatus using a photo-excited gas phase chemical reaction, and particularly to a thin film forming apparatus which is excellent in mass productivity and workability.

〔発明の背景〕[Background of the invention]

気相反応による薄膜形成法の1つとして光エネルギーに
より反応を活性化させる方法(以下光CVD法と記す)
が知られている。熱エネルギーやプラズマ等による反応
の活性化に比べて、光エネルギーによる活性化は反応の
低温化が可能であり、また電気磁気や加速荷電粒子によ
るダメージがなく安定した薄膜形成が可能であるため広
い範囲の応用が考えられている。光エネルギーとしては
レーザ光、水銀ランプ、ハロゲンセンプ、重水素ランプ
等が知られている。これらのうちで反応の活性化に適し
た波長、強度、照射面積、取扱い易さ等の観点で水銀ラ
ンプが用いられることが多い。特に励起光として低圧水
銀ランプの共鳴線を用い、原料に水銀蒸気を添加し増感
作用を利用した反応は効4(が良いため広く用いられて
いる。
A method of activating the reaction with light energy (hereinafter referred to as photoCVD method) is one of the methods for forming thin films by gas phase reaction.
It has been known. Compared to reaction activation using thermal energy, plasma, etc., activation using light energy allows the reaction to occur at a lower temperature, and is also widely used because it allows stable thin film formation without damage from electromagnetism or accelerated charged particles. A range of applications are considered. As light energy, laser light, mercury lamp, halogen lamp, deuterium lamp, etc. are known. Among these, mercury lamps are often used from the viewpoints of wavelength, intensity, irradiation area, ease of handling, etc. suitable for reaction activation. In particular, a reaction in which the resonance line of a low-pressure mercury lamp is used as excitation light and mercury vapor is added to the raw material to utilize the sensitizing effect is widely used because of its good effect.

従来の光CV ])法による薄膜形成装置を第1図に示
す。装置は大別して、反応系10、反応ガス供給系20
、排気系30の三部分から成り立っている。
A conventional thin film forming apparatus using the optical CV method is shown in FIG. The device is roughly divided into a reaction system 10 and a reaction gas supply system 20.
, the exhaust system 30 consists of three parts.

反応系10は、反応容器11、励起光源13、基板支持
台14及びその加熱源15がら成る。反応容器11には
透明石英等の励起光を透過する光入射窓12が具備され
ている。反応容器11内の基板支持台14上に被膜形成
基板、例えばシリコンウェハ1Gを並べ、シリコンウェ
ハ16表面にほぼ垂直に励起光を照射している。加熱源
15は抵抗加熱ヒーターや赤外線ランプ等が用いられて
いる。
The reaction system 10 includes a reaction container 11, an excitation light source 13, a substrate support 14, and a heating source 15 thereof. The reaction vessel 11 is equipped with a light entrance window 12 made of transparent quartz or the like that transmits excitation light. Film-forming substrates, for example silicon wafers 1G, are arranged on a substrate support stand 14 in a reaction vessel 11, and excitation light is irradiated almost perpendicularly onto the surface of the silicon wafer 16. As the heat source 15, a resistance heater, an infrared lamp, or the like is used.

反応ガス供給系20は、モノシラン(SiH4)、酸素
(02)、アンモニア(NH3)、亜酸化窒素(N2 
o)、ホスフィン(PH3)等の原料ガスが流量計21
を通して、ヒドラジン(N2H4)等の液体原料はキャ
リアガスを用いて反応容器11に供給される。また、増
感剤としての水銀蒸気は恒温槽内の水銀蒸発器22に反
応ガス又はその他のキャリアガスを流すことにより反応
容器11に供給される。
The reaction gas supply system 20 supplies monosilane (SiH4), oxygen (02), ammonia (NH3), and nitrous oxide (N2).
o), raw material gas such as phosphine (PH3) is passed through the flowmeter 21
Through the reactor, a liquid raw material such as hydrazine (N2H4) is supplied to the reaction vessel 11 using a carrier gas. Further, mercury vapor as a sensitizer is supplied to the reaction vessel 11 by flowing a reaction gas or other carrier gas through a mercury evaporator 22 in a constant temperature bath.

