JPS6017979A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6017979A
JPS6017979A JP12580783A JP12580783A JPS6017979A JP S6017979 A JPS6017979 A JP S6017979A JP 12580783 A JP12580783 A JP 12580783A JP 12580783 A JP12580783 A JP 12580783A JP S6017979 A JPS6017979 A JP S6017979A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
light
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12580783A
Other languages
Japanese (ja)
Inventor
Takao Furuse
古瀬 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12580783A priority Critical patent/JPS6017979A/en
Publication of JPS6017979A publication Critical patent/JPS6017979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a high performance semiconductor laser in good reproducibility by forming a GaAs substrate raised region to become a reflecting surface vicinity region, thereby obtaining a light beam of high quality having no astigmatism. CONSTITUTION:A raised region of approx. 1.5mum is formed on a GaAs substrate 1 to become a semiconductor laser refelcting vicinity region, and N type Al0.4Ga0.6As layer 2, an Al0.1Ga0.9As layer 3 to become an active layer, a P type Al0.4Ga0.6Ga layer 4, and a P type GaAs layer 5 are sequentially formed, the thickness of the layer 3 is increased to 0.1mum in the semiconductor laser central region, and decreased to 0.02mum in the semiconductor laser reflecting surface vicinity region. In this structure, the light intensity distribution of the layer thicknesswise direction is largely spread in the distribution in the vicinity of the reflecting surface, the light emitting sectional area increases to reduce the light output density, the damage of the reflecting surface can be prevented by the light outputting operation of 50mW or higher, and a semiconductor laser having high reliability can be formed.

Description

【発明の詳細な説明】 本発明は反射面劣化を除去し、高出力動作を可能にする
埋込型半導体レーザーに関するものである。AJ Ga
 As等の材料を用いた多層構造半導体レーザは、高効
率のレーザ発振動作が可能であり光フアイバ通信等の用
途に用いられているが、その光出力値は5〜10 mW
程度のものであった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a buried semiconductor laser that eliminates reflection surface deterioration and enables high output operation. AJ Ga
Multilayer semiconductor lasers using materials such as As are capable of highly efficient laser oscillation and are used for applications such as optical fiber communications, but their optical output value is 5 to 10 mW.
It was of a certain extent.

この光出力の取り出し得る限界は、主に結晶臂開面が高
密度の光出力によって損傷を受けるためであり、例えば
50mW程度の光出力を得ようとすると、反射面での光
吸収による発熱のだめ結晶臂開面の反射面が瞬時に破壊
してしまう仁とが避けられないものであった。
The limit to the amount of light output that can be extracted is mainly due to the fact that the crystal arm-opening plane is damaged by the high-density light output.For example, if you try to obtain a light output of about 50 mW, the heat generation due to light absorption on the reflective surface will cause damage. It was unavoidable that the reflective surface of the crystal arm opening would instantly destroy the surface.

この様な欠点を除去するため、結晶臂開面に発振波長に
対し透明な)−1GaAs層等を形成する方法あるいは
反射面近傍の発光領域を除いて活性層に高濃度のZn拡
散をほどこし、発振波長を低エネルギー側へ移動させる
ことによって反射面近傍領域を透明領域にする方法、あ
るいは又半導体レーザの活性層を0.04μm程度にま
で薄膜化することにより光強度分布を拡大せしめ発光断
面積を太きくれている。しかしながら、これらの方法に
於いては製造工程が複雑で、再現性良く高性能な半導体
レーザを得ることが難しいばかりでなく、反射面近傍領
域においては、積層されている半導体層の厚み方向には
屈折率導波作用が維持されているがそれと直角方向C層
厚と平行方向)に関しては屈折率導波作用がないため、
半導体1−−ザ出射ビームに非点収差が発生し、微少ビ
ームに絞り込むことが出来ない欠点があり、又、薄膜活
性層を形成する場合、活性層への光の閉じ込め率が大幅
に減少して発振閾値電流を大きくしてしまう等の欠点が
避けられないものであった。
In order to eliminate such defects, there are methods of forming a -1GaAs layer (transparent to the oscillation wavelength) on the open face of the crystal arm, or applying high-concentration Zn diffusion to the active layer except for the light-emitting region near the reflective surface. By shifting the oscillation wavelength to the lower energy side, the area near the reflective surface becomes a transparent area, or by thinning the active layer of the semiconductor laser to about 0.04 μm, the light intensity distribution is expanded and the emission cross section is changed. It's getting thicker. However, in these methods, the manufacturing process is complicated, and it is difficult to obtain a high-performance semiconductor laser with good reproducibility. Although the refractive index waveguide effect is maintained, there is no refractive index waveguide effect in the direction perpendicular to it (direction parallel to the thickness of the layer C).
Semiconductor 1--The outgoing beam has the disadvantage that astigmatism occurs and cannot be narrowed down to a minute beam.Also, when forming a thin active layer, the confinement rate of light in the active layer is greatly reduced. However, disadvantages such as increasing the oscillation threshold current were unavoidable.

本発明の目的は上記従来構造の離点を除去し、高出力動
作に於ても反射面劣化を除去した信頼性込み、非点収差
のない良質の光ビームを得る半導体レーザを提供するこ
とにある。
The purpose of the present invention is to eliminate the separation point of the conventional structure described above, and to provide a semiconductor laser which can obtain a high-quality light beam without astigmatism, including reliability by eliminating reflection surface deterioration even in high-output operation. be.

本発明の半導体レーザけ、発光領域となる第1の半導体
層を、これより禁制帯幅の大きい第2及び第3の半導体
層で挾む帯状多層構造を具備し、その帯状多層構造を、
第1の半導体層よりも禁制帯幅の大きい第4の半導体層
で埋込んだ構造とし共振器長手方向にわたって、少なく
とも第1の半導体層の厚さを変化せしめたことを特徴と
する半導体レーザ構造である。
The semiconductor laser according to the present invention has a strip-shaped multilayer structure in which a first semiconductor layer serving as a light emitting region is sandwiched between second and third semiconductor layers having a larger forbidden band width, and the strip-shaped multilayer structure includes:
A semiconductor laser structure characterized in that the fourth semiconductor layer is embedded with a fourth semiconductor layer having a larger forbidden band width than the first semiconductor layer, and the thickness of at least the first semiconductor layer is varied over the longitudinal direction of the cavity. It is.

以下、本発明に係る実施例について図面を参照して説明
する。第1図は本発明に係る半導体レーザの光出射面側
の断面図を、第2図は同レーザの中央部横断面図を示す
。第3図は本発明に係る半導体レーザの他の一実施例の
中央部横断面図を示すものである。
Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of the light emitting surface side of a semiconductor laser according to the present invention, and FIG. 2 is a cross-sectional view of the central portion of the laser. FIG. 3 shows a cross-sectional view of the central portion of another embodiment of the semiconductor laser according to the present invention.

第1図は本発明に係る半導体レーザの一実施例型GaA
s 、1’!i (5)を形成する。
FIG. 1 shows an example of a GaA semiconductor laser according to the present invention.
s, 1'! i (5) is formed.

次に、結晶表面にストライブ状の8102マスクを形成
し、H,PO,+H,02+3CI(30H溶液を用い
てGaAs基板(1)に達する壕でエツチングにtり溝
を形成して帯状積層体を形成する。次に再度結晶表面を
清浄にした後、第2液相成長工程により、n型AI!o
、、 Ga o、7A、s層(6)、PQAeo、3G
ao、7As層(7)、n型kI!。、3Gao、7A
s層(8)を帯状積層体の上部には積層しない様に順次
形成した後、結晶表面全体をjつ様にP型Ga、AS層
(9)を形成する。
Next, a stripe-like 8102 mask is formed on the crystal surface, and a T-groove is formed in the etching using H, PO, +H, 02+3CI (30H solution) to reach the GaAs substrate (1). Next, after cleaning the crystal surface again, a second liquid phase growth process is performed to form n-type AI!o.
,, Ga o, 7A, s layer (6), PQAeo, 3G
ao, 7As layer (7), n-type kI! . , 3Gao, 7A
After the s-layers (8) are sequentially formed so as not to be stacked on the top of the strip-shaped laminate, a P-type Ga, AS layer (9) is formed over the entire crystal surface.

最後にn型コンタクト電1y (10) 、P型コンタ
クト電極(+ +1を形成して本発明に係る半導体レー
ザが形成される。本構造に於いては、帯状積層体の側部
にAfo、、 Ga o、、 Asによるn型、p型、
n型の半導体層が積j−され、電流阻止効采が大きく、
帯状積層体部分に効率よく電流が流れ、発振効率の高い
半導体レーザが形成できる特徴を有している。
Finally, an n-type contact electrode 1y (10) and a p-type contact electrode (+ +1) are formed to form the semiconductor laser according to the present invention.In this structure, Afo, . Ga o, As n-type, p-type,
N-type semiconductor layers are stacked, and the current blocking effect is large.
Current flows efficiently through the strip-shaped stacked body portion, making it possible to form a semiconductor laser with high oscillation efficiency.

また、本発明による構造に於ては活性層となるAJ6.
、 (ia6.g As層(3)は、それよりも屈折率
の小さなMGaAs (2k (4)、 (7) K 
j ッテ包UJJ サレ、ffl方向、タテ方向にも屈
折率導波機構を有しているため、出射ビームのビームウ
ェスト位置は結晶臂開面による反射面位置にあり、非点
収差がなく、微少スポットに絞り込もことが出来る良質
なレーザ光を得る特徴をも有したものである。
Further, in the structure according to the present invention, AJ6.
, (ia6.g As layer (3) is MGaAs (2k (4), (7) K
Since it has a refractive index waveguide mechanism in both the ffl and vertical directions, the beam waist position of the output beam is at the reflective surface position due to the crystal arm opening, and there is no astigmatism. It also has the feature of obtaining high-quality laser light that can be narrowed down to a minute spot.

さらに、本発明に係る半導体レーザにより高出力動作を
達成できたことを、第2図によって説明する。第2図は
、第1図に示す本発明に係る半導体レーザの中央部分A
における横断面を示すものである。本半導体レーザに於
ては、第2図と示す様に反射面近傍領賊となる()aA
s基板(1)に凸部領域を形成し、その上に結晶成長工
程により多層の半導体層を形成した構造となってのる。
Furthermore, the fact that high output operation was achieved by the semiconductor laser according to the present invention will be explained with reference to FIG. FIG. 2 shows a central portion A of the semiconductor laser according to the present invention shown in FIG.
This figure shows a cross section at . In this semiconductor laser, as shown in Figure 2, the area near the reflecting surface is ()aA.
The structure is such that a convex region is formed on the s-substrate (1), and multilayer semiconductor layers are formed thereon by a crystal growth process.

ここで、通常よく用いられる液相結晶成長法においては
、凸部領域においては、その上に成長する結晶の層厚は
他の領域に比較して薄くなる特徴があり、本発明におい
ては、この結晶成長法の特徴を生かし、半導体レーザ反
対面近傍領域の活性層厚を他の領域に比較して薄くする
ことにある。
Here, in the commonly used liquid phase crystal growth method, the layer thickness of the crystal grown thereon is thinner in the convex region than in other regions. By taking advantage of the characteristics of the crystal growth method, the thickness of the active layer in the region near the opposite surface of the semiconductor laser is made thinner than in other regions.

すなわち、本発明に於ては、半導体レーザ反対面近傍領
域となるGaAs基板に約1,5μm程度の凸部領域を
形成し、その上に順次n型Al!’0.4 (ho、6
As層(2)、活性層となるAI!6.HGa 6.g
 Ass層3)、 P型Ae O,4Ga0.6As層
(4)、P、%IjGa、As層(5)を形成すること
によって、活性層となるA/?(、、、(1a6.gA
s層(3)ノ層厚は半導体レーザ中央部領域に於ては、
01μmと厚くし、単導体レーザ反射面近傍領域に於て
は0.02μm程度にまで薄くすることができる。
That is, in the present invention, a convex region of about 1.5 μm is formed on the GaAs substrate, which is a region near the opposite surface of the semiconductor laser, and an n-type Al! '0.4 (ho, 6
As layer (2), AI that becomes the active layer! 6. HGa6. g
By forming the Ass layer 3), the P-type AeO,4Ga0.6As layer (4), and the P,%IjGa,As layer (5), the A/? (,,,(1a6.gA
The thickness of the s-layer (3) in the central region of the semiconductor laser is as follows:
The thickness can be increased to 0.01 μm, and the thickness can be reduced to about 0.02 μm in the region near the single-conductor laser reflection surface.

従って、この構造に於ては同図に示す様に層厚方向の光
強度分布は、反射面近傍では大きく広がった分布となり
、発光断面積vJ二大きくなり光出力密度が低減でき、
50 mW以」−の光出力動作に於いても反射面の破壊
が防止でき、信頼性の高い半導体レーザが形成できた。
Therefore, in this structure, as shown in the same figure, the light intensity distribution in the layer thickness direction becomes a distribution that is greatly spread near the reflective surface, and the light emission cross section vJ2 increases, reducing the optical output density.
Even in an optical output operation of 50 mW or more, destruction of the reflecting surface could be prevented, and a highly reliable semiconductor laser could be formed.

また、この構造に於てt−1、半導体レーザ中央部領I
t(7) 活性層ト’l ZI Ato、t aaLl
、、 As l脅(3)のl’Xみは0.1μmであり
、活性層への光の閉じ込め係数は0.2程度となり、発
、illに閾値′lげ、bICの増加を避けることがで
き、4.0mA程IWの低い情振閾値を得、90°C以
上の篩濡雰囲気湛jB゛状態に於ても40rnW以上の
光出力を得る安定な動作が達成でさた。
In addition, in this structure, t-1, the central region I of the semiconductor laser
t(7) Active layer t'l ZI Ato, t aaLl
,, The l'X difference in As l threat (3) is 0.1 μm, and the confinement coefficient of light in the active layer is about 0.2, which increases the threshold value for illumination and avoids an increase in bIC. We were able to obtain a low IW threshold of about 4.0 mA, and achieved stable operation with a light output of 40 rnW or more even in a wet sieve atmosphere at 90°C or higher.

次に、本発明に」:る他の実施例について説明する。こ
の場合に於ても、レーザ光出射面側の断面図は前述した
実施例と同形であり、fifj1図に示す通りである。
Next, other embodiments of the present invention will be described. In this case as well, the cross-sectional view on the side of the laser beam emitting surface has the same shape as that of the above-described embodiment, as shown in FIG. fifj1.

同図中央部Aにむけるれ“alす1面図′と第3図に示
すが、前述した実f布例と相異する点は第3図に示す様
に半導体レーザ反射面近傍領域のGaAs基板(1)に
斜面を有する溝を形成したことである。この斜面はアン
モニア系エツチング溶液により形成した(111) A
面であり、この面上に於てけ、他の領置r比較して結晶
の成長法FWが遅い特徴を有するものである。従って、
第3図に示す様にこの様に形成した溝をイrするGaA
、s基板」二に順次、n 3jjJAIo、4. Ga
o、、 As 14(21,活性層となるA7′O+ 
Fig. 3 shows the "Al side view" facing the center part A of the same figure, but the difference from the actual f-fabric example described above is that the GaAs in the area near the semiconductor laser reflective surface is A groove having an inclined surface was formed on the substrate (1).The inclined surface was formed using an ammonia-based etching solution (111) A.
This is a surface, and when placed on this surface, the crystal growth method FW is slow compared to other regions r. Therefore,
As shown in Figure 3, GaA
, s substrate' 2 sequentially, n 3jjJAIo, 4. Ga
o,, As 14 (21, A7'O+ which becomes the active layer
.

oao、、 As層(3)、 P型Ay?o、、 ()
a Q、+1 、AS層(4)、 P型(JaAs層を
形成するに際し、(11,1)A面上の結晶成長速変が
遅く、反射面近傍領域の活性層厚を0.02μm程度に
薄くすることが再現よく形成でき、前述した実施例と同
様に反射面近傍領域では、光強度分布が大きく拡がり、
光出力密度を低減でき、50+nW以上の光出力動作に
於ても反射面の破壊が1υi止できるものとなる。また
、この構造に於ても半導体レーザ中央部領域の活性層厚
は01μm程度に形キ 成丹ぺ一発振閾値電流を40 mA程度に低減でき、良
効な特性を達成できるのは、前述の実施例と同様である
oao,, As layer (3), P type Ay? o,, ()
When forming a Q, +1, AS layer (4), P type (JaAs layer), the crystal growth rate on the (11,1) A plane is slow, and the active layer thickness in the region near the reflective surface is set to about 0.02 μm. The light intensity distribution is greatly expanded in the region near the reflective surface, as in the above-mentioned embodiment.
The optical output density can be reduced, and destruction of the reflective surface can be prevented by 1υi even when the optical output is operated at 50+nW or more. In addition, even in this structure, the thickness of the active layer in the central region of the semiconductor laser can be reduced to about 0.1 μm, and the threshold current for oscillation can be reduced to about 40 mA. This is similar to the example.

尚、上記2つの実施例では第1半導体層の厚さが徐々に
変化している構造であるが、1幀厚がステップ状に変化
1−でいても実姉例と同様の効果がある。
In the above two embodiments, the thickness of the first semiconductor layer is gradually changed, but even if the thickness is changed stepwise, the same effect as in the actual sister example can be obtained.

以上、述べた様に本発明に係る半導体レーザ構造によっ
て反射面近傍領域1(おいては発光断面L1を大きくし
て、光出力密度を1成域でき、FOmW以上の高出力動
作状たに尾於ても、反対面の破壊を防止でき、さらに半
導体レーデ中央部領1或においては発光断面積を小さく
して、活性tmへの光の閉じ込め係数を大きくして発振
t:L<値電流の低減を可能ならしめ、さらには発光@
城となる活性層をそれよりも屈折率の不染外半導体1付
で包囲することによって、横方向、・タテ方向ともに屈
折率導波機構を組込み、非点収差のないIA質の光ビー
11を得る高性能な半導体レーザを再現性よく形成でき
る。
As described above, the semiconductor laser structure according to the present invention can increase the light emission cross section L1 in the region 1 near the reflective surface (in the area L1), and can increase the optical output density to one region, and can achieve high output operation of FOmW or more. Even in this case, it is possible to prevent the destruction of the opposite surface, and furthermore, in the central region 1 of the semiconductor radar, the light emitting cross section is made smaller, and the confinement coefficient of light to the active tm is increased, so that the oscillation t:L<value current is Making it possible to reduce the amount of light and even emit light @
By surrounding the active layer, which serves as a castle, with an undyed external semiconductor 1 with a higher refractive index, a refractive index waveguide mechanism is incorporated in both the lateral and vertical directions, and an IA quality optical beam 11 with no astigmatism is created. It is possible to form high-performance semiconductor lasers with good reproducibility.

C以 下 余 白)C and below, extra white)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体レーザのレーザビーム出射
面側の断面模式図、第21図は第1図中央部Aにおける
横断面模式図、第3図は本発明の他の一実施例における
横断面模式図をそれぞれ示す。 図において、 1、:n型GaAs基板 2 : n % A−eo、、 Ga(、,6As層3
 : Ato、、GaO,、As活性層4 : p型k
l(、、、Ga6.、N3層5:p型GaAs層 6:n型A/’6.3 Gao、7Aj II7エ、型
k16.. Gao、、A 5f−8: n型M6.s
 Ga 6,7A s層9;P型GaAs 1iJ 10:n型コンタクト電極 11; p型コンタクト1!極 をそれぞれ示す。
FIG. 1 is a schematic cross-sectional view of the laser beam emitting surface side of a semiconductor laser according to the present invention, FIG. 21 is a schematic cross-sectional view at the center part A of FIG. 1, and FIG. 3 is a schematic cross-sectional view of another embodiment of the present invention. A schematic cross-sectional view is shown in each case. In the figure, 1: n-type GaAs substrate 2: n% A-eo, Ga(, 6As layer 3
: Ato, , GaO, , As active layer 4 : p-type k
l(,,,,Ga6.,N3 layer 5:p type GaAs layer 6:n type A/'6.3 Gao,7Aj II7e,type k16..Gao,,A 5f-8:n type M6.s
Ga 6,7A s layer 9; P-type GaAs 1iJ 10: n-type contact electrode 11; p-type contact 1! Each pole is shown.

Claims (1)

【特許請求の範囲】[Claims] 発光領域となる第1の半導体層を、これより禁制帯幅の
大きい第2及び第3の半導体層で挾む帯状多層構造を具
備し、その帯状多層構造を第1の半導体層より禁制帯幅
の大きい第4の半導体層で埋込んだ構造の半導体発光素
子に於て、共振器長手方向だわたって、少なくとも第1
の半導体層の厚さを変化せしめたことを特徴とする半導
体レーザ。
A strip-shaped multilayer structure is provided in which a first semiconductor layer serving as a light-emitting region is sandwiched between second and third semiconductor layers having a larger forbidden band width, and the strip-shaped multilayer structure has a forbidden band width larger than that of the first semiconductor layer. In a semiconductor light emitting device having a structure in which the fourth semiconductor layer is embedded with a large fourth semiconductor layer, at least the first
A semiconductor laser characterized in that the thickness of the semiconductor layer is varied.
JP12580783A 1983-07-11 1983-07-11 Semiconductor laser Pending JPS6017979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12580783A JPS6017979A (en) 1983-07-11 1983-07-11 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12580783A JPS6017979A (en) 1983-07-11 1983-07-11 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6017979A true JPS6017979A (en) 1985-01-29

Family

ID=14919395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12580783A Pending JPS6017979A (en) 1983-07-11 1983-07-11 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6017979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170082A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Double-hetero structure semiconductor laser with device
US5486490A (en) * 1992-12-15 1996-01-23 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor laser
DE102021109986A1 (en) 2021-04-20 2022-10-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method of manufacturing a light-emitting semiconductor chip and light-emitting semiconductor chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170082A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Double-hetero structure semiconductor laser with device
US5486490A (en) * 1992-12-15 1996-01-23 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor laser
DE102021109986A1 (en) 2021-04-20 2022-10-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method of manufacturing a light-emitting semiconductor chip and light-emitting semiconductor chip

Similar Documents

Publication Publication Date Title
US20060088072A1 (en) Semiconductor laser apparatus
JPS63318195A (en) Transverse buried type surface emitting laser
JPH0196980A (en) Semiconductor laser element and manufacture thereof
JPS6343908B2 (en)
JP4011640B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JPS6017979A (en) Semiconductor laser
US4759025A (en) Window structure semiconductor laser
JPS6235689A (en) Semiconductor laser array device
JP2846668B2 (en) Broad area laser
JPS5861695A (en) Semiconductor laser element
US5707892A (en) Method for fabricating a semiconductor laser diode
JPH0474876B2 (en)
JPS59149078A (en) Semiconductor laser
JPH01108789A (en) Surface emission semiconductor laser element
JPS5948973A (en) Semiconductor laser
JPS6037190A (en) Manufacture of semiconductor laser
JPH05226765A (en) Semiconductor laser array
JPS60132381A (en) Semiconductor laser device
JPS59127893A (en) Semiconductor laser
JPH0964458A (en) Semiconductor laser
JPS63306686A (en) Semiconductor laser device
JPH0258288A (en) Semiconductor laser
JPH11168256A (en) Light-emitting element and its manufacturing method
JPS58216488A (en) Semiconductor laser
JPH01181493A (en) End face window type semiconductor laser element