JPS60181639A - Computer-tomography of industrial sample by radiation - Google Patents

Computer-tomography of industrial sample by radiation

Info

Publication number
JPS60181639A
JPS60181639A JP59037457A JP3745784A JPS60181639A JP S60181639 A JPS60181639 A JP S60181639A JP 59037457 A JP59037457 A JP 59037457A JP 3745784 A JP3745784 A JP 3745784A JP S60181639 A JPS60181639 A JP S60181639A
Authority
JP
Japan
Prior art keywords
radiation
sample
image
tomography
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59037457A
Other languages
Japanese (ja)
Inventor
Isamu Taguchi
勇 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59037457A priority Critical patent/JPS60181639A/en
Publication of JPS60181639A publication Critical patent/JPS60181639A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Abstract

PURPOSE:To achieve a clearer image in the computer-tomography of the inside of metal for industrial application eliminating false images by forming a subject sample spherical to detect sections thereof with radiation being radiated from various angles. CONSTITUTION:For example, a sample 1 of a stainless steel formed spherical is irradiated with a radiation beam 5 from a radiation irradiator 3 to be scanned across the section 2. The attenuation of the radiation is detected with a detector 4 and the value obtained is converted 10 into digital from analog to be memorized into a buffer memory 12. Then, computation is performed with a CPU13 to make the section 2 of the sample 1 inversely projected. Subsequently, the sector 2 is turned on the sample 1 and inversely projected image is taken from another angle. Then, pixels taken are superposed with a main memory 14 to produce a tomographic image, which is displayed 19. Thus, the spherical formation of the sample can provide a clearer tomographic picture eliminating false images.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、産業用盆目的とした放射線による断層撮影法
に1夕Jりるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to radiation tomography for industrial applications.

(従来技術) 近時、放射線(例えはX線など)を使用した断#熾影法
〔通常C,T、(Conputerized ’J)o
mographyの略)と称されていゐ。〕が好及し、
特に医療関係においては多大の成果を挙げている。この
方法は従来できなかった外部からの人体の内部観察を可
能にしたもので、現在でeよ頭部専用、全身用などの装
置が市販されている。
(Prior art) Recently, the cross-sectional imaging method using radiation (for example, X-rays) [usually C, T, (Computerized 'J) o
(abbreviation of mography). ] was popular,
In particular, it has achieved great results in the medical field. This method makes it possible to observe the inside of the human body from the outside, which was previously impossible, and devices for the head and for the whole body are currently on the market.

一方、一般の産菓分野においては金属ヤ金属化金物等の
材料の内部欠陥の検出にX線やγ線などの放射線による
透過試験が広く行われている。しかしこの方法は人体の
胸部撮影のように放射線源を撮影対象物の前に配置し、
後方にフィルムをおいて撮影するので断面像を祷ること
はできない。
On the other hand, in the field of general confectionery, transmission tests using radiation such as X-rays and γ-rays are widely used to detect internal defects in materials such as metals and metalized metal products. However, in this method, the radiation source is placed in front of the object to be imaged, as in human chest imaging.
Since the film is placed at the rear, it is not possible to obtain cross-sectional images.

またCT法を一般産業目的に使用することも考えられて
はいるが、その対象は金属や金属化合物など、人体撮影
に使用されているようなエネルギーの弱い放射&!(X
ffM )では透過しない場合が多く、現在未だ実用的
なものは開発されていない。しかし最近CT法を一般産
業分野にも利用しようとする試みがなされ、例えは特開
昭57−67846号公報、特開昭57−76443号
公報などに開示でれている。これらの方法は試料を非破
壊、非接触状態で、その断層の観察、分析等を行えるた
め極めて有用であるが、放射線の透;i/M任の恋い試
料を撮影する場合には偽像(通常アーチ7アクトと呼は
れる)が現われ断層写真を不鮮明にするという問題点が
みる。この偽像は後述する断層撮影法の像再構成の仕方
に起因するもので、欠起部が多い試料や、放射線透過性
の違い過ぎる部分が多い試料に多く発生し、CT写真に
おいて一定形状(%に1θ、線状が多い)をもって現わ
れる。なお放射線断ノー撮影方法ではCT値として放射
線透過性の程度をノJテすのが一般的であり、次式で示
される。
It is also being considered to use the CT method for general industrial purposes, but the targets are metals, metal compounds, and other materials that emit low-energy radiation, such as those used in human body photography. (X
ffM), it is often not transparent, and no practical one has been developed yet. Recently, however, attempts have been made to apply the CT method to the general industrial field, as disclosed in, for example, Japanese Patent Laid-Open No. 57-67846 and Japanese Patent Laid-Open No. 57-76443. These methods are extremely useful because they allow observation and analysis of cross-sections of samples in a non-destructive and non-contact manner; The problem is that arch 7 act (usually called arch 7 act) appears and makes the tomographic image unclear. This false image is caused by the way the image is reconstructed in tomography, which will be described later.It often occurs in samples with many defective areas or in samples with many areas with excessively different radiolucencies, and they appear in CT photographs with a certain shape ( % 1θ, often linear). In addition, in the radiographic no-section imaging method, it is common to measure the degree of radiolucency as a CT value, which is expressed by the following equation.

たたし、μSは試料の対象部位のX線の吸収係数、μW
は水のX線に対する吸収係数、II−j、定数でるる。
Here, μS is the X-ray absorption coefficient of the target part of the sample, μW
is the absorption coefficient of water for X-rays, II-j is a constant.

通常に、 tJ: 1000、水のCT値は0、空気の
CT値は−1O(10である。丑だ医療用放射線断層撮
影装置の対象である人体はそもそもCT値は小さく、比
較的高い骨でもCT値は+1000であシ、しかも丸味
を帯びており、突起部Qま少い。
Normally, tJ: 1000, the CT value of water is 0, and the CT value of air is -1O (10). However, the CT value is +1000, and it is rounded, and the protrusion Q is small.

これに対し7産業用放射線断層撮影法の場合の試料&′
、It: c ’t’値が高く、鉄)JA−it+ 7
000、アルミニウムの場合+2500位であり、かつ
角状など突起部のある試料が多いので偽像が生じ易い。
In contrast, in the case of 7 industrial radiation tomography samples &'
, It: c't' value is high, iron) JA-it+ 7
000, and +2500 in the case of aluminum, and since there are many samples with protrusions such as angular shapes, false images are likely to occur.

(発明の目的) 本発明は離業用を目的とした梅々の試料の断層撮影にお
いて、偽像をなくすことを目的とするものである。
(Object of the Invention) The object of the present invention is to eliminate false images in tomography of a sample of plum blossoms for use as a distraction.

(発明の構成、作用) 本発明は、撮影に供される試料を球形に形成し、該試料
に放射線を照射して断層撮影を付うことを特徴とするも
のである。
(Structure and operation of the invention) The present invention is characterized in that a sample to be imaged is formed into a spherical shape, and tomography is performed by irradiating the sample with radiation.

産業用の放射線による断層撮影法においてはその目的か
ら、試料の内部をあらゆる角度から眺めて断面像を得て
、内部の状態を明らかにする必要がある。その場合、角
張った部分があると該部分を中心として偽像を生じ、写
真を不鮮明にするのC1角をなくすことが好ましい。例
えは試料を円筒状に形成した場合、水平面での断層写真
を撮影する場合には偽像は現われないが、縦断面方向の
断層写真を撮影する場合には画面の四隅に角張った部分
が出てくるので、偽像発生の原因となる。
For the purpose of industrial tomography using radiation, it is necessary to view the inside of a sample from all angles and obtain cross-sectional images to clarify the internal state. In that case, if there is an angular part, a false image will occur around the angular part, making the photograph unclear, so it is preferable to eliminate the C1 corner. For example, if the sample is formed into a cylindrical shape, no artifacts will appear when taking a horizontal tomogram, but when taking a longitudinal tomogram, angular parts will appear at the four corners of the screen. This can cause false images to occur.

従って試料を球状に構成することが最適である。Therefore, it is optimal to configure the sample in a spherical shape.

本発明に用いる試料はコンビーータ付の切削装置を使用
することによって容易に調製することができる。
The samples used in the present invention can be easily prepared by using a cutting device equipped with a combinator.

本発明により断層写真を撮影するには、第1図に示すよ
うに試料1を球形に形成し、その断面2に第2図に示す
ように放射線照射装置3および放射線検出器4を対向さ
せ、放射線照射装置3から放射線ビーム5(!−熱照射
、試料1を透過した放射線量を放射線検出器4で検出す
ることによシ行う。
In order to take a tomogram according to the present invention, a sample 1 is formed into a spherical shape as shown in FIG. The radiation beam 5 (!-heat irradiation) is performed from the radiation irradiation device 3, and the radiation dose transmitted through the sample 1 is detected by the radiation detector 4.

6は放射線5の走査面、7は走査始点である。なお放射
線としては140KV以上のxm<因みに医療用は13
0KV以下)−や、137 C,または60COなどの
rh、”ctなどの中性子線などのラジオアイソトープ
などを用いることができ、また放射線検出器としては一
般的なシンナレーションA数管、GM(ガイガーミーラ
ー)計数管などの他、高感腹の測足用としてN G O
(Bi Ge (Jxide )などの半導体検出器や
マルチシンチレーション検出器等を利用することができ
る。
6 is a scanning plane of the radiation 5, and 7 is a scanning starting point. In addition, the radiation level is 140KV or more xm (by the way, medical use is 13
0 KV or less), rh such as 137 C, or 60 CO, and neutron beams such as CT can be used, and as radiation detectors, general cinnarration A tubes, GM (Geiger), etc. can be used. Millar) In addition to counting tubes, NGO
(A semiconductor detector such as BiGe (Jxide), a multi-scintillation detector, etc. can be used.

さらに断層写真撮影の詳細を説明すれば、第1図および
第2図に示すように例えば直径0.5間に絞った放射線
ビーム5が撮影しよシとする断面2を通過するように放
射線照射装置3および放射線検出器4を走査面6に沿っ
て一体として移動させ、この移動中に試料1をJA1過
した放射線量aを連続的に検出する。なおこのとき別に
設けた放射線検出器8によシ放射糊照射装置3からの照
射量すを直接計測しておく。放射線検出器4,8の検出
値a。
To further explain the details of tomography, as shown in FIGS. 1 and 2, radiation is irradiated so that the radiation beam 5 narrowed to a diameter of 0.5, for example, passes through the cross section 2 to be photographed. The apparatus 3 and the radiation detector 4 are moved together along the scanning surface 6, and the radiation dose a that has passed through the sample 1 during this movement is continuously detected. At this time, the radiation dose from the radiation paste irradiation device 3 is directly measured using a separately provided radiation detector 8. Detection value a of radiation detectors 4 and 8.

bは、増幅器9、アナログディジタル変換器lOを経て
演算装置11のバッファメモIJ l 2に入力され、
検出値aとbとの比が走査始点7からの放射線検出器4
の移動距離と対応して記憶される。
b is input to the buffer memory IJ l 2 of the arithmetic unit 11 via the amplifier 9 and the analog-to-digital converter lO,
The ratio of detected values a and b is the radiation detector 4 from the scanning starting point 7.
is stored in correspondence with the distance traveled.

すなわちこのバッファメモIJ 12には走査方向に沿
った透過X線の強度分布が記憶されることになる。バッ
ファメモリ12に記憶された信号は中央処理装置13に
おいて試料1の断面2に逆投影されるように演算処理さ
れる。例えば第3図(、)に示すように検出された強度
工は、定食方向Sに対して直角方向に沿い断面S上に強
度工に比例して一様に配分される。配分された値は画像
が再構成されたときの画像の濃淡を表わすものでディス
プレー装置19上に表示される。
That is, this buffer memo IJ 12 stores the intensity distribution of transmitted X-rays along the scanning direction. The signals stored in the buffer memory 12 are processed in the central processing unit 13 so as to be back-projected onto the cross section 2 of the sample 1. For example, as shown in FIG. 3(,), the detected strength is uniformly distributed on the cross section S along the direction perpendicular to the fixed meal direction S in proportion to the strength. The distributed values represent the shading of the image when the image is reconstructed, and are displayed on the display device 19.

このようにして断面2について1回目の走査を終了する
と、放射線照射装置3と放射線検出器4の対を断+Mi
 2に沿って試料1を中心に回動し、別方向から1回目
と同様の走査を行う。この操作を方向を変えて繰返し、
第3図(a) 、 (b) 、 (e)・・・・・・・
・・に示すような逆投影像7il−得る。この画像は例
えば512X512の画素によシ構成され、透過放射線
量の多少に比例してグレイスクールで表示される。さら
にこの逆投影像は中火処理装置1iaにおいて演算処理
によ9月(ね合わされ、奥メモリ14の2次元配置の帯
地に、それぞれの帯地に対応する画素が記憶される。な
お1画素と試料の断面との対応は例えば0.1 t+I
m X O,1mである(この重ね合され再構成された
1象を模式的に第4図にボす)。このとき試料lの走査
された面に放射#、:ll&過性が異る成分Fが存在す
ると、その位置に他成分I#Gが生じる。なお上記の放
射線の走置回数は少くとも3回以上必要でりり、鮮明な
像を得るためには30回以上が望−士しい。場らに王メ
モIJ 14に記憶された画像は読出装置15によシ読
今出され、ディジタルアナログ変換器17によシアナロ
グ1H号に変換され、増幅器18を樋てディスプレイ装
置19に人力され、横断面の画像が表示される。なお演
算装置11における前記の各演算処理はプログラムスト
ア16から読与出されたグログラムに従って実行される
When the first scan of the cross section 2 is completed in this way, the pair of radiation irradiation device 3 and radiation detector 4 is disconnected +Mi
2 around the sample 1, and performs the same scan as the first time from a different direction. Repeat this operation by changing the direction.
Figure 3 (a), (b), (e)...
A back projection image 7il- as shown in . . . is obtained. This image is composed of, for example, 512 x 512 pixels, and is displayed in gray scale in proportion to the amount of transmitted radiation. Furthermore, this back-projected image is combined by arithmetic processing in the medium heat processing device 1ia, and pixels corresponding to each strip are stored in the two-dimensionally arranged strips in the back memory 14. Note that one pixel and the sample For example, the correspondence with the cross section of is 0.1 t+I
m X O, 1 m (this superimposed and reconstructed one image is schematically shown in Figure 4). At this time, if a component F having different radiation #, :ll & radiation exists on the scanned surface of the sample 1, another component I#G is generated at that position. It should be noted that the number of times the radiation is applied is at least three times, and preferably 30 times or more in order to obtain a clear image. The image stored in the memo IJ 14 is read out by the reading device 15, converted into a digital analog 1H by the digital-to-analog converter 17, and sent to the display device 19 via the amplifier 18. , a cross-sectional image is displayed. Note that each of the above-mentioned arithmetic processes in the arithmetic unit 11 is executed according to a program read out from the program store 16.

試料1の断層を観察、分析するには、ディスプレイ装置
19に表示された画像を撮影し、その画像を公知の画像
解析装置に入れ各画素毎の放射線透過量を段階別にレベ
ル分けし、試料のマ) リックスに相当する放射線透過
蓋をもつ画素と、目的とする成分に相当する放射線透過
蓋をもつ画素に分け、それぞれの画素を数えることによ
って行う。
To observe and analyze the tomography of sample 1, the image displayed on the display device 19 is photographed, and the image is put into a known image analysis device to classify the amount of radiation transmitted by each pixel into levels, and to analyze the sample. Ma) This is done by dividing the pixels into pixels with a radiation-transparent lid corresponding to the Rix and pixels with a radiation-transparent lid corresponding to the target component, and counting each pixel.

ところで偽像は第3図および第4図に示した画素の再構
成法に関係して犬なり小なり現われるものであって原理
的には児全に除去することは甚だ困難である。第5図は
高圧X線(420KV、3mA)を用いて立方体状の純
鉄の断層を観察したときの偽像の実例を示すものである
。この図から明らかなように四隅から多数の祿状偽隊が
現われ内部観察を妨けている。この例のように角張った
形状の試料を測定した場合や周辺よシ著しくCT値が高
い部位がイ1.在した場合、偽像は多くなる。しかるに
本発明の場合には試料を球状に形成しているので、いず
れの方向から断層撮影を行つでも偽1象の発生は体めて
少くなる。
Incidentally, false images appear to a greater or lesser degree in connection with the pixel reconstruction method shown in FIGS. 3 and 4, and in principle it is extremely difficult to completely eliminate them. FIG. 5 shows an example of a false image when a cross section of cubic pure iron is observed using high-voltage X-rays (420 KV, 3 mA). As is clear from this figure, numerous false formations appear from the four corners, obstructing internal observation. When measuring a sample with an angular shape as in this example, there are areas where the CT value is significantly higher than the surrounding area. If there is, the number of false images will increase. However, in the case of the present invention, since the sample is formed into a spherical shape, the occurrence of false images is generally reduced no matter which direction tomography is performed.

(実施例) 次に本発明の実施レリを示す。(Example) Next, the implementation of the present invention will be shown.

ステンレス鋼試料中のポロシティを三次元観察した。試
料としてオーステナイト系ステンレス鋼(SLI830
4)のブルームから採取した球形試料(径46園)を用
い、かつ試料採取にめだっては試料の中心偏析帝が球の
中心tJI11るより゛にした(第6図示)。高圧X線
照射装[(420KV、3mA)および検出器(f3G
O)を用い、試料を6°づつ回動し、スライス幅+1.
5 mで311定量した。Hr要時向lO分、ディスプ
レイ装置の画素数240X240、空間分解能は0.2
咽であった。得られた画像を画像解析装置により、管画
素毎の透過X腺量(計算値)を大を黒、小を白として1
6段階に分けてディスプレイし、ステンレス鋼のマトリ
ックスは第8段階から第16段階とし、ポロシティはそ
の他とした。争呑蝿皓4−一その結果を第7図(、) 
(b) (C)に示す。試料を球状に形成しているので
、放射線によるスライス断面の形状は常に円でアシ、第
5図に示したような偽像は現れず鮮明な断面写真を得る
ことができた。なお試料中のポロシティを示す面積率を
めると第1表に示すとおりとなる。
Three-dimensional observation of porosity in stainless steel samples was conducted. Austenitic stainless steel (SLI830
A spherical sample (diameter: 46) collected from the bloom of 4) was used, and the sample was collected so that the center of the sample was higher than the center of the sphere, tJI11 (as shown in Figure 6). High-pressure X-ray irradiation system [(420KV, 3mA) and detector (f3G
0), rotate the sample in 6° increments to increase the slice width +1.
311 measurements were made at 5 m. Time required: 10 minutes, display device pixel count: 240 x 240, spatial resolution: 0.2
It was my throat. The obtained image is analyzed by an image analysis device, and the amount of transmitted X-ray glands (calculated value) for each tube pixel is calculated as 1, with black being large and white being small.
The display was divided into 6 stages, with the stainless steel matrix being the 8th stage to the 16th stage, and the porosity being the others. Figure 7 ()
(b) Shown in (C). Since the sample was formed into a spherical shape, the shape of the cross section sliced by the radiation was always circular, and a clear cross-sectional photograph could be obtained without the appearance of artifacts as shown in FIG. Note that when the area ratio indicating porosity in the sample is calculated, the results are as shown in Table 1.

第 1 表 (発明の効果) 以上説明したように本発明によって始めて金属試料中の
ポロシティの三次元観察ができ、しかも偽像による影響
がなく迅速かつ正確な定量化7行うことができ、その効
果は極めて大きい。
Table 1 (Effects of the Invention) As explained above, the present invention makes it possible for the first time to perform three-dimensional observation of porosity in a metal sample, as well as rapid and accurate quantification7 without the influence of artifacts. is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発ψJ方法を示す説明図、第2図は本発明方
法の実例を示す説明図、第3図は本発明方法における画
像の再構成法の一例を示す説明図、第4図は第3図にお
ける再構成法によって画像が構成される原理を示す説明
図、第5図は立方体の鉄試料を断層撮影したときの偽像
を模式的に示す説明図、第6図は本発明方法において使
用する試料を示す斜面図、第7図は本発明方法により得
られたステンレス鋼試料中の欠陥の三次元測定結果を示
す図である。 1:試料、2:断面、3:放射線照射装置、4:放射勝
検U」器、 5:放射線ビーム、 6:走査面、 7:
走査始点、 8:放射線検出器、9二増幅器、10:ア
ナログディジタル変換all:演算装置、12:バッフ
ァメモリ、13:中央処理装置、14:主メモリ、15
:読出装置、16:プログラムストア、17:デイジタ
ルアナログ亥換器、18:増幅器、19:ディスプレイ
装置。 第1図 を 第2図 第8図 第5図 第6図
FIG. 1 is an explanatory diagram showing the misfire ψJ method, FIG. 2 is an explanatory diagram showing an example of the method of the present invention, FIG. 3 is an explanatory diagram showing an example of the image reconstruction method in the method of the present invention, and FIG. Fig. 3 is an explanatory diagram showing the principle of image construction by the reconstruction method, Fig. 5 is an explanatory diagram schematically showing a false image when tomographically photographing a cubic iron sample, and Fig. 6 is an explanatory diagram showing the method of the present invention. FIG. 7 is a perspective view showing a sample used in the present invention, and FIG. 7 is a diagram showing three-dimensional measurement results of defects in a stainless steel sample obtained by the method of the present invention. 1: Sample, 2: Cross section, 3: Radiation irradiation device, 4: Radiation tester, 5: Radiation beam, 6: Scanning surface, 7:
Scanning start point, 8: Radiation detector, 9 Two amplifiers, 10: Analog-digital conversion all: Arithmetic unit, 12: Buffer memory, 13: Central processing unit, 14: Main memory, 15
: reading device, 16: program store, 17: digital/analog converter, 18: amplifier, 19: display device. Figure 1 Figure 2 Figure 8 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 対象試料を球形に構成し、該試料に放射線を照射するこ
と全特徴とする放射線による産業用試料の断層撮影方法
A method for tomography of an industrial sample using radiation, which is characterized in that the target sample is configured in a spherical shape and the sample is irradiated with radiation.
JP59037457A 1984-02-29 1984-02-29 Computer-tomography of industrial sample by radiation Pending JPS60181639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037457A JPS60181639A (en) 1984-02-29 1984-02-29 Computer-tomography of industrial sample by radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037457A JPS60181639A (en) 1984-02-29 1984-02-29 Computer-tomography of industrial sample by radiation

Publications (1)

Publication Number Publication Date
JPS60181639A true JPS60181639A (en) 1985-09-17

Family

ID=12498046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037457A Pending JPS60181639A (en) 1984-02-29 1984-02-29 Computer-tomography of industrial sample by radiation

Country Status (1)

Country Link
JP (1) JPS60181639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147314A1 (en) * 2015-03-17 2016-09-22 株式会社日立製作所 Computer tomographic imaging method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147314A1 (en) * 2015-03-17 2016-09-22 株式会社日立製作所 Computer tomographic imaging method and device

Similar Documents

Publication Publication Date Title
US4229651A (en) Radiation scanning method and apparatus
US7561659B2 (en) Method for reconstructing a local high resolution X-ray CT image and apparatus for reconstructing a local high resolution X-ray CT image
JP3378401B2 (en) X-ray equipment
JP5221394B2 (en) How to reconstruct image functions from radon data
US7526065B2 (en) Volumetric X-ray imaging system with automatic image resolution enhancement
JP6713860B2 (en) Image reconstruction apparatus, X-ray CT apparatus, and image reconstruction method
US7920672B2 (en) X-ray detector gain calibration depending on the fraction of scattered radiation
JPS6246171B1 (en)
JP3548339B2 (en) X-ray equipment
JPH0412969B2 (en)
JP3897925B2 (en) Cone beam CT system
JPS582695B2 (en) Inspection device using penetrating radiation
JPH1033520A (en) Cone beam x-ray tomography system
Goodenough et al. Development of a phantom for evaluation and assurance of image quality in CT scanning
JPH08168487A (en) X-ray tomography and apparatus therefor
JPS60181639A (en) Computer-tomography of industrial sample by radiation
Lopes et al. Evaluation of a microtomography system with an X-ray microfocus tube
JPH07171145A (en) X-ray ct device, and phantom for x-ray ct device
KR20210147384A (en) Projection data correction method for truncation artifact reduction
JPS60181640A (en) Radiation tomography for industrial use
RU93032495A (en) COMPUTATIONAL TOMOGRAPH
JPS6114550A (en) Inclusion rate measuring instrument
JPS58161853A (en) Testing of radiation transmission for tube
JPS63247870A (en) X-ray picture processing method
Hounsfield Computer reconstructed X-ray imaging