排気系30は、反応容器ll内のガスの置換及び反応時
の雰囲気の圧力調整のためロータリーポンプ、ブースタ
ーポンプ等の排気装置31が用いられている。また、未
反応ガスや反応生成物のトラップや除去装置32が付加
されている。
In the exhaust system 30, an exhaust device 31 such as a rotary pump or a booster pump is used to replace the gas in the reaction vessel 11 and adjust the pressure of the atmosphere during the reaction. Additionally, a trap and removal device 32 for unreacted gas and reaction products is added.

ここで問題となるのは、反応系10の部分で次の点であ
る。
The problem here is the following regarding the reaction system 10.

反応容器IJの励起光入射窓12の内面にも膜が堆積し
、励起光の透過率が悪くなる。光化学反応の速度即ち膜
堆積速度は励起光の強度に比例するので、励起光の透過
率が低下すると膜堆積速度は減少し、更には反応が停止
し所望の膜厚が得られなくなってしまう。
A film is also deposited on the inner surface of the excitation light entrance window 12 of the reaction vessel IJ, resulting in poor transmittance of the excitation light. Since the rate of photochemical reaction, that is, the rate of film deposition, is proportional to the intensity of the excitation light, when the transmittance of the excitation light decreases, the rate of film deposition decreases, and furthermore, the reaction stops, making it impossible to obtain the desired film thickness.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、反応容器の光入射窓内面に不所望な被
膜が形成さ肛ることを防止し、これによって作業性量産
性のよい薄膜形成装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film forming apparatus that prevents the formation of an undesired film on the inner surface of a light entrance window of a reaction vessel, and thereby has good workability and mass productivity.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、反応容器の光入射窓の内面に不活性な
ガスを吹きかけ、光入射窓内面に膜堆積に寄与する原料
ガスが接触することを防止した薄膜形成装置にある。
The present invention is characterized by a thin film forming apparatus that sprays an inert gas onto the inner surface of the light entrance window of a reaction vessel to prevent source gas contributing to film deposition from coming into contact with the inner surface of the light entrance window.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

第2図は、本発明装置の一実施例で、反応容器内に堆 
物を生じない不活性なガスの供給ノズルを設は光入射窓
の内面に不活性なガスを吹きつけるように 成されてい
る。第1図と同一箇所は同−m号で示しである。反応容
器11はステンレス製で大きさ直径200m、高さ80
mmの円形箱型で、透明石英製、特に真空紫外光の短波
長光の透過率のよい合成石英製の光入射窓12が設けら
れている。基板支持台14はアルミニウム製で堆積膜厚
を均一にするため外部より回転させることができる。加
熱源15は温度調整器付きの抵抗加熱ヒーターで基板1
6を所望の温度に保持できる。
Figure 2 shows an embodiment of the apparatus of the present invention.
An inert gas supply nozzle that does not produce any substances is installed to spray the inert gas onto the inner surface of the light entrance window. The same parts as in Fig. 1 are indicated by the same number -m. The reaction vessel 11 is made of stainless steel and has a diameter of 200 m and a height of 80 m.
A light entrance window 12 is provided, which has a circular box shape of 2.0 mm in diameter and is made of transparent quartz, especially synthetic quartz that has good transmittance for short wavelength light such as vacuum ultraviolet light. The substrate support stand 14 is made of aluminum and can be rotated from the outside in order to make the deposited film thickness uniform. The heating source 15 is a resistance heater equipped with a temperature regulator, and the heating source 15 is a resistance heating heater equipped with a temperature regulator.
6 can be maintained at a desired temperature.

励起光源13は低圧水銀ランプで波長185’nrn及
び254 n mの共鳴線を放射する。図面には省略し
たがランプハウスと反応容器11の光入射窓12の間は
窒素ガスで置換し、光の吸収特にオゾンの発生を防止し
ている。
The excitation light source 13 is a low-pressure mercury lamp that emits resonance lines at wavelengths of 185'nrn and 254 nm. Although not shown in the drawings, the space between the lamp house and the light entrance window 12 of the reaction vessel 11 is replaced with nitrogen gas to prevent light absorption, particularly ozone generation.

