JPH01108789A - Surface emission semiconductor laser element - Google Patents

Surface emission semiconductor laser element

Info

Publication number
JPH01108789A
JPH01108789A JP26715087A JP26715087A JPH01108789A JP H01108789 A JPH01108789 A JP H01108789A JP 26715087 A JP26715087 A JP 26715087A JP 26715087 A JP26715087 A JP 26715087A JP H01108789 A JPH01108789 A JP H01108789A
Authority
JP
Japan
Prior art keywords
layer
type
gaas
quantum well
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26715087A
Other languages
Japanese (ja)
Inventor
Masafumi Kondo
雅文 近藤
Toshiro Hayakawa
利郎 早川
Naohiro Suyama
尚宏 須山
Hisatoshi Takahashi
向星 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP26715087A priority Critical patent/JPH01108789A/en
Publication of JPH01108789A publication Critical patent/JPH01108789A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2072Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by vacancy induced diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain high gain properties by composing a surface emission semiconductor laser element of a GaAs semiconductor substrate having a face azimuth 111 and an active layer having superlattice or quantum well structure formed onto a substrate and consisting of GaAs and AlGaAs. CONSTITUTION:A P-type GaAs buffer layer 2, a P-type Al0.7Ga0.3As clad layer 3, a multiple quantum well active layer 4 in which undoped GaAs quantum well layers and undoped Al0.2Ga0.8As barrier layers are superposed alternately in 200 layers and 199 layers, an N-type Al0.7 Ca0.3As clad layer 5 and an N-type GaAs contact layer 6 are grown continuously on a P-type GaAs substrate 1 having a face orientation 111 by using an MBE method. An SiN film 7 is shaped onto the contact layer 6, and an Zn diffusion layer 8 is formed up to the clad layer 3. The central section of the GaAs substrate is etched until the clad layer 3 is exposed, and a resonator is formed, reflecting mirrors 9, 10 functioning as electrodes in combination are shaped, and the whole is divided into chips. Positive voltage is applied to the electrode 10 for the chip and negative voltage to the electrode 9, and laser beams are extracted from the electrode 10 side. Accordingly, room-temperature continuous oscillation is enabled by low threshold currents.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は面発光半導体レーザ素子に関するもので、特
に低しきい値電流で作動する面発光半導体レーザ素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface-emitting semiconductor laser device, and more particularly to a surface-emitting semiconductor laser device that operates with a low threshold current.

[従来の技術] 第4図は東京工業大学精密工学研究所が発表した室温で
パルス発振した面発光型半導体レーザの概略図である。
[Prior Art] FIG. 4 is a schematic diagram of a surface-emitting semiconductor laser that performs pulse oscillation at room temperature and has been published by the Institute of Precision Engineering, Tokyo Institute of Technology.

(日経エレクトロニクス 1984.6.18号) 図において11はn型GaAs基板、12はn型GaA
sバッファ層、13はn型A1004Ga6.6Asク
ラッド層、14はp型GaAs活性層、15はp型A(
1@、4@g、)4 Asクラッド層、16は5i02
絶縁膜、17はp型Alo、+ 50 ao、asAs
キャップ層、18は電極および反射鏡、19は反射鏡、
20は電極である。
(Nikkei Electronics 1984.6.18 issue) In the figure, 11 is an n-type GaAs substrate, 12 is an n-type GaA substrate.
s buffer layer, 13 is n-type A1004Ga6.6As cladding layer, 14 is p-type GaAs active layer, 15 is p-type A(
1@, 4@g, )4 As cladding layer, 16 is 5i02
Insulating film, 17 is p-type Alo, +50 ao, asAs
a cap layer, 18 an electrode and a reflecting mirror, 19 a reflecting mirror,
20 is an electrode.

また第5図は東京工業大学精密工学研究所が発表した室
温でパルス発振した面発光型半導体レーザの概略図であ
る(電子通信学会技術報告 V。
Figure 5 is a schematic diagram of a surface-emitting semiconductor laser that pulses at room temperature and was published by the Institute of Precision Engineering, Tokyo Institute of Technology (IEICE Technical Report V).

1.86  No、8 0QE86−8)図において1
1はn型GaAs基板、13はn型A 見6,4 G 
ao、s A sクラッド層、14はGaAs活性層、
15はp型A (、。、40 ao、g A sクラッ
ド層、18は電極、19は2!電体多層膜の反射鏡、2
0は電極、21はp型A LQ、4 G ao、sAs
電流狭窄層、22はn型A (Lo、< G ao、s
 A、 S電流狭窄層である。
1.86 No, 8 0QE86-8) 1 in the figure
1 is an n-type GaAs substrate, 13 is an n-type A 6,4 G
ao, s A s cladding layer, 14 is a GaAs active layer,
15 is p-type A (,., 40 ao, g As cladding layer, 18 is electrode, 19 is 2! Reflector of electric multilayer film, 2
0 is an electrode, 21 is p-type A LQ, 4 G ao, sAs
The current confinement layer 22 is n-type A (Lo, < Gao, s
A, S current confinement layer.

次に動作について説明する。面発光型半導体レーザ素子
は半導体基板面と垂直方向にレーザ光を出射し、共振器
は基板面と垂直方向の反射鏡間に作られ、次のような特
徴を有している。
Next, the operation will be explained. A surface-emitting semiconductor laser device emits laser light in a direction perpendicular to the semiconductor substrate surface, and a resonator is formed between a reflecting mirror in the direction perpendicular to the substrate surface, and has the following characteristics.

(l) 単一縦モードで発振する。(l) Oscillates in a single longitudinal mode.

(11)  大放射面積1.狭出射角であるため、光フ
ァイバとの結合が良好である。
(11) Large radiation area 1. Since the output angle is narrow, the coupling with the optical fiber is good.

(111)  レーザ出射面に高反射鏡を有するため、
戻り光雑音に強い。
(111) Since the laser emission surface has a highly reflective mirror,
Strong against return light noise.

(Iv)  2次元アレイ化が可能である。(Iv) It is possible to create a two-dimensional array.

(lv)  モノリシック光集積回路等への応用が可能
である。
(lv) Application to monolithic optical integrated circuits, etc. is possible.

などの特徴を有し、基板面に平行にレーザ光を出射する
従来の半導体レーザに代わる新しい半導体レーザ素子と
して期待されている。
It has the following characteristics and is expected to be a new semiconductor laser device that can replace conventional semiconductor lasers that emit laser light parallel to the substrate surface.

[発明が解決しようとする問題点] 従来の第4図に示す形式の面発光レーザ素子は、パルス
発振であり、室温における面発光レーザの連続発振は行
なわれていない。これは面発光レーザの総利得が従来の
ファブリペロ型半導体レーザに比べ1/100程度とな
るからである。すなわち面発光レーザは通常数μm程度
の共振器長しか得ることができず、これは等測的には非
常に大きなミラー損失を意味している。そのためレーザ
のしきい値利得は大幅に増加し、通常の(100)基板
上に成長したタプルへテロ(以下DHと省略する)構造
を利用した面発光レーザでは、室温連続発振を得ること
が非常に′困難であるという問題点があった。
[Problems to be Solved by the Invention] The conventional surface emitting laser element of the type shown in FIG. 4 is a pulse oscillation type, and continuous oscillation of a surface emitting laser at room temperature is not performed. This is because the total gain of the surface emitting laser is about 1/100 of that of a conventional Fabry-Perot semiconductor laser. In other words, a surface emitting laser can normally have a cavity length of only about several μm, which means isometrically a very large mirror loss. As a result, the threshold gain of the laser increases significantly, and it is extremely difficult to obtain continuous oscillation at room temperature in a surface emitting laser that uses a tuple hetero (hereinafter abbreviated as DH) structure grown on a normal (100) substrate. The problem was that it was difficult to

また第5図の場合も面発光レーザの総利得は従来のファ
ブリペロ型半導体レーザに比べて1/100程度であり
、第4図と同様に低しきい値電流で室温連続発振は得ら
れなかった。
Also, in the case of Figure 5, the total gain of the surface emitting laser is about 1/100 of that of a conventional Fabry-Perot semiconductor laser, and as in Figure 4, continuous oscillation at room temperature could not be achieved with a low threshold current. .

この発明は上記のような問題点を解消するためなされた
もので、低しきい値電流で室温連続発振可能□な面発光
半導体レーザ素子を得ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and its object is to obtain a surface-emitting semiconductor laser device that can perform continuous oscillation at room temperature with a low threshold current.

[問題点を解決するための手段] この発明に係る面発光半導体レーザ索子は、面方位(1
11)を有する半導体基板上に超格子または多ffl量
子井戸構造の活性層を形成したものである。
[Means for Solving the Problems] The surface-emitting semiconductor laser probe according to the present invention has a plane orientation (1
11), an active layer having a superlattice or multi-ffl quantum well structure is formed on a semiconductor substrate having a superlattice structure or a multi-ffl quantum well structure.

〔作用〕[Effect]

この発明における面方位(111)を有する半導体基板
上の超格子または量子井戸構造は従来のDHレーザや、
面方位(100)を有する半導体基板上の超格子または
量子井戸構造に比べて高利得性を有するため発振しやす
い。
The superlattice or quantum well structure on a semiconductor substrate having a plane orientation (111) in this invention is a conventional DH laser,
It has a higher gain than a superlattice or quantum well structure on a semiconductor substrate with a (100) plane orientation, so it is easy to oscillate.

[発明の実施例] この発明に係る面発光半導体レーザ素子は、面方位(1
11)を有するGaAs半導体基板上に超格子または量
子井戸構造のGaAsおよびAlGaAsからなる活性
層を形成したものである。
[Embodiments of the Invention] A surface emitting semiconductor laser device according to the present invention has a surface orientation (1
11) An active layer made of GaAs and AlGaAs having a superlattice or quantum well structure is formed on a GaAs semiconductor substrate having a superlattice or quantum well structure.

この発明の好ましい実施例は、第1C図に示すようもの
で、次のように構成されている。
A preferred embodiment of the invention is shown in FIG. 1C and is constructed as follows.

第1c図において、1は中央部に中空を有しかつ面方位
(111)を有するp型のGaAsの半導体基板であり
、2は前記基板上に形成されかつ中心に中空部を有する
9u1のGaAsバッファ層であり、3は前記バッファ
層上に形成されたp型のAlGaAsクラッド層であり
、4は前記クラッド層上に形成されかつ周辺部を亜鉛拡
散されたGaAsおよびAlGaAsからなる多重量子
井戸活性層または超格子層であり、5は前記多重量子井
戸活性層または超格子層の上に形成されかつ周辺部を亜
鉛拡散されたn型のGaAsクラッド層であり、6は前
記クラッド層の上に形成されかつ周辺部を亜鉛拡散され
たn型のGaAsコンタクト層であり、9は前記GaA
sコンタクト層の上に形成された熱さ200OAのA 
u G e / A uのn(IQ電極兼反射鏡であり
、10は前記半導体基板の表面および中空内面、ならび
に前記p型のバッファ層の中空内面ならびに前記p型の
Al1GaAsクラッド層中央部端面に形成された厚さ
2000AのA u Z n / A uのp側電極兼
反射鏡である。電極10の出射光面上に反射層をさらに
形成してもよい。
In FIG. 1c, 1 is a p-type GaAs semiconductor substrate having a hollow in the center and having a plane orientation of (111), and 2 is a 9u1 GaAs semiconductor substrate formed on the substrate and having a hollow in the center. A buffer layer, 3 is a p-type AlGaAs cladding layer formed on the buffer layer, and 4 is a multi-quantum well active layer made of GaAs and AlGaAs formed on the cladding layer and having a peripheral portion diffused with zinc. 5 is an n-type GaAs cladding layer formed on the multi-quantum well active layer or superlattice layer and whose peripheral portion is diffused with zinc, and 6 is an n-type GaAs cladding layer formed on the multi-quantum well active layer or the superlattice layer, and 6 is an 9 is an n-type GaAs contact layer formed and zinc-diffused in the periphery;
A with a temperature of 200 OA formed on the s contact layer
n of u G e / A u (IQ electrode and reflecting mirror; 10 is the surface and hollow inner surface of the semiconductor substrate, the hollow inner surface of the p-type buffer layer, and the central end face of the p-type Al1GaAs cladding layer); This is a p-side electrode/reflector of A u Z n /A u having a thickness of 2000 A. A reflective layer may be further formed on the light emitting surface of the electrode 10 .

レーザ光は前記電極兼反射鏡が囲む中空部から発振する
Laser light is oscillated from a hollow portion surrounded by the electrode/reflector.

次に半導体レーザ素子をこのように構成した理由につい
て説明する。第2図は基板面に水平にレーザ光を出射す
る従来のファブリペロ型半導体し−ザにおける最大利得
の注入電流異存性を示す図である。面方位(100)上
の単一量子井戸(以下SQWと略す)レーザ(L、z−
10nm、ここでLzは量子井戸幅を示す)はDHレー
ザと比較し、gmax−5X102cm−’の利得に相
当する注入電流密度は115程度となる。(111)上
のSQWレーザは(100)上のSQWレーザと比較し
1、より低注入電流で高利得が得られ、レーザの低しき
い値電流化に有利である。
Next, the reason for configuring the semiconductor laser device in this way will be explained. FIG. 2 is a diagram showing the injection current dependence of the maximum gain in a conventional Fabry-Perot semiconductor laser that emits laser light horizontally to the substrate surface. A single quantum well (hereinafter abbreviated as SQW) laser (L, z-
10 nm (where Lz indicates the quantum well width), the injection current density corresponding to a gain of gmax-5×102 cm-' is about 115, compared to a DH laser. Compared to the (100) SQW laser, the (111) SQW laser can obtain high gain with a lower injection current, and is advantageous for lowering the threshold current of the laser.

第3図に本発明者等の実験により得られた(100)と
(111)上の従来のファブリペロWGRIN−SCH
(Graded  Index  5eparat’e
  Confinement  Heterostru
cture)SQW(Single  Quantum
  Well)レーザ(共振器長490μm)における
しきい値電流密度(Jth)の量子井戸幅(Lz)依存
性を示す。Lz≧70mでは(100)上と(111)
上のJ’thの差は小さいが、Lz<7nmの領域にお
いては(100)上のSQWレーザでは、Jthは急激
に増加するのに対し、(111)上のSQWレーザでは
Lz■3nmまでほとんど増加しない。
Figure 3 shows the conventional Fabry-Perot WGRIN-SCH on (100) and (111) obtained by the inventors' experiments.
(Graded Index 5eparat'e
Confinement Heterostru
ture) SQW (Single Quantum)
3 shows the dependence of the threshold current density (Jth) on the quantum well width (Lz) in a laser (resonator length: 490 μm). For Lz≧70m, (100) and (111)
The difference in J'th above is small, but in the region of Lz < 7 nm, in the (100) SQW laser, J'th increases rapidly, whereas in the (111) SQW laser, J'th almost increases up to Lz 3 nm. Does not increase.

このレーザでは内部損失とミラー損失を合わせたキャビ
ティ損は30cm−’程度である。この程度のキャビテ
ィ損においては(111)上の量子井戸レーザは(10
0)上X比較し、3nm≦L2≦7nmの範囲では高利
得が得られる。一方、前述のごとく面発光レーザの共振
器長は活性層厚に相当するため、SQW構造では第2図
に示したように注入電流の増加に伴ない利得は飽和の傾
向を示し、面発光レーザに対し十分な利得を得ることは
困難である。これに対して、活性層の量子井戸を多重化
するあるいは超格子化することによって利得を稼ぐこと
が有効であり、理想的には飽和利得が5QWX (量子
井戸の数)になる。(但し、利得の立上がりの注入電流
密度も少し増加する。)このとき、第2図の特性より(
111)上の量子井戸を利用すれば、量子井戸幅を3n
m<Lz<7nmと薄くすることにより、(IOC))
上の量子井戸よりも低しきい値電流化が可能なことは自
明である。
In this laser, the cavity loss, which is the sum of internal loss and mirror loss, is about 30 cm-'. At this level of cavity loss, the quantum well laser on (111) is
0) Above On the other hand, as mentioned above, the cavity length of a surface-emitting laser corresponds to the active layer thickness, so in the SQW structure, as shown in Figure 2, the gain tends to saturate as the injection current increases. It is difficult to obtain sufficient gain for On the other hand, it is effective to increase the gain by multiplexing the quantum wells in the active layer or forming a superlattice, and ideally the saturation gain is 5QWX (the number of quantum wells). (However, the injection current density at the rise of the gain also increases slightly.) At this time, from the characteristics shown in Figure 2, (
111) If the above quantum well is used, the quantum well width can be reduced to 3n.
By making it thin with m<Lz<7nm, (IOC))
It is obvious that it is possible to achieve a lower threshold current than the above quantum well.

さらに、面発光レーザにおいては活性層厚が共振器方向
になるため共振器の反射率を90%としてもキャビティ
損は200〜400cm−’程度と従来のファブリペロ
型の10倍程度大きくなる。
Furthermore, in a surface emitting laser, the active layer thickness is in the direction of the cavity, so even if the reflectance of the cavity is 90%, the cavity loss is about 200 to 400 cm-', which is about 10 times larger than that of the conventional Fabry-Perot type.

したがって、第2図に示す高電流、高利得領域で発振す
るため、(100)と(111)面の差はより大きくな
る。したがって、このように損失の大きな領域では、第
3図に示すよりもさらに大きなLzの領域においても(
111)の方が(100)より低しきい値が得られる。
Therefore, since oscillation occurs in the high current and high gain region shown in FIG. 2, the difference between the (100) and (111) planes becomes larger. Therefore, in a region with such a large loss, even in a region where Lz is even larger than that shown in FIG.
111) provides a lower threshold value than (100).

Lz≦2nmでは、第3図に示すように低キャビティ損
においても高しきい値となるが、これは量子井戸から波
動関数がしみ出して、量子井戸の閉込め効果がなくなる
ためである。Lzの上限はドブロイ波長以下の30nm
以下にとればよい。
When Lz≦2 nm, as shown in FIG. 3, a high threshold value is obtained even at low cavity loss, but this is because the wave function seeps out from the quantum well and the confinement effect of the quantum well disappears. The upper limit of Lz is 30 nm below the de Broglie wavelength
You can take the following.

次にこの発明に係る面発光レーザ素子の製造方法につい
て最も好ましい実施例について説明する。
Next, the most preferred embodiment of the method for manufacturing a surface emitting laser device according to the present invention will be described.

第1a〜第1c図はこの発明に係る面発光レー第1a図
に示すように面方位(111)Bから0.5度(100
)方向に傾いたp型GaAs基板1 (Zn=10” 
cm−”これはZnの不純物濃度が1cm”あたり10
18個であることを意味する。以下同じ)上に、MBE
法(分子線エピタキシャル成長法)を用いて厚さ300
層mのp型GaAsバッファ層2 (Be=1.0’ 
8cm−1>と厚さ3pmのp型A 11゜、7 G 
a、)、、 A sクラッド層(Be=10” cm−
” ) 、厚さ5nmのアンドープGaAsjl子井戸
層と厚さ5nmのアンドープA [0,2G a(1,
6A Sのバリア層とを交互に200層および199層
積重ねた多重量子井戸活性層4、厚さ1μmのn型Ai
o、7Gao、3ASクラッド層5 (SL?−10”
 cm−3)、厚さ300層mのn!aGaAsコンタ
クト層6 (Si−2X10” cm−’)を720℃
において連続的に成長した。既に本発明者等が指摘した
ように(特許出願番号6O−229382)(111)
 B面では0.5度(100)方向に傾けた方が良好な
鏡面成長が得られる。次に第1b図に示すように、n型
GaAsコンタクト層6上に30μmφのSiN膜7を
形成し、p12A(to。
1a to 1c are 0.5 degrees (100 degrees) from the plane orientation (111)B as shown in FIG.
) p-type GaAs substrate 1 tilted in the direction (Zn=10”
cm - "This is the Zn impurity concentration of 10 per cm"
This means that there are 18 pieces. (same below) above, MBE
(molecular beam epitaxial growth method) to a thickness of 300 mm.
p-type GaAs buffer layer 2 of layer m (Be=1.0'
8 cm-1> and 3 pm thick p-type A 11°, 7 G
a,), As cladding layer (Be=10" cm-
), 5 nm thick undoped GaAsjl well layer and 5 nm thick undoped A [0,2G a(1,
A multi-quantum well active layer 4 consisting of 200 layers and 199 layers of 6A S barrier layers stacked alternately, and an n-type Ai layer with a thickness of 1 μm.
o, 7Gao, 3AS cladding layer 5 (SL?-10”
cm-3), n with a thickness of 300 layers m! aGaAs contact layer 6 (Si-2X10"cm-') at 720°C
has grown continuously. As already pointed out by the present inventors (Patent Application No. 6O-229382) (111)
For the B-plane, better mirror growth can be obtained by tilting it in the 0.5 degree (100) direction. Next, as shown in FIG. 1b, a 30 μmφ SiN film 7 is formed on the n-type GaAs contact layer 6, and p12A(to) is formed.

7 cao、s Asクラッド層3までZn拡散層8を
形成する。Zn拡散効果による電流閉込めおび多重量子
井戸層の無秩序化により光閉込めの効果を得ることがで
きる。第1c図に示すようにフォトリソグラフィの手法
およびGaAs選択エッチャントを用い、p型All。
7 cao,s Zn diffusion layer 8 is formed up to the As cladding layer 3. The light confinement effect can be obtained by the current confinement due to the Zn diffusion effect and the disordering of the multiple quantum well layer. Using photolithography techniques and a GaAs selective etchant as shown in Figure 1c, p-type All.

、70a6.@ Asクラッド層3が表出するまでGa
As3板の中央部のエツチングを行ない、共振器を形成
し、電極兼反射鏡9(反射率〜95%)および電極兼反
射11(反射率〜90%)を形成し、チップに分割する
。このチップの電極10に+、電極9に−の電圧を印加
し、電流を流すことにより電極10側よりレーザ光を取
出すことができる。
, 70a6. @ Ga until As cladding layer 3 is exposed
The central part of the As3 plate is etched to form a resonator, an electrode/reflector 9 (reflectance ~95%) and an electrode/reflector 11 (reflectance ~90%), and then divided into chips. By applying a + voltage to the electrode 10 and a - voltage to the electrode 9 of this chip and flowing a current, laser light can be extracted from the electrode 10 side.

本実施例では30mAという定しきい鎧型流発生を得る
ことができた。比較のために、(100)面方位を有す
るp型GaAs基板(Zn−10’’cm−”)上に同
一構造の素子を作成したところ、しきい鎧型流は70m
Aと本発明の実施例より高かった。
In this example, it was possible to generate a fixed threshold armor type current of 30 mA. For comparison, an element with the same structure was fabricated on a p-type GaAs substrate (Zn-10''cm-'') with (100) plane orientation, and the threshold armor flow was 70m.
A and higher than the examples of the present invention.

次に第1d図に示すように上記実施例と同様に面方位(
111)Bから0.5度(100)方向に傾いたn型G
aAs基板1’  (n−10” cm−1)上に、M
BE法を用いて厚さ300nmのn型GaAsバッファ
層2’  (Si=1018cm−”)と厚さ3μmの
n型AIO,? Gao、sAsクラッド層3’  (
Si=1018cm−”)、厚さ20nmのアンドープ
GaAs量子井戸層厚さ5nmのアンドープA Lo、
2G ao、a A Sのバリア層とを交互に100層
および99層積重ねた多重量子井戸活性層4、厚さ1μ
mのp型AQ、。。
Next, as shown in FIG. 1d, the surface orientation (
111) n-type G tilted in 0.5 degree (100) direction from B
On the aAs substrate 1'(n-10" cm-1), M
Using the BE method, a 300 nm thick n-type GaAs buffer layer 2'(Si=1018cm-'') and a 3 μm thick n-type AIO,?Gao,sAs cladding layer 3' (
20 nm thick undoped GaAs quantum well layer 5 nm thick undoped A Lo,
Multi-quantum well active layer 4 consisting of 100 and 99 layers of 2G ao and aA S barrier layers stacked alternately, 1μ thick.
p-type AQ of m. .

7 cao、s Asクラッド層5’  (Be=10
”cm−’ ) 、厚さ300nmのp型GaAsコン
タクト層6’  (Be−2X40” cm−” )を
720℃において連続的に成長した。フォトリソグラフ
ィの手法およびGaAs選択エッチャントを用いn型A
 Lo、t G Jlo、3 A sクラッド層3′が
表出するまでGaAs1板の中央部エツチングを行ない
、共振器を形成する。次にRIB(Reactive 
  Ion   Beam   Etching)法を
用いて20μmφの領域外のGaAsコンタクト層6′
およびp型A1g、70a6.、Asクラッド層5′の
エツチングを行なう。p型A11O,? Ga6.2 
Asクラッド層5′の厚さは300nm残し、リッジ型
構造を形成する。中央部に20μmφ以外の領域にSi
N絶縁膜7′を形成し、電極兼反射m8′ (反射率〜
95%)、電極兼反射鏡9(反射率〜90%)を形成し
、チップに分割する。
7 cao,s As cladding layer 5' (Be=10
A p-type GaAs contact layer 6' (Be-2 x 40"cm-") with a thickness of 300 nm was grown continuously at 720°C.
Lo, t G Jlo, 3 As The central part of the GaAs 1 plate is etched until the cladding layer 3' is exposed to form a resonator. Next, RIB (Reactive
A GaAs contact layer 6' outside the 20 μm diameter area was formed using the ion beam etching method.
and p-type A1g, 70a6. , the As cladding layer 5' is etched. p-type A11O,? Ga6.2
The thickness of the As cladding layer 5' is left at 300 nm to form a ridge type structure. Si in the area other than 20μmφ in the center
N insulating film 7' is formed, and electrode and reflector m8' (reflectance ~
95%), electrode/reflector 9 (reflectance ~90%) is formed, and divided into chips.

本実施例ではしきい鎧型流50mAでレーザ発振を得る
ことができた。比較のために(100)面方位を6する
n型GaAsll1板(SimlO’’cm−’)上に
同一構造の素子を作製したところしきい鎧型流は150
mAと本発明の実施例より高かった。
In this example, laser oscillation could be obtained with a threshold armor current of 50 mA. For comparison, an element with the same structure was fabricated on an n-type GaAsll1 plate (SimlO''cm-') with (100) plane orientation of 6, and the threshold armor shape was 150.
mA was higher than that of the example of the present invention.

[発明の効果] 以上のようにこの発明によれば、面発光半導体レーザ索
子を面方位(111)を有するGaAs半導体基板と、
前記基板上に形成された超格子または量子井戸構造のG
aAsおよびAQGaAsからなる活性層とから構成し
たため、高利得性が得られ、その結果低しきい鎧型流で
発振する面発光半導体レーザ索子を得ることができると
いう効果がある。
[Effects of the Invention] As described above, according to the present invention, a surface-emitting semiconductor laser probe is formed of a GaAs semiconductor substrate having a plane orientation (111);
G of the superlattice or quantum well structure formed on the substrate
Since the active layer is composed of aAs and AQGaAs, high gain can be obtained, and as a result, a surface-emitting semiconductor laser probe that oscillates in a low threshold armor style can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a−c図はこの発明の一実施例による面発光半導体
レーザ素子の製造工程を示す図であり、第1d図はこの
発明の他の実施例の構成を示す図であり、第2図は従来
のファブリペロ型各種レーザの最大利得の注入電流依存
性を示す図であり、第3図は面方位(100)、(11
1)基板上に成長させた従来のファブリペロ型GRIN
−9CHSQWレーザのしきい鎧型流密度の量子井戸幅
依存性を示す図であり、第4図および第5図は従来の面
発光半導体レーザ素子を示す概略図である。 図において1はp型にaAs基板、2はp型GaAsバ
ッファ層、3はp型A110.7 Ga0.3 ASク
ラッド層、4は多ffi量子井戸活性層、5はn型Ga
Asコシタクト層、6はn型GaAsコンタクト層、7
はSiN膜、8はZn拡散層、9は電極兼反射鏡、10
は電極兼反射鏡、1′はn型GaAs基板、2′はn型
GaAsバッファ層、3′はn型A(1,)、7 ca
o、3 Asクラッド層、5′はp型Al(1,7Ga
o、a Asクラッド層、6′はp型GaAsコシタク
ト層、8′は電極兼反射鏡である。 なお、各図中、同一符号は同一または相当部分を示す。
1a-c are diagrams showing the manufacturing process of a surface-emitting semiconductor laser device according to one embodiment of the present invention, FIG. 1d is a diagram showing the structure of another embodiment of the present invention, and FIG. FIG. 3 is a diagram showing the injection current dependence of the maximum gain of various conventional Fabry-Perot type lasers, and FIG.
1) Conventional Fabry-Perot GRIN grown on a substrate
FIG. 4 is a diagram showing the quantum well width dependence of the threshold armor current density of a -9CHSQW laser, and FIGS. 4 and 5 are schematic diagrams showing a conventional surface-emitting semiconductor laser device. In the figure, 1 is a p-type aAs substrate, 2 is a p-type GaAs buffer layer, 3 is a p-type A110.7 Ga0.3 AS cladding layer, 4 is a multi-ffi quantum well active layer, and 5 is an n-type Ga
As cositact layer, 6 is n-type GaAs contact layer, 7
is a SiN film, 8 is a Zn diffusion layer, 9 is an electrode/reflector, and 10 is a
is an electrode/reflector, 1' is an n-type GaAs substrate, 2' is an n-type GaAs buffer layer, 3' is an n-type A (1,), 7 ca
o, 3As cladding layer, 5' is p-type Al (1,7Ga
o, a As cladding layer, 6' a p-type GaAs cositact layer, and 8' an electrode/reflector. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)面方位(111)を有する半導体基板と、前記半
導体基板上に形成された多重量子井戸構造または超格子
構造の活性層と、前記活性層を挾む1対の光反射層と、
前記光反射層と垂直方向にレーザ光を発振するレーザ放
射路とを具備してなることを特徴とする面発光半導体レ
ーザ素子。
(1) a semiconductor substrate having a plane orientation (111), an active layer having a multi-quantum well structure or a superlattice structure formed on the semiconductor substrate, and a pair of light reflecting layers sandwiching the active layer;
A surface emitting semiconductor laser device comprising the light reflecting layer and a laser radiation path that oscillates laser light in a direction perpendicular to the light reflecting layer.
JP26715087A 1987-10-21 1987-10-21 Surface emission semiconductor laser element Pending JPH01108789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26715087A JPH01108789A (en) 1987-10-21 1987-10-21 Surface emission semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26715087A JPH01108789A (en) 1987-10-21 1987-10-21 Surface emission semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH01108789A true JPH01108789A (en) 1989-04-26

Family

ID=17440783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26715087A Pending JPH01108789A (en) 1987-10-21 1987-10-21 Surface emission semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH01108789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488510A2 (en) * 1990-11-28 1992-06-03 Mitsubishi Denki Kabushiