JPS60179809A - Feedback circuit of servo system - Google Patents

Feedback circuit of servo system

Info

Publication number
JPS60179809A
JPS60179809A JP3421684A JP3421684A JPS60179809A JP S60179809 A JPS60179809 A JP S60179809A JP 3421684 A JP3421684 A JP 3421684A JP 3421684 A JP3421684 A JP 3421684A JP S60179809 A JPS60179809 A JP S60179809A
Authority
JP
Japan
Prior art keywords
output
signal
operational amplifier
encoder
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3421684A
Other languages
Japanese (ja)
Inventor
Taro Iwamoto
太郎 岩本
Yoshihiro Sakakibara
義宏 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3421684A priority Critical patent/JPS60179809A/en
Publication of JPS60179809A publication Critical patent/JPS60179809A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33261Conversion of detected pulses to voltage, frequency to voltage convertor

Abstract

PURPOSE:To simplify a circuit by combining an analog switch with an operational amplifier, switching the input of the operational amplifier in accordance with the turning direction of an encoder and converting a signal from the encoder into an analog voltage signal. CONSTITUTION:A pulse signal inputted to the input K of a flip-flop 9 is also inputted to a frequency/voltage converting element 11 and a voltage corresponding to the frequency is outputted. The voltage signal is inputted to the operational amplifier 13 through the analog switch 12. When a terminal Q is ''1'', said voltage signal is inputted to the positive input terminal of the operational amplifier 13 and the negative input terminal is earthed through a resistor 14, so that a positive voltage signal corresponding to said voltage signal is obtained and an output signal. Consequently, the output signal of the operational amplifier 13 is obtained as a signal having polarity corresponding to the turning direction of the encoder and a voltage value proportional to the turning speed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は速度サーボ系のフィードバック回路に係り、特
にインクリメンタルエンコーダを用いて速度信号を帰還
するサーボ系のフィードバック回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a feedback circuit for a speed servo system, and particularly to a feedback circuit for a servo system that uses an incremental encoder to feed back a speed signal.

〔発明の背景〕[Background of the invention]

ロボットの駆動系などのように、急激な速度変化に対す
る高速応答性や位置決め精度が要求されるサーボ系では
第1図のように速度サーボと位置サーボが2重になった
サーボ回路を組む。このためには、モータ1に機械的に
結合され、速度および位置を検出する検出器が必要にな
る。従来は速度検出手段として直流電圧信号を発生する
タコジェネレータ2を用い、位置検出手段としてポテン
ショメータ3を使っていた。しかし、どちらもアナログ
信号であるためノイズや電圧変動の影響を受けやすい。
In a servo system that requires high-speed response to rapid speed changes and positioning accuracy, such as a robot drive system, a servo circuit with a dual speed servo and position servo is constructed as shown in Figure 1. This requires a detector mechanically coupled to the motor 1 to detect speed and position. Conventionally, a tacho generator 2 that generates a DC voltage signal has been used as a speed detection means, and a potentiometer 3 has been used as a position detection means. However, since both are analog signals, they are susceptible to noise and voltage fluctuations.

このため、最近はディジタル信号を発生するエンコーダ
が用いられる傾向にある。
For this reason, there has recently been a trend toward the use of encoders that generate digital signals.

第2図は従来のエンコーダを用いたサーボ系の一例を示
すもので、フィードバック信号の検出器はインクメンタ
ルエンコーダ4のみであり、このエンコーダ4から発生
するディジタル信号を周波数・電圧変換回路5を用いて
アナログの電圧信号−にして速度フィードバック信号と
し、また、同じディジタル信号を積算回路6を用いて積
算し、これをディジタル・アナログ変換回路7を用いて
アナログの位置情報に変換し、位置フィードバックをか
ける。この方式ではフィードバック信号検出手段がエン
コーダ1つで良いという利点がある。
FIG. 2 shows an example of a servo system using a conventional encoder. The feedback signal detector is only an incremental encoder 4, and the digital signal generated from this encoder 4 is converted using a frequency/voltage conversion circuit 5. Then, the same digital signal is integrated using the integrating circuit 6, and this is converted to analog position information using the digital-to-analog converting circuit 7 to provide the position feedback. put on. This method has the advantage that a single encoder is sufficient as the feedback signal detection means.

しかし、従来の周波数・電圧変換回路はエンコーダの回
転方向の判別や、それに従う出方信号電圧の極性反転の
回路が複雑であった。
However, the conventional frequency/voltage conversion circuit has a complicated circuit for determining the rotational direction of the encoder and for reversing the polarity of the output signal voltage accordingly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は素子の数が少なく、簡単で確実なサーボ
系のフィードバック回路を提供するにある。
An object of the present invention is to provide a simple and reliable servo system feedback circuit with a small number of elements.

〔発明の概要〕[Summary of the invention]

本発明は上記の目的を達成するために、速度フィードバ
ックを有するサーボ系において、アナログスイッチとオ
ペアンプを組み合せて、エンコーダの回転方向に応じて
オペアンプの入力を切り換えて、エンコーダの信号をア
ナログの電圧信号に変換するものである。
In order to achieve the above object, the present invention combines an analog switch and an operational amplifier in a servo system having speed feedback, switches the input of the operational amplifier according to the rotational direction of the encoder, and converts the encoder signal into an analog voltage signal. It is converted into .

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本発明の詳細な説明に先立って、本発明の詳細な説明す
ると、インクリメンタルエンコーダの出力は第3図及び
第4図に示すような、A相及びB相の二つのパルス信号
であり、エンコーダのシャフトの回転角に応じてパルス
を発生する。A相とB相とは90°位相がずれており、
ある方向にエンコーダのシャフトを回したとき第3図の
ようにA相が進んでいたとすると、逆回転したときは第
4図に示すようにB相が進み側となる。
Prior to a detailed explanation of the present invention, the present invention will be explained in detail. The output of the incremental encoder is two pulse signals of A phase and B phase as shown in FIGS. 3 and 4. Generates pulses according to the rotation angle of the shaft. Phase A and phase B are 90° out of phase,
Assuming that when the encoder shaft is rotated in a certain direction, phase A is advancing as shown in FIG. 3, when it is rotated in the opposite direction, phase B is advancing as shown in FIG. 4.

エンコーダの回転方向を検出するには例えばB相のパル
ス電圧の下るときのタイミングでA相を見たとき、A相
のパルスが常に1かOかにより検出すれば良い。第3図
では点線で示したタイミングでのA相のパルスは常に0
であり、第4図では常に1である。この判定方法は後で
述べるように、フリップフロップ回路で検出できる。
To detect the rotational direction of the encoder, for example, when looking at the A phase at the timing when the B phase pulse voltage falls, it is sufficient to detect whether the A phase pulse is always 1 or O. In Figure 3, the A-phase pulse at the timing indicated by the dotted line is always 0.
and is always 1 in FIG. As described later, this determination method can be detected using a flip-flop circuit.

次に、A相からB相のパルスを周波数・電圧(E/V)
変換素子に入力すれば、周波数に応じた電圧出力が得ら
れるが、この周波数・電圧変換素子は単一極性の出力と
か出せないため、この出力電圧の極性を先に述べた回転
方向判定の結果に応じて切り換えなければならない。こ
の方策として、本発明はアナログスイッチとオペアンプ
を組み合せ、エンコーダの回転方向に応じてオペアンプ
の入力を切り換えるものとしたものである。
Next, the pulses from phase A to phase B are determined by frequency and voltage (E/V).
If input to the conversion element, a voltage output corresponding to the frequency can be obtained, but since this frequency/voltage conversion element cannot output a single polarity, the polarity of this output voltage is determined by the rotation direction judgment described earlier. must be switched accordingly. As a measure against this, the present invention combines an analog switch and an operational amplifier, and switches the input of the operational amplifier according to the direction of rotation of the encoder.

次に本発明のフィードバック回路の一実施例を第5図に
よって説明する。エンコーダのA相の信号はバッファ8
で受けた後、J−にフリップフロップ9のJに入力する
とともに、インバータ1゜を介して反転した信号をKに
入力する。B相の信号はバッファ8で受けた後、J−に
フリップフロップ9のクロックに入力する。前述したよ
うに、B相のパルス信号でフリップフロップ9の出力Q
及び会が変化するとき、エンコーダの回転方向に応じて
J、にの値は常に1.0か0.1となるので、Q及びd
の値は回転方向が同一である間は変化せず、回転方向が
変ると変化する。すなわち、Q及びQは回転方向に対応
した信号を発生する。
Next, one embodiment of the feedback circuit of the present invention will be described with reference to FIG. The A-phase signal of the encoder is sent to buffer 8.
After receiving the signal at J-, the signal is input to J of the flip-flop 9, and the inverted signal is input to K via the inverter 1°. After the B-phase signal is received by the buffer 8, it is input to the clock of the flip-flop 9 at J-. As mentioned above, the output Q of the flip-flop 9 is
When Q and d change, the value of J is always 1.0 or 0.1 depending on the direction of rotation of the encoder, so Q and d
The value of does not change while the rotation direction is the same, but changes when the rotation direction changes. That is, Q and Q generate signals corresponding to the direction of rotation.

フリップフロップ9のKに入力するパルス信号は周波数
・電圧変換素子11に入力し、周波数に応じた電圧出力
が出る。この電圧信号はアナログスイッチ12を介して
オペアンプ13に入力する。
The pulse signal input to K of the flip-flop 9 is input to the frequency/voltage conversion element 11, and a voltage output according to the frequency is output. This voltage signal is input to the operational amplifier 13 via the analog switch 12.

アナログスイッチは4接点あり、そのうち2接点に電圧
信号が入り、他の2接点は接地されている。
An analog switch has four contacts, two of which receive voltage signals, and the other two contacts are grounded.

アナログスイッチ12の出力側は電圧信号が入力されて
いる接点と接地されている接点を一つずつ結合して2組
つくり、抵抗14を介してそれぞれ正入力端子及び負入
力端子に接続されている。また、オペアンプ13の負入
力端子と出力端子とは抵抗14で結合され、正入力端子
は抵抗14を介して接地されている。
On the output side of the analog switch 12, two sets are formed by combining one contact to which a voltage signal is input and one contact to be grounded, and are connected to a positive input terminal and a negative input terminal, respectively, via a resistor 14. . Further, the negative input terminal and output terminal of the operational amplifier 13 are coupled through a resistor 14, and the positive input terminal is grounded via the resistor 14.

Qが1のとき、前記の電圧信号はオペアンプ13の正入
力端子に入力し、負入力端子は抵抗14を介して接地さ
れるので、出力信号は前記の電圧信号に応じた正の電圧
信号が得られる。
When Q is 1, the above voltage signal is input to the positive input terminal of the operational amplifier 13, and the negative input terminal is grounded via the resistor 14, so the output signal is a positive voltage signal corresponding to the above voltage signal. can get.

Qが0のとき、前記の電圧信号はオペアンプ13り負入
力端子に入力し、正入力端子は抵抗14を介して接地さ
れるので、出力信号は前記の電圧信号に応じた負の電圧
信号が得られる。
When Q is 0, the above voltage signal is input to the negative input terminal of the operational amplifier 13, and the positive input terminal is grounded via the resistor 14, so the output signal is a negative voltage signal corresponding to the above voltage signal. can get.

以上の説明により、オペアンプ13の出力信号はエンコ
ーダの回転方向に対応する極性と、回転速度に比例する
電圧値の信号として得られる。
As explained above, the output signal of the operational amplifier 13 is obtained as a signal having a polarity corresponding to the rotational direction of the encoder and a voltage value proportional to the rotational speed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、簡単な回路でエンコーダのパルス信号
を電圧信号に変換し帰還することができ、回路の簡素化
ができる効果がある。
According to the present invention, an encoder pulse signal can be converted into a voltage signal and fed back using a simple circuit, and the circuit can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサーボ系の一例を示す説明図、第2図は
従来のサーボ系の他の例を示す説明図、第3図は本発明
の回転方向判別法を示す説明図、第4図は本発明の回転
方向判別法を示す説明図、第5図は本発明のフィードバ
ック回路の一実施例を示す回路図である。 8・・・バッファ、9・・・J−にフリップフロップ、
10・・・インバータ、11・・・周波数・電圧変換回
路。 葛 1 n 第 Z 図 第 3 図
FIG. 1 is an explanatory diagram showing an example of a conventional servo system, FIG. 2 is an explanatory diagram showing another example of a conventional servo system, FIG. 3 is an explanatory diagram showing the rotational direction determination method of the present invention, and FIG. FIG. 5 is an explanatory diagram showing the rotational direction determination method of the present invention, and FIG. 5 is a circuit diagram showing an embodiment of the feedback circuit of the present invention. 8...Buffer, 9...Flip-flop on J-,
10... Inverter, 11... Frequency/voltage conversion circuit. Kudzu 1 n Figure Z Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、速度フィードバックを有するサーボ系において、速
度検出器としてインクリメント型エンコーダを用い、該
エンコーダの90″位相差のある二つのパルス信号出力
のうち一方を分岐してこれをインバータを介して反転し
、分岐前の信号と前記反転した信号をJ−にフリップフ
ロップのJ及びに入力端子にそれぞれ入力し、あるいは
逆にK及びJ入力端子にそれぞれ入力し、さらに残され
た前記パルス信号出力を前記フリップフロップのクロッ
クまたはトリガ入力端子に入力し、前記フシツブフロッ
プの正出力Q及び反出力Qを用いてアナログスイッチの
四つの接点回路のうち二つずつを開閉し、前記口つの接
点回路のうち前記正圧力Qおよび反出力6により開閉さ
れるそれぞれ一つの接点回路に前記エンコーダのパルス
信号出力または該パルス信号出力の反転出力を周波数・
電圧変換素子に入力して得られたアナログ電圧出力を接
続し、前記アナログスイッタの残された二つの接点回路
入力端子は接地し、出力端子のうち前記アナログ電圧出
力の接続された接点回路出力と前記接地された接点回路
出力を連結し、該結合部を抵抗を介してオペアンプの正
または負の入力端子に接続し、前記アナログスイッチの
残された二つの接地回路出力を連結してオペアンプの残
された入力端子に抵抗を介して入力し、前記オペアンプ
の負に入力端子と出力端子は抵抗を介して結合し、正の
入力端子は抵抗を介して接地し、オペアンプの出力をサ
ーボ回路の指令信号にフィードバックすることを特徴と
するサーボ系のフィードバック回路。
1. In a servo system with speed feedback, an incremental encoder is used as the speed detector, and one of the encoder's two pulse signal outputs with a 90'' phase difference is branched and inverted via an inverter. The pre-branch signal and the inverted signal are inputted to the J and J input terminals of the flip-flop, or conversely, inputted to the K and J input terminals, respectively, and the remaining pulse signal output is inputted to the flip-flop. input to the clock or trigger input terminal of the double flop, open and close two of the four contact circuits of the analog switch using the positive output Q and reverse output Q of the double flop, and apply the positive pressure of the two contact circuits. The pulse signal output of the encoder or the inverted output of the pulse signal output is connected to one contact circuit, which is opened and closed by the Q and inverse outputs 6, respectively.
The analog voltage output obtained by inputting it to the voltage conversion element is connected, the remaining two contact circuit input terminals of the analog switch are grounded, and the contact circuit output to which the analog voltage output is connected among the output terminals is connected. and the grounded contact circuit output, connect the coupling part to the positive or negative input terminal of the operational amplifier via a resistor, and connect the remaining two grounded circuit outputs of the analog switch to connect the operational amplifier's output. The remaining input terminal is input through a resistor, the negative input terminal and output terminal of the operational amplifier are connected through a resistor, the positive input terminal is grounded through a resistor, and the output of the operational amplifier is connected to the servo circuit. A servo system feedback circuit characterized by feeding back to a command signal.
JP3421684A 1984-02-27 1984-02-27 Feedback circuit of servo system Pending JPS60179809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3421684A JPS60179809A (en) 1984-02-27 1984-02-27 Feedback circuit of servo system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3421684A JPS60179809A (en) 1984-02-27 1984-02-27 Feedback circuit of servo system

Publications (1)

Publication Number Publication Date
JPS60179809A true JPS60179809A (en) 1985-09-13

Family

ID=12407953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3421684A Pending JPS60179809A (en) 1984-02-27 1984-02-27 Feedback circuit of servo system

Country Status (1)

Country Link
JP (1) JPS60179809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229309A (en) * 1986-03-28 1987-10-08 Shimadzu Corp Controller for motor-driven material tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229309A (en) * 1986-03-28 1987-10-08 Shimadzu Corp Controller for motor-driven material tester

Similar Documents

Publication Publication Date Title
US4228396A (en) Electronic tachometer and combined brushless motor commutation and tachometer system
JPH0263011A (en) Rotation detecting mechanism for laser scanner
US4131838A (en) Displacement amount detecting device
JPS60179809A (en) Feedback circuit of servo system
EP0211477B1 (en) Angular position to linear voltage converter
US4599600A (en) Conversion of quadrature signals into counter control pulses
JP2711277B2 (en) Non-contact potentiometer with triangular wave encoder
JPH0614292B2 (en) Control devices for industrial robots, etc.
JP2548900Y2 (en) Angle indexing device
KR940003382Y1 (en) Position detection circuit of encoder pulse
SU1203558A1 (en) Device for controlling output of graphic information
SU969109A1 (en) Digital control servo system
JPS59120962A (en) Detector for speed signal
JPH0230521B2 (en)
JP2775101B2 (en) Deviation direction discrimination circuit in positioning system using incremental encoder
JPS623445B2 (en)
JPH0552589A (en) Absolute encoder device
KR0169842B1 (en) A rotating direction decision circuit using encoder for motor control
JPH01136019A (en) Pulse encoder circuit
JPH0511459Y2 (en)
JPH01132967A (en) Rotation control apparatus
JPH0630021B2 (en) Position recognition device
JPS61221802A (en) Searching system for original point of robot arm
JPS6158484A (en) Controller for motor
JPH02195262A (en) Apparatus for detecting speed signal