ガス供給系は第1図に示したものに更にもう一つのガス
供給ノズル17を設け、水素、ハロゲン及びその水素化
物、窒素、アルゴンやヘリウム等の不活性種ガスの1つ
又は混合ガスを供給できるようにした。この追加された
ガス供給ノズルは直径1/4インチのステンレス製パイ
プを光入射窓の内面近傍にリング状に配置し、光入射窓
に向って直径0.25mmのガス噴出孔が複数個設けら
れている。
The gas supply system is the one shown in FIG. 1 with another gas supply nozzle 17 for supplying one or a mixture of inert gases such as hydrogen, halogen and its hydrides, nitrogen, argon, and helium. I made it possible. This additional gas supply nozzle consists of a stainless steel pipe with a diameter of 1/4 inch arranged in a ring shape near the inner surface of the light entrance window, and multiple gas ejection holes with a diameter of 0.25 mm facing the light entrance window. ing.

排気系は排気速度950 Q /minのロータリ′−
ポンプと排気速度100rri’/hのメカニカルブー
スターポンプを併用した。
The exhaust system is a rotary one with an exhaust speed of 950 Q/min.
A mechanical booster pump with an evacuation speed of 100 rri'/h was used in combination with the pump.

実験例1 (シリコン膜の形成例) 原料ガスとしてモノシラン8 rn 4 / minを
38℃に保った水銀蒸発器22(水銀の蒸気圧5×10
 ”” Torr )を通して反応容器11に供給する
Experimental Example 1 (Silicone film formation example) A mercury evaporator 22 (mercury vapor pressure 5×10
``'' Torr) into the reaction vessel 11.

被膜形成基板16は直径3インチのシリコンウェハであ
り、基板温度は200’Cに設定した。光入射窓への膜
堆積防止用の不活性ガスノズル17には水素400mΩ
/minを供給した。反応容器11内の圧力は1 、5
 Torrである。20分間の反応で2700〜320
〇への膜が堆積し、平均膜堆積速度は約】5〇八へmi
nである。光入射窓内面へ不活性なガス(本実験例では
水素)を吹きつけない場合には、光入射窓内面にもアモ
ルファスシリコン膜が堆積し、数分以内で光入射窓が褐
色にくもり励起光の透過が阻止され反応が進行しなくな
り、数100八以上の膜厚を得ることはできない。
The coating substrate 16 was a silicon wafer with a diameter of 3 inches, and the substrate temperature was set at 200'C. Hydrogen 400mΩ is used in the inert gas nozzle 17 to prevent film deposition on the light entrance window.
/min was supplied. The pressure inside the reaction vessel 11 is 1,5
Torr. 2700-320 for 20 minutes reaction
A film is deposited on 〇, and the average film deposition rate is about] 508 mi
It is n. If an inert gas (hydrogen in this example) is not blown onto the inner surface of the light entrance window, an amorphous silicon film will also be deposited on the inner surface of the light entrance window, and within a few minutes the light entrance window will become cloudy and the excitation light will become cloudy. permeation is blocked and the reaction does not proceed, making it impossible to obtain a film thickness of several hundred eight or more.

実験例2(シリコン膜の形成例(2))反応ガスとして
5%モノシランと95%窒素の混合ガス500mQ/m
inを水銀蒸発器22を通して反応容器11に供給する
。光入射窓12への膜堆積防止用のガスノズル17には
塩化水素100rr+Q/minと窒素200 m Q
 / minの混合ガスを供給する。基板上への膜堆積
用の原流ガスと光入射窓内面への膜堆積防止用のガスの
混合を防ぎ両者の効率を良くするため、両者の間に石英
製のルーパー18(うろこ板)を設置した。ルーパー1
8の板は厚さ100μm、長さ8面、間隔4m、設定角
度は励起光の照射を妨げず、かつ両者のガスのコンダク
タンスが小さくなる様に基板面に垂直、即ち励起光速に
平行とした。排ガスは大気圧下に放出した。他の反応条
件は実験例1の場合と同じである。1時間の反応で約4
000へのアモルファスシリコン膜が堆積できた。平均
膜堆積速度は67八/mi、nど実験例1や従来例に比
べて劣るが、大気圧下で操作でき、光入射窓12のくも
りが全くなく厚い膜を形成できる利点がある。ここで、
塩化水素ガスは、モノシランと光入射窓の直接接触を防
ぐのみでなく、光入射窓内面に不所望に堆積したアモル
ファスシリコンのエツチング作用も有しており、光入射
窓のくもり防止には極めて効果的である。
Experimental example 2 (Silicone film formation example (2)) Mixed gas of 5% monosilane and 95% nitrogen as reaction gas 500 mQ/m
In is supplied to the reaction vessel 11 through the mercury evaporator 22. Hydrogen chloride 100rr+Q/min and nitrogen 200 mQ were supplied to the gas nozzle 17 for preventing film deposition on the light entrance window 12.
/ min of mixed gas is supplied. In order to prevent the mixing of the original gas for film deposition on the substrate and the gas for preventing film deposition on the inner surface of the light incident window and to improve the efficiency of both, a quartz looper 18 (scale plate) is placed between the two. installed. Looper 1
The plate No. 8 was 100 μm thick, 8 sides long, and 4 m apart, and the set angle was perpendicular to the substrate surface, that is, parallel to the speed of excitation light, so as not to impede the irradiation of excitation light and to reduce the conductance of both gases. . The exhaust gas was released to atmospheric pressure. Other reaction conditions were the same as in Experimental Example 1. Approximately 4 in 1 hour reaction
An amorphous silicon film of 0.000 was successfully deposited. Although the average film deposition rate is 678/mi, which is inferior to Experimental Example 1 and the conventional example, it has the advantage of being able to operate under atmospheric pressure and forming a thick film without clouding the light entrance window 12 at all. here,
Hydrogen chloride gas not only prevents direct contact between monosilane and the light entrance window, but also has the effect of etching the amorphous silicon that has undesirably deposited on the inner surface of the light entrance window, making it extremely effective in preventing fogging of the light entrance window. It is true.

実験例3(シリコン酸化膜の形成) 原料ガスとして5%モノシランと95%窒素の混合ガス
500 rn D、 / ri−inを水銀蒸発器22
を通して、及び亜酸化室23250 m D、/ mi
nを反応容器11に供給する。基板16は加熱していな
いが、水銀ランプ13照射により60〜70℃に昇温す
る。光入射窓12内面への膜堆積防止用の不活性なガス
として窒素2000 rn Q /minを供給する。
Experimental Example 3 (Formation of silicon oxide film) A mixed gas of 5% monosilane and 95% nitrogen as a raw material gas was supplied to the mercury evaporator 22 at 500 rnD,/ri-in.
through, and nitrous oxide chamber 23250 m D, / mi
n is supplied to the reaction vessel 11. Although the substrate 16 is not heated, the temperature is raised to 60 to 70° C. by irradiation with the mercury lamp 13. Nitrogen is supplied at 2000 rn Q /min as an inert gas for preventing film deposition on the inner surface of the light entrance window 12 .

反応容器内の注力は大気圧である。シリコン酸化膜の形
成において、純粋にシリコン酸化物が膜状に形成されれ
ば光入射窓のくもりは発生しないが、シリコン走化物の
做粒子が付着した場合には入射光を散乱させ励起光強度
を低下させる。特に大気圧下で膜堆積速度が大きい反応
の場合にはこの傾向が大きい。このため光入射窓内面に
堆積物を生じない不活性なガスの吹きが番プが効果的と
なる。
The focus inside the reaction vessel is atmospheric pressure. When forming a silicon oxide film, if pure silicon oxide is formed in the form of a film, clouding of the light entrance window will not occur, but if silicon chemotactic particles adhere, the incident light will be scattered and the excitation light intensity will be reduced. decrease. This tendency is particularly strong in reactions where the film deposition rate is high under atmospheric pressure. Therefore, it is effective to blow an inert gas that does not cause deposits on the inner surface of the light entrance window.

約15分の反応で1μmのシリコン酸化膜が形成できた
A 1 μm thick silicon oxide film was formed in about 15 minutes of reaction.

実験例4(シリコン窒化膜の形成) 原f手ガスとしてシ盲ノコンモノシラン8 m D、 
/ min及びアンモニア72mΩ/min を水銀蒸
発器22を通して反応容器11に供給する。基板16は
200℃に加熱した。光入射窓12内面への堆積防止用
の不活性なガスとしてヘリウム300 rn 07m−
1nを供給する。反応容器内の圧力は3〜4Torrで
ある。30分間の反応で2200〜270OAの膜が堆
積し、平均膜堆積速度は約70〜9Q八/’minであ
る。光入射窓内面に不活性なガスを吹きかけない場合に
は約15分で反応は停止し最大1000〜150〇八以
上の膜厚を得ることは困難である。
Experimental Example 4 (Formation of silicon nitride film) 8 m D of monosilane was used as the raw gas,
/min and ammonia at 72 mΩ/min are supplied to the reaction vessel 11 through the mercury evaporator 22. The substrate 16 was heated to 200°C. Helium 300 rn 07m- is used as an inert gas to prevent deposition on the inner surface of the light entrance window 12.
Supply 1n. The pressure inside the reaction vessel is 3-4 Torr. A film of 2200-270 OA is deposited in a 30-minute reaction, and the average film deposition rate is about 70-9Q8/'min. If an inert gas is not sprayed onto the inner surface of the light entrance window, the reaction will stop in about 15 minutes and it will be difficult to obtain a film thickness of 1000 to 15008 or more.

以上、シリコン及びその化合物の薄膜形成について詳述
したが、更にこれらに燐やボロン等のドーパントを添加
した場合、又は他の材料、例えば化合物半導体、金属及
びその酸化物・炭化物・窒化物等の薄膜形成についても
同様に本発明を用いることかできる。
The above has described in detail the formation of thin films of silicon and its compounds, but when dopants such as phosphorus and boron are further added to these, or other materials such as compound semiconductors, metals and their oxides, carbides, nitrides, etc. The present invention can be similarly applied to thin film formation.

光入射窓内面に堆積物を生じない不活性なガスとしては
、窒素やアルゴン等の光吸収断面積又は消光断面積が小
さくほとんど反応しないガスのみならず、ハロゲンやそ
の水素化物のように堆積物と反応してエツチングする性
質をイイするガスを用いることができる。特に後者の場
合には、原料ガスとの混合を少なくするためにルーバー
等のコンダクタンスの制御板や差動排気システト、が右
動である。
Inert gases that do not cause deposits on the inner surface of the light entrance window include gases that have small light absorption or extinction cross sections such as nitrogen and argon that hardly react, as well as gases that do not cause deposits such as halogens and their hydrides. It is possible to use a gas that has a good etching property when reacting with the etching process. Particularly in the latter case, conductance control plates such as louvers and differential exhaust systems are moved to the right in order to reduce mixing with the source gas.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光CVD法におい′C反応容器の光入
射窓内面に生ずる不所望の被膜形成や微粒子の付着が防
止でき、膜堆積速度が大きくかつ厚い膜を形成できる。
According to the present invention, it is possible to prevent the formation of an undesired film and the adhesion of fine particles on the inner surface of the light entrance window of the C reaction vessel in the photo-CVD method, and it is possible to form a thick film with a high film deposition rate.

このため作業性、量産性のよい光CVD装置が開発でき
た。
For this reason, we were able to develop a photo-CVD device with good workability and mass productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光CVD装置の概略図、第2図は本発明
による光CVD装置の概略図である。
FIG. 1 is a schematic diagram of a conventional photo-CVD apparatus, and FIG. 2 is a schematic diagram of a photo-CVD apparatus according to the present invention.

Claims (1)

【特許請求の範囲】 1、光励起気相化学反応を用いた薄膜形成装置において
、 (a)選択さ九た波長の光を入射する窓を有する反応容
器、 (b)反応容器に置かれた薄膜を形成する基板を保持す
る支持台、 (c)反応容器外に置かれて、基板を加熱する手段、 (d)反応容器の光入射窓を介して、選定された波長の
光を導入する手段、′ (e)反応の原料ガスを反応容器に導入する手段及び排
ガスを排気し反応容器内の圧力を調整する手段、 (f)反応容器の光入射窓の内面に向って、堆積物を生
じない不活性なガスを吹きかける手段、 から成ることを特徴とする薄膜形成装置。 2、特許請求の範囲第1項において1反応容器内の光入
射窓と基板との間にルーバーを設け、反応の原料ガスと
光入射窓に吹きかける不活性なガスの混合を少なくする
ことを特徴とする光励起気相反応による薄膜形成装置。
[Claims] 1. A thin film forming apparatus using a photo-excited gas phase chemical reaction, including: (a) a reaction vessel having a window through which light of nine selected wavelengths enters; (b) a thin film placed in the reaction vessel; (c) means placed outside the reaction vessel for heating the substrate; (d) means for introducing light of a selected wavelength through a light entrance window of the reaction vessel; ,' (e) a means for introducing raw material gas for the reaction into the reaction vessel and a means for exhausting exhaust gas and adjusting the pressure within the reaction vessel; (f) forming a deposit toward the inner surface of the light entrance window of the reaction vessel; 1. A thin film forming apparatus comprising: means for spraying a non-reactive inert gas. 2. According to claim 1, a louver is provided between the light entrance window and the substrate in the reaction vessel to reduce mixing of the raw material gas for the reaction and the inert gas sprayed onto the light entrance window. A device for forming thin films using photo-excited gas phase reactions.
JP3604584A 1984-02-29 1984-02-29 Thin film forming device Granted JPS60182128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3604584A JPS60182128A (en) 1984-02-29 1984-02-29 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3604584A JPS60182128A (en) 1984-02-29 1984-02-29 Thin film forming device

Publications (2)

Publication Number Publication Date
JPS60182128A true JPS60182128A (en) 1985-09-17
JPH0544818B2 JPH0544818B2 (en) 1993-07-07

Family

ID=12458736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3604584A Granted JPS60182128A (en) 1984-02-29 1984-02-29 Thin film forming device

Country Status (1)

Country Link
JP (1) JPS60182128A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025837U (en) * 1995-06-09 1996-06-25 佐々木通商株式会社 A box such as a coffee pack that doubles as a tray

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239073U (en) * 1975-09-11 1977-03-19
JPS52127065A (en) * 1976-04-16 1977-10-25 Matsushita Electric Ind Co Ltd Gas phase growing method of semiconductor and its device
JPS58119336A (en) * 1982-01-08 1983-07-15 Ushio Inc Apparatus for vapor deposition by photochemical reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239073U (en) * 1975-09-11 1977-03-19
JPS52127065A (en) * 1976-04-16 1977-10-25 Matsushita Electric Ind Co Ltd Gas phase growing method of semiconductor and its device
JPS58119336A (en) * 1982-01-08 1983-07-15 Ushio Inc Apparatus for vapor deposition by photochemical reaction

Also Published As

Publication number Publication date
JPH0544818B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
US4058638A (en) Method of optical thin film coating
US3939798A (en) Optical thin film coater
WO1993013244A1 (en) Surface reaction film formation apparatus
US4500565A (en) Deposition process
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS60245217A (en) Thin film formation equipment
JPS60182128A (en) Thin film forming device
JPH0480116B2 (en)
JP3456933B2 (en) Semiconductor processing apparatus cleaning method and semiconductor processing apparatus
JP2723053B2 (en) Method and apparatus for forming thin film
JPS6118125A (en) Thin film forming apparatus
JPS61271819A (en) Thin film forming method
JPS59224118A (en) Photochemical vapor-phase reaction method
JPS5968923A (en) Thin film forming device
JP3010066B2 (en) Optical excitation process equipment
JPS6156279A (en) Film forming method
JPS6118124A (en) Thin film forming apparatus
JPS6075328A (en) Process and device for photo gaseous phase reaction
JPS61271820A (en) Thin film forming method
JPS6156280A (en) Film forming method
JPS61196529A (en) Thin film forming apparatus
JPS6156278A (en) Film forming method
JPS60236215A (en) Laser cvd method
JPS6150147B2 (en)