JPH0614292B2 - Control devices for industrial robots, etc. - Google Patents

Control devices for industrial robots, etc.

Info

Publication number
JPH0614292B2
JPH0614292B2 JP58178495A JP17849583A JPH0614292B2 JP H0614292 B2 JPH0614292 B2 JP H0614292B2 JP 58178495 A JP58178495 A JP 58178495A JP 17849583 A JP17849583 A JP 17849583A JP H0614292 B2 JPH0614292 B2 JP H0614292B2
Authority
JP
Japan
Prior art keywords
encoder
phase
control device
phase output
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58178495A
Other languages
Japanese (ja)
Other versions
JPS6069705A (en
Inventor
幸雄 富沢
泰博 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58178495A priority Critical patent/JPH0614292B2/en
Publication of JPS6069705A publication Critical patent/JPS6069705A/en
Publication of JPH0614292B2 publication Critical patent/JPH0614292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37296Electronic graduation, scale expansion, interpolation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37314Derive position from speed

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、産業用ロボット等の制御装置に関するもの
であり、例えば多関節型ロボットの制御装置に好適なエ
ンコーダフィードバック回路の改良に係るものである。
Description: TECHNICAL FIELD The present invention relates to a control device for an industrial robot or the like, and relates to, for example, improvement of an encoder feedback circuit suitable for a control device for an articulated robot. .

〔従来技術〕[Prior art]

従来、この種の産業用ロボットの制御装置として、第1
図に示すものが知られている。第1図において、1は制
御装置、2はロボットアームを示すものである。
Conventionally, as a control device for this type of industrial robot,
The one shown in the figure is known. In FIG. 1, 1 is a control device and 2 is a robot arm.

上記のように構成されたロボットの制御装置では、ロボ
ットを動作させる外部からの運動の始動指令が入力され
ると、制御装置1のマイクロプロセッサにより構成され
たCPU3は、図示していない外部のカセットテープレ
コーダ等のI/O機器から、予めロボットの動作用プロ
グラムが格納されている。ROMまたはRAMにより構
成されたメモリ4のデータを処理して、駆動アンプ5に
移動指令の信号を送る。この駆動アンプ5は、この信号
を直流の電圧・電流に変換してロボットアーム2を駆動
する直流サーボモータ6を回転させる。この直流サーボ
モータ6に結合されたロータリエンコーダ7は、その回
転角度に応じてパルスを発生し、このパルスはフィード
バック回路8に供給され、回転位置データがCPU3に
供給されると共に速度信号が駆動アンプ5に供給され
る。
In the robot control device configured as described above, when an external motion start command for operating the robot is input, the CPU 3 configured by the microprocessor of the control device 1 causes an external cassette (not shown) to operate. A robot operation program is stored in advance from an I / O device such as a tape recorder. The data in the memory 4 constituted by the ROM or the RAM is processed, and the signal of the movement command is sent to the drive amplifier 5. The drive amplifier 5 converts this signal into a DC voltage / current and rotates a DC servo motor 6 that drives the robot arm 2. The rotary encoder 7 coupled to the DC servo motor 6 generates a pulse in accordance with the rotation angle of the DC servo motor 6, the pulse is supplied to the feedback circuit 8, the rotational position data is supplied to the CPU 3, and the speed signal is supplied to the drive amplifier. 5 is supplied.

従来のロボット制御装置は、上記のように構成されてお
り、上記したロータリエンコーダ7としては、外形寸
法、形状または製造メーカ等により、不平衡型データ伝
送方式のものと、平衡型データ伝送方式のものとがあ
り、従ってこのロータリエンコーダ7の出力パルス信号
が供給される、制御装置1のフィードバック回路8は、
予めいずれが一方の上記した伝送方式のパルス信号を受
けるように定められている。このため、上記ロータリエ
ンコーダを自由に選択することができないという欠点が
あった。また、従来の回転位置フィードバック用のロー
タリーエンコーダでは、モーターに対するエンコーダの
回転方向が定められており、それに対応してA相出力と
B相出力との位相関係も定められ、例えばA相出力がB
相出力より進み位相のときに正の出力信号を生じるよう
に定められているため、例えばモータのフランジ側に連
結されたエンコーダを逆フランジ側に配置変えしたい場
合には、モータに対するエンコーダの回転方向が前とは
逆になり、その結果、B相出力がA相出力より進み位相
となるので、出力信号の極性が負に変わってしまい、付
加の同じ方向の動作に対してフィードバック信号の極性
が逆になり、極性変換回路が余分に必要になる欠点もあ
った。
The conventional robot control device is configured as described above. As the rotary encoder 7 described above, an unbalanced type data transmission system and a balanced type data transmission system are used depending on the external dimensions, shape or manufacturer. The feedback circuit 8 of the control device 1, to which the output pulse signal of this rotary encoder 7 is supplied, is
It is preliminarily determined which one receives the pulse signal of one of the above-mentioned transmission methods. Therefore, there is a drawback that the rotary encoder cannot be freely selected. Further, in the conventional rotary encoder for feedback of rotational position, the rotation direction of the encoder with respect to the motor is determined, and the phase relationship between the A-phase output and the B-phase output is also determined correspondingly.
Since it is specified to generate a positive output signal when the phase is advanced from the phase output, for example, if you want to rearrange the encoder connected to the motor flange side to the reverse flange side, the rotation direction of the encoder with respect to the motor Is opposite to the previous one, and as a result, the B-phase output becomes a phase ahead of the A-phase output, the polarity of the output signal changes to negative, and the polarity of the feedback signal changes with respect to the additional operation in the same direction. On the contrary, there is a drawback that an additional polarity conversion circuit is required.

〔発明の概要〕[Outline of Invention]

この発明は、上記した従来のものの欠点を除去するため
になされたもので、フィードバック回路の中に不平衡入
力と平衡入力とを切換える手段を設けることにより、ロ
ータリエンコーダを自由に選択することができるように
すると共に、エンコーダのA相出力とB相出力の位相を
関係を反転切換えする別の切換手段を設けることによ
り、エンコーダをモータのフランジ側に取付ける場合と
逆フランジ側に取付ける場合とでA相およびB相出力の
位相関係が入れ変わっても同一極性の出力信号を得るこ
とができるようにした産業用ロボット等の制御装置を提
供するものである。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional ones, and a rotary encoder can be freely selected by providing a means for switching an unbalanced input and a balanced input in a feedback circuit. In addition, by providing another switching means for reversing the relationship between the phases of the A-phase output and the B-phase output of the encoder, the encoder can be mounted on the flange side of the motor and on the opposite flange side of the motor. Provided is a control device such as an industrial robot capable of obtaining output signals of the same polarity even if the phase relationship between the phase and B phase outputs is changed.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図について説明する。第2
図は不平衡型データ伝送方式の場合を示すものであり、
符号3はCPU、7はロータリエンコーダ、8はフィー
ドバック回路である。これらは前記従来例で説明した制
御装置1またはロボットアーム2の構成要素であり、前
記第1図のものと同様に接続されている。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure shows the case of unbalanced data transmission system,
Reference numeral 3 is a CPU, 7 is a rotary encoder, and 8 is a feedback circuit. These are constituent elements of the control device 1 or the robot arm 2 described in the above-mentioned conventional example, and are connected in the same manner as in FIG.

上記ロータリエンコーダ7から出力されたパルスは、オ
ープンコレクタ用に切換えられている切換回路9を通
り、ラインレシーバ10に至る。次にこのパルスは
“1”が有意か、“0”が有意かを切換える出力極性反
転切換回路11を通り、通常は4逓倍のパルスを出力す
るn倍の逓倍器12に入力される。このn倍に逓倍され
たパルスの一方は、F/V変換器13へ入力され、速度
成分が第1図で説明した駆動アンプ5へ出力され、また
パルスの他方はカウンタ14に入力され、CPU3へロ
ータリエンコーダ7の回転位置データを送るために、パ
ラレルデータに変換される。
The pulse output from the rotary encoder 7 passes through the switching circuit 9 switched for the open collector and reaches the line receiver 10. Next, this pulse passes through the output polarity reversal switching circuit 11 that switches whether "1" is significant or "0" is significant, and is normally input to the n-times multiplier 12 that outputs a pulse of 4 times. One of the pulses multiplied by n is input to the F / V converter 13, the speed component is output to the drive amplifier 5 described in FIG. 1, and the other of the pulses is input to the counter 14, and the CPU 3 In order to send the rotational position data of the rotary encoder 7, it is converted into parallel data.

第3図は、平衡型データ伝送方式のロータリエンコーダ
を接続した場合を示すものであり、切換回路9を切換え
ることにより、CPU3は第2図の場合と同様にして回
転位置データを受取ることがわかる。
FIG. 3 shows the case where a rotary encoder of the balanced type data transmission system is connected. By switching the switching circuit 9, it can be seen that the CPU 3 receives the rotational position data in the same manner as in the case of FIG. .

〔発明の効果〕〔The invention's effect〕

上記したように、この発明では、ロータリエンコーダの
フィードバック回路に、伝送方式を切換える切換回路を
設けたから、エンコーダ出力の異なるロボットアームを
も制御することができる。また、この発明では、出力極
性反転切換回路として示される切換手段によりエンコー
ダのA相出力とB相出力の位相関係を反転切換え可能と
したから、負荷の運動方向に対してエンコーダの回転方
向が逆となるように取付けられるような場合において
も、A相出力がB相出力より進み位相のときに正の出力
信号を得るか、逆にB相出力がA相出力より進み位相の
ときに正の出力信号を得るかが選択でき、従ってA相お
よびB相出力の位相関係が入れ変わっても同一極性の出
力信号を得ることができるものである。
As described above, according to the present invention, since the feedback circuit of the rotary encoder is provided with the switching circuit for switching the transmission system, it is possible to control robot arms having different encoder outputs. Further, in the present invention, since the phase relationship between the A-phase output and the B-phase output of the encoder can be reversed and switched by the switching means shown as the output polarity reversal switching circuit, the rotation direction of the encoder is opposite to the movement direction of the load. In the case where the A phase output is ahead of the B phase output, a positive output signal is obtained, or conversely, when the B phase output is ahead of the A phase output, a positive output signal is obtained. It is possible to select whether to obtain the output signal. Therefore, even if the phase relationship between the A-phase output and the B-phase output is reversed, the output signals having the same polarity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の産業用ロボットの制御装置の構成を示す
ブロック図、第2図及び第3図はこの発明の一実施例を
示す制御装置の要部のブロック図である。 1:制御装置、2:ロボットアーム、3:CPU、4:
メモリ、5:駆動アンプ、6:直流サーボモータ、7:
ロータリエンコーダ、8:フィードバック回路、9:切
換回路、10:ラインレシーバ、11:切換回路、1
2:逓倍器、13:F/V変換器、14:カウンタ。 なお各図中同一符号は同一または相当部分を示すものと
する。
FIG. 1 is a block diagram showing the configuration of a conventional industrial robot control device, and FIGS. 2 and 3 are block diagrams of the essential parts of the control device showing an embodiment of the present invention. 1: Control device, 2: Robot arm, 3: CPU, 4:
Memory, 5: drive amplifier, 6: DC servo motor, 7:
Rotary encoder, 8: feedback circuit, 9: switching circuit, 10: line receiver, 11: switching circuit, 1
2: multiplier, 13: F / V converter, 14: counter. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ロータリエンコーダに接続されるエンコー
ダフィードバック回路と、マイクロプロセッサよりなる
CPUと、及び直流サーボモータを駆動する駆動アンプ
とにより構成された産業用ロボット等の制御装置におい
て、上記エンコーダフィードバック回路中に、エンコー
ダからの入力信号を不平衡型データ伝送方式で前記CP
Uへ伝えるか平衡型データ伝送方式で前記CPUへ伝え
るかを選択的に切り換える第1の切換手段と、上記エン
コーダのA相出力とB相出力の位相関係を反転切換えす
る第2の切換手段と、上記エンコーダからのフィードバ
ックパルスを速度信号に変換するF/V変換器とを備え
たことを特徴とする産業用ロボット等の制御装置。
1. A controller for an industrial robot or the like, which comprises an encoder feedback circuit connected to a rotary encoder, a CPU composed of a microprocessor, and a drive amplifier for driving a DC servomotor. The input signal from the encoder is transferred to the CP by the unbalanced data transmission method.
First switching means for selectively switching between transmission to U and transmission to the CPU by a balanced data transmission system, and second switching means for inverting and switching the phase relationship between the A-phase output and the B-phase output of the encoder. And an F / V converter for converting the feedback pulse from the encoder into a speed signal, a control device for an industrial robot or the like.
JP58178495A 1983-09-27 1983-09-27 Control devices for industrial robots, etc. Expired - Lifetime JPH0614292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178495A JPH0614292B2 (en) 1983-09-27 1983-09-27 Control devices for industrial robots, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178495A JPH0614292B2 (en) 1983-09-27 1983-09-27 Control devices for industrial robots, etc.

Publications (2)

Publication Number Publication Date
JPS6069705A JPS6069705A (en) 1985-04-20
JPH0614292B2 true JPH0614292B2 (en) 1994-02-23

Family

ID=16049448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178495A Expired - Lifetime JPH0614292B2 (en) 1983-09-27 1983-09-27 Control devices for industrial robots, etc.

Country Status (1)

Country Link
JP (1) JPH0614292B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167910A (en) * 1986-12-29 1988-07-12 Toshiba Corp Control device for mounting parts
JPS63167911A (en) * 1986-12-29 1988-07-12 Toshiba Corp Driving control device
JP5804447B2 (en) * 2012-02-03 2015-11-04 富士電機株式会社 Pulse counting device

Also Published As

Publication number Publication date
JPS6069705A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
GB1371985A (en) Electronic control device in particular for use in a variable- reluctance motor
US4725959A (en) Numerically controlled machine tool
JPH0474671B2 (en)
US4225811A (en) Direct current motor with polyphase stator winding and electronic commutating device controlled by an angular position transmitter
JPH0614292B2 (en) Control devices for industrial robots, etc.
US4282955A (en) Rotary shaft control system
JPS6019801B2 (en) Industrial robot device with drive motor current control function
EP0442772B1 (en) Direct teaching type robot
JPS62239204A (en) Method for positioning origin of robot
SU1176425A1 (en) Device for distance transmission of turn angle of reference shaft
JP3270936B2 (en) Robot controller
JPS60179809A (en) Feedback circuit of servo system
JP2579605B2 (en) Robot origin alignment method
JP2548900Y2 (en) Angle indexing device
JPH0431603Y2 (en)
JPH10111720A (en) Ac servo mortor and its driving method
SU1690110A1 (en) Device for remote transmission of turning angle of master shaft
JPS6158484A (en) Controller for motor
JPS6430695U (en)
JPH01177892A (en) Digital controller for synchronous motor
JPH0623681A (en) Origin return device for robot
JPH0433109A (en) Main shaft driving device for machine tool
KR970000178B1 (en) Direction and speed controlling device in electric motor lift truck
JPS6216799Y2 (en)
JPS631600Y2 (en)