JPS60180988A - Crucible for single crystal growth by bridgman- stockburger method - Google Patents

Crucible for single crystal growth by bridgman- stockburger method

Info

Publication number
JPS60180988A
JPS60180988A JP3630984A JP3630984A JPS60180988A JP S60180988 A JPS60180988 A JP S60180988A JP 3630984 A JP3630984 A JP 3630984A JP 3630984 A JP3630984 A JP 3630984A JP S60180988 A JPS60180988 A JP S60180988A
Authority
JP
Japan
Prior art keywords
inner cylinder
main body
cylindrical
crystal
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3630984A
Other languages
Japanese (ja)
Inventor
Hironao Kojima
児島 弘直
Tadashi Uko
忠 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP3630984A priority Critical patent/JPS60180988A/en
Publication of JPS60180988A publication Critical patent/JPS60180988A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an excellent temp. distribution, and to obtain an excellent crystal having low dislocation density by inserting an inner cylinder coaxially into the inside of the bottomed cylindrical main body while keeping a minute clearance between the main body and the inner cylinder. CONSTITUTION:An inner cylinder 2 made of a thin plate is coaxially inserted into the inside of a bottomed cylindrical main body 1. And a minute clearance 3 is provided between the main body 1 and the inner cylinder 2. An excellent temp. distribution consisting of isothermal surfaces vertical to the axis can be obtained at the inside of the crucible, and less strains are given to the crystal by using said crucible. Accordingly, the excellent crystal having low dislocation density can be obtained.

Description

【発明の詳細な説明】 単結晶を成長させるためのブリッジマン、ストックバー
ガー法は通常縦型炉を用−て\その上部を得ようとする
結晶の融点より50〜10Gl’O程度高い温度に、ま
た下部を同程度だけ低一温度に保持し・結晶の融液を入
れた筒状のるりほを緩速度で回転りながら炉の上部から
下部へ向って徐々に移動させるものである◎すなわちる
つほの底部にまず結晶の核ができて仁れがるつほの下降
に伴ってと方へ徐々に成長する口そのるつばの材料とし
ては高純度の黒鉛、あるーは白金のような任意の金属、
ガラス、石英、アルミナ等極めて自由(二選定し得るが
、得られた結晶、を取出すためにはその結晶に対し【ぬ
れ性の悪−ものでなければならな−ロまたこの方法によ
ってアルカリハライドの大結晶・フェライト関係の結晶
、弗化カルシシム、弗化リチウム等の結晶等極めて広範
囲の単結晶を成長させることが、できる◎しかし結晶に
aして体積膨張を生ずるものは、歪が加わiために良好
な結晶を得る仁とがてきな一0更に良好な単結晶を得る
ためにはるつほの内部における温度分布がその軸に対し
て直角な平面を形成して−ることを望まれるが1従来の
るつほはこれらの点にお−て充分な性能を有しない。更
にるっほの底部に形成される結晶が1つだけであれば問
題蝶な−が1通常は被数個の核が同時に発生して1それ
ぞれが成長し始めるから、大きな単結晶を得るためには
るっほの底に軸方向の細長−小孔を形成し、ある−は更
にその小孔にくびれ部分を作ることが行われて−る。
DETAILED DESCRIPTION OF THE INVENTION The Bridgman-Stockberger method for growing single crystals usually uses a vertical furnace to grow the upper part at a temperature about 50 to 10 Gl'O higher than the melting point of the crystal. In addition, the lower part is kept at a lower temperature to the same extent, and the cylindrical Ruriho containing the crystal melt is rotated at a slow speed and gradually moved from the upper part of the furnace to the lower part. First, a crystal nucleus forms at the bottom of the tsubo, and as the tsubo descends, it gradually grows toward the bottom.The material for the tsutsuba is made of high-purity graphite, or perhaps platinum. any metal,
Glass, quartz, alumina, etc. can be selected freely (two choices are possible, but in order to extract the obtained crystal, it must be a material with poor wettability). It is possible to grow a very wide range of single crystals, such as large crystals, ferrite-related crystals, calcium fluoride, lithium fluoride, etc. ◎ However, crystals that cause volumetric expansion due to the addition of strain In order to obtain even better single crystals, it is desirable that the temperature distribution inside the crystal forms a plane perpendicular to its axis. However, the conventional rutsuho does not have sufficient performance in these respects.Furthermore, if only one crystal is formed at the bottom of the rutsuho, there is a problem. Nuclei are generated at the same time and each one begins to grow, so in order to obtain a large single crystal, a small hole is formed in the axial direction at the bottom of Haruho, and a small one is further constricted into the small hole. Making parts is being done.

しかしくびれ社単結晶を得るためには有効である−が、
成木した結晶の取り出しに際して高価なるっ埋を破壊し
なけれけならな−から極めて不経済である0従つ【本発
明けるっ埋の内部に等温血が軸と直角な平面よりなる良
好な温度分布が得られると共(:固化時に体積膨張を生
ずる結晶に対しても歪を与えることが少なくN転移密度
の低−良好な結晶を得ることができて・かつ底面の孔に
(ひれを形成して、Lかもるっばを破壊することなく結
晶の取出しを行−得るようにしたものである。
However, it is effective for obtaining Kuresha single crystals.
When taking out a mature crystal, the expensive embedding must be destroyed, which is extremely uneconomical.Accordingly, in the present invention, the isothermal blood inside the embedding has a good temperature in which the plane is perpendicular to the axis. It is possible to obtain a good crystal with a low N dislocation density, with less strain on crystals that undergo volume expansion during solidification, and to form fins in the bottom holes. In this way, the crystal can be taken out without destroying the L mold.

第1図は本発明実施例の縦断面図、@2図Fi第1図の
A−A断面図である。このように本発明のるつほは有底
筒状の本体lの内側に薄板で形成された内@2を同軸的
に嵌合して、上記本体lと内筒2との間に微小の間I1
3を設けたもので、ブリッジマン、ストックバーガー法
による単結晶の成長に用いられる。すなわち光回路等に
用−られる弗化カルシらム(OaFm)ある−をま弗化
リチウム(L=y)等の単結晶を成長させたもので1こ
れらに対してぬれ性の悪い高純度の黒鉛で作られ、本体
1の外の上端につば番を形成して本体lに嵌合し・更に
内筒2の上端1:蓋体、5を嵌合し【ねじ6で固定する
ようにしである。本体lおよび内筒2の底面は円錐状に
形成されて−るが、本体1にはその円錐の頂点に軸方向
の細(深い孔マを形成し、内筒2の頂点にはヱめ孔)に
密に嵌合する筒状部8を設けてその筒状部の長さを孔マ
の深さの例えば2分の1程度にしである・従って内@2
はそのEfsと1端とで本体1に支持されて、間@3が
各部均一に保たれると共に孔7にFi筒伏部8によつ【
〈びれ9すなわち細径の部分が形成される◎このような
るつほに結晶の原料を入れて(前述のようC11部をそ
のl!J!点より高い温度に・また下部を鯰一温度ζ−
保持した縦型炉のL部に設置することにより上記原料を
溶融さぜる口ξの状態でるつばを緩速度で回転すると共
に下降させると・まず孔)の底が融点より低一温度にな
って結晶の核が形成される。しかしその核は一般に数個
が同時に形成されて、それぞれが成長し始める口@ s
 ”laIはこのよう(;シて6核がそれぞれ成長した
状態における@1図の孔マの部分を拡大した図で、5個
の核が同時に成長し始めてそれぞれが別の結晶a。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, and is a cross-sectional view taken along the line A-A in FIG. In this way, the rutsuho of the present invention coaxially fits the inner @ 2 formed of a thin plate inside the bottomed cylindrical main body l, so that a microscopic part is formed between the main body l and the inner cylinder 2. Interval I1
3, and is used for growing single crystals by the Bridgman and Stockberger methods. In other words, calcium fluoride (OaFm) used in optical circuits, etc. is grown from single crystals such as lithium fluoride (L=y). It is made of graphite, and a collar is formed on the outer upper end of the main body 1, and it is fitted into the main body 1. Furthermore, the upper end 1 of the inner cylinder 2 is fitted with the lid body 5, and fixed with screws 6. be. The bottom surfaces of the main body 1 and the inner cylinder 2 are formed into a conical shape, and the main body 1 has a narrow (deep hole) in the axial direction at the apex of the cone, and a deep hole is formed at the apex of the inner cylinder 2. ), and the length of the cylindrical part is set to be, for example, about half the depth of the hole.
is supported by the main body 1 at its Efs and one end, and the distance @ 3 is kept uniform at each part, and the hole 7 is connected to the Fi cylindrical part 8 [
〈Fin 9, i.e., a small diameter part, is formed◎Pour the crystal raw material into such a tube (as mentioned above, bring the C11 part to a higher temperature than the l!J! point, and lower the lower part to the catfish temperature ζ −
When the crucible is rotated at a slow speed and lowered in the state of the opening ξ where the raw materials are melted by installing it in the L part of the vertical furnace, the temperature of the bottom of the hole becomes lower than the melting point. A crystal nucleus is formed. However, generally several nuclei are formed at the same time, and each begins to grow.
``laI is like this (; This is an enlarged view of the hole part in Figure 1 in a state where each of the six nuclei has grown. Five nuclei have started to grow at the same time and each is a separate crystal a.

6、e、d、aを形成したものであるOLかし孔マは極
めて細く、シかも途中にはくびれ9があるためζ二その
(びれを通過して、E方まで達する結晶はdの1つだけ
となって〜るつほの下降(二伴−単結晶Cだけが成長す
る。なおその際炉の内部#i真空あるいは適当なガス雰
囲気で満されるかちるつばの間隙3も真空になるか、そ
のガスが侵入するOしかし何れにしても仁の間[13の
熱伝導けるつ埋の材料、の黒鉛等に比較して極めて悪い
ため(:るつほの内部の溶融原料および成長した結晶に
対し【は軸方向にだけ熱の伝ばんが行われて1半径方向
の伝ばんはこれを事実上鋸視することができるO従って
るつほの内部にはその軸4二直角な平面よりなる等温血
が形成されて、このため極めて良好な単結晶が成長する
。かつ内筒2を出来るだけ薄くすることにより原料が結
晶する際に体積が膨張するような場合でも、その膨張が
内筒の屈曲によって補償されるから、結晶に大きな歪力
が加わるようなおそれがなく、このためにも良好な単結
晶が得られる0つぎに単結晶の成長が完了したのち〜こ
れを取り出すため(二は、まずその結晶を内筒2と共に
本体lから引き抜いて、次に内筒の下端における筒状部
8から突出した結晶すなわち核の部分 −を切断するこ
とにより1内匍2かもその内部に成長した結晶を引き抜
くことができる0すなわちこのようにして、るりほを破
壊することなく、成長した結晶の取出しを行い得るもの
である口また箒番図は内ffN2を複数個の筒状体10
・11で形成した場合における底部の断面口で、各筒状
体轄何れも底vJbが円錐面を形成した円筒であって1
これらを同軸的に嵌合してその間に例えfl l mm
程度の間15112を設けである。かつ各筒状体10+
11の円錐状底面の頂点には互に苦に嵌合する小径の筒
状部1311.4等を形成しであるがζ更にその長さを
内側の筒状部はど短くして、かつ外側の筒状部13の先
端を内方へ折り曲げる加工によりつケ16を形成したも
のである。すなわちこのようじ内筒2をmI&個の筒状
体で形成してそれらの間(:それぞれ間91gを設ける
ことによりるつ埋の内壁部における熱の伝導率が一層低
下するから〜内部の等温度面を軸に直角な平面として良
好な単結晶を成長させる効果が更に増大する。また上述
のようなつば16を設けることによって底面の孔マ(=
〈びれ9のほか更(二16等も形成されて一層確実(二
車−の結晶のみを成長させることができる。
6. The OL pores that form e, d, and a are extremely thin, and there is a constriction 9 in the middle, so the crystal that passes through the constriction and reaches E side is d. Only one single crystal is formed and the single crystal C grows.At this time, the crevice 3 inside the furnace, which is filled with vacuum or a suitable gas atmosphere, is also vacuumed. However, in any case, the molten raw material and For the grown crystal, the heat propagates only in the axial direction, and the radial propagation can be seen virtually.Therefore, inside the crystal, the axis is perpendicular to An isothermal blood consisting of flat planes is formed, and therefore an extremely good single crystal grows.In addition, by making the inner cylinder 2 as thin as possible, even if the volume expands when the raw material crystallizes, the expansion is prevented. Since this is compensated for by the bending of the inner cylinder, there is no fear of applying large strain to the crystal, and for this reason, a good single crystal can be obtained.Next, after the growth of the single crystal is completed, it is taken out. (Secondly, by first pulling out the crystal together with the inner cylinder 2 from the main body l, and then cutting the crystal, that is, the core part, which protrudes from the cylindrical part 8 at the lower end of the inner cylinder, the inner cylinder 2 is also removed. In other words, the crystals that have grown inside can be pulled out without destroying the Ruriho. body 10
・The cross-sectional opening of the bottom in the case where the bottom vJb is formed with 1
Fit these together coaxially and insert fl l mm between them.
15112 is provided between the degrees. and each cylindrical body 10+
At the apex of the conical bottom surface of No. 11, a small-diameter cylindrical portion 1311.4 that fits together with difficulty is formed. The hook 16 is formed by bending the tip of the cylindrical portion 13 inward. In other words, by forming the toothpick inner cylinder 2 with mI & cylindrical bodies and providing a distance of 91 g between them, the thermal conductivity at the inner wall of the crucible is further reduced. The effect of growing a good single crystal with the plane perpendicular to the axis is further increased.In addition, by providing the collar 16 as described above, the bottom hole (=
(In addition to the fins 9, fins 9 and 216 are also formed, making it possible to grow only the crystals of the fins more reliably.

以上実施例ζ;つ1て配したようし本発明のるつぼは軸
と直角な方向の温度差が極めて小さくなって良好な単結
晶を成長させることができると共じ択されて他の結晶の
成長は阻止される一Xかつこのようなくびれ部分を形成
して、しかもるつぼを破壊することなl&の取出しな行
い得ると共に成長した結晶に大きな歪力が加わることも
防止されるから、低転移精度の良好な単結晶が安価(二
製造される。更に種子結晶を小孔底部C二挿入した場合
でもその中心部の良好な結晶だ゛けを成長させることが
できる等の優れた作用効果がある0
The crucible of the present invention, which has been arranged in a single manner, has been selected because the temperature difference in the direction perpendicular to the axis is extremely small and it is possible to grow a good single crystal. By forming such a constricted part, growth can be inhibited, and the crystal can be taken out without destroying the crucible, and large strain forces can be prevented from being applied to the grown crystal, resulting in a low dislocation. Single crystals with good precision are produced at low cost.Furthermore, even if a seed crystal is inserted at the bottom of the small hole C2, it has excellent effects such as being able to grow a good crystal size in the center. Some 0

【図面の簡単な説明】[Brief explanation of drawings]

@1図は本発明実、施例の縦断面図、@2図は舅1図の
A−A断面図、83図は@1図第2図のるつばで結晶を
成長させた場合におけるるつばの底部の縦lyi面図、
第4図り本発明の他の実施例ζ二おける底部の縦断面図
である。なお図書=おいて、lは本体、2け内筒、3,
12は間隙〜4はつば15は蓋体、6Viねじ、1に′
i孔・8113114は筒状部S9・16はくびれ、1
0.11は筒状体、15はつばであるO特許出願人 理
学11L4IA工業株式会社代理人 弁理士益田舵垣′
:lTソl
Figure @1 is a longitudinal cross-sectional view of an embodiment of the present invention, Figure @2 is a cross-sectional view taken along line A-A of Figure 1, and Figure 83 is a diagram showing the crystal grown in the crucible shown in Figure @1 and Figure 2. Vertical view of the bottom of the brim,
FIG. 4 is a vertical sectional view of the bottom of another embodiment ζ2 of the present invention. In addition, when the book is set, l is the main body, 2-digit inner cylinder, 3,
12 is the gap ~ 4 is the collar 15 is the lid body, 6Vi screw, 1'
The i-hole 8113114 has a cylindrical part S9 16 which is constricted, 1
0.11 is a cylindrical body, 15 is a brim. O Patent applicant Rigaku 11L4IA Kogyo Co., Ltd. Agent Patent attorney Kadagaki Masuda'
:ITsol

Claims (1)

【特許請求の範囲】 (1)有底筒状本体の内側に薄板で形成された内筒を同
軸的に嵌合して、上記本体と内筒との間に微小の間隙を
設けた仁とを特徴とするブリッジマン。 ストックバーガー法単結晶成長用るっば(2)内筒が順
次微小の間隙を介して同軸的に嵌合された複数個の筒状
体よりなる特許請求の範囲第(1)項のブリッジマン、
ストックバーガー法単結晶成長用るつは (3)本体並びに内筒の底面を円錐状に形成して本体に
おける円錐状底面の頂点に軸方向の孔を形成すると共に
内債の円錐状底面の頂点には上記孔に密に嵌合しかつ孔
の深さより短か−長さの筒状部を形成した特許請求の範
囲@(1)項のブリッジマン、ストックバーガー法単結
晶成長用るっ埋(り内筒が順次微小の間隙を介して同軸
的に嵌合された複数個の筒状体よりなり・かつ各筒状体
C二おける円錐状底面の頂点(−内側の筒状体はど短か
り筒状部を形成してそれらを密に嵌合すると共C=外側
の筒状体における筒状部の先端を内方へ折り曲げてつば
を形成した特許請求の範囲第(3ン項のブリッジマン・
ストックバーガー法単結晶成長用るつば
[Scope of Claims] (1) An inner cylinder formed of a thin plate is coaxially fitted inside a bottomed cylindrical main body, and a narrow gap is provided between the main body and the inner cylinder. Bridgeman features. Bridgman according to claim (1), in which the inner cylinder of the tube (2) for single crystal growth using the Stockberger method comprises a plurality of cylindrical bodies coaxially fitted one after another through minute gaps. ,
The crucible used for single crystal growth using the Stockberger method (3) has a main body and an inner cylinder whose bottom surfaces are formed into a conical shape, an axial hole is formed at the apex of the conical bottom surface of the main body, and a hole is formed at the apex of the conical bottom surface of the inner cylinder. A cylindrical portion is formed which fits tightly into the hole and has a length shorter than the depth of the hole. (The inner cylinder consists of a plurality of cylindrical bodies coaxially fitted one after another through minute gaps, and the apex of the conical bottom surface of each cylindrical body C2 (-) Short cylindrical parts are formed and they are tightly fitted, and C=the tip of the cylindrical part of the outer cylindrical body is bent inward to form a brim (Claim 3). Bridgeman
Brim for single crystal growth using the Stockberger method
JP3630984A 1984-02-29 1984-02-29 Crucible for single crystal growth by bridgman- stockburger method Pending JPS60180988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3630984A JPS60180988A (en) 1984-02-29 1984-02-29 Crucible for single crystal growth by bridgman- stockburger method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3630984A JPS60180988A (en) 1984-02-29 1984-02-29 Crucible for single crystal growth by bridgman- stockburger method

Publications (1)

Publication Number Publication Date
JPS60180988A true JPS60180988A (en) 1985-09-14

Family

ID=12466241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3630984A Pending JPS60180988A (en) 1984-02-29 1984-02-29 Crucible for single crystal growth by bridgman- stockburger method

Country Status (1)

Country Link
JP (1) JPS60180988A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167284A (en) * 1986-01-20 1987-07-23 Sanyo Electric Co Ltd Method and device for producing single crystal by bridgman technique
JPS62235286A (en) * 1986-04-03 1987-10-15 Fuyuutec Fuaanesu:Kk Crucible for growing single crystal
JPS63225594A (en) * 1987-03-13 1988-09-20 Matsushita Electric Ind Co Ltd Crucible
FR2614321A1 (en) * 1987-04-27 1988-10-28 Europ Propulsion CARTRIDGE OF COMPOSITE MATERIALS FOR A DEVICE FOR THE PRODUCTION OF MONOCRYSTALS.
EP0321576A1 (en) * 1987-06-15 1989-06-28 Mitsui Mining Company, Limited Method for growing single crystal from molten liquid
US5312506A (en) * 1987-06-15 1994-05-17 Mitsui Mining Company, Limited Method for growing single crystals from melt
JPH08277192A (en) * 1995-04-04 1996-10-22 Kobe Steel Ltd Apparatus for producing compound semiconductor single crystal and its production
CN114635188A (en) * 2020-12-16 2022-06-17 中国科学院上海硅酸盐研究所 Microporous crucible and high-flux fluoride single crystal optical fiber preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849699A (en) * 1981-09-18 1983-03-23 Sumitomo Electric Ind Ltd Doping of boron to gaas single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849699A (en) * 1981-09-18 1983-03-23 Sumitomo Electric Ind Ltd Doping of boron to gaas single crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167284A (en) * 1986-01-20 1987-07-23 Sanyo Electric Co Ltd Method and device for producing single crystal by bridgman technique
JPS62235286A (en) * 1986-04-03 1987-10-15 Fuyuutec Fuaanesu:Kk Crucible for growing single crystal
JPS63225594A (en) * 1987-03-13 1988-09-20 Matsushita Electric Ind Co Ltd Crucible
FR2614321A1 (en) * 1987-04-27 1988-10-28 Europ Propulsion CARTRIDGE OF COMPOSITE MATERIALS FOR A DEVICE FOR THE PRODUCTION OF MONOCRYSTALS.
EP0321576A1 (en) * 1987-06-15 1989-06-28 Mitsui Mining Company, Limited Method for growing single crystal from molten liquid
US5312506A (en) * 1987-06-15 1994-05-17 Mitsui Mining Company, Limited Method for growing single crystals from melt
JPH08277192A (en) * 1995-04-04 1996-10-22 Kobe Steel Ltd Apparatus for producing compound semiconductor single crystal and its production
CN114635188A (en) * 2020-12-16 2022-06-17 中国科学院上海硅酸盐研究所 Microporous crucible and high-flux fluoride single crystal optical fiber preparation method
CN114635188B (en) * 2020-12-16 2023-12-22 中国科学院上海硅酸盐研究所 Microporous crucible and method for preparing fluoride monocrystal optical fiber with high flux

Similar Documents

Publication Publication Date Title
US4230674A (en) Crucible-die assemblies for growing crystalline bodies of selected shapes
JPH0255144B2 (en)
JP2002170780A (en) Crucible and method for growing polycrystal silicon using it
JPH01148782A (en) Quartz crucible for pulling up single crystal
JPS60180988A (en) Crucible for single crystal growth by bridgman- stockburger method
US5114528A (en) Edge-defined contact heater apparatus and method for floating zone crystal growth
JPH0437040B2 (en)
KR100713350B1 (en) Floating insulating baffle for high gradient casting
JPH0120951B2 (en)
US4110080A (en) Reactive atmospheric processing crystal growth apparatus
US5161602A (en) Graphite mold for single crystal growth of active materials and a process for manufacturing the same
US3567397A (en) Apparatus for obtaining a dross-free crystalline growth melt
JPS62167284A (en) Method and device for producing single crystal by bridgman technique
JPS63222091A (en) Crucible for pulling up silicon single crystal
JP3775776B2 (en) Single crystal manufacturing method
JP2861240B2 (en) Crucible for single crystal growth
US4687538A (en) Method for growing single crystals of thermally unstable ferroelectric materials
JP4693932B1 (en) Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method
SU768052A1 (en) Method of growing monocrystals
JP2864058B2 (en) Quartz crucible for pulling silicon single crystal
JPS6033799B2 (en) Capillary dice for crystal growth
JPH0920596A (en) Device for producing lithium tetraborate single crystal
JPH0672790A (en) Graphite mold for growing of single crystal for active material and its preparation
JP3141442B2 (en) Bridgman crystal growth ampoule
JPH0475880B2 (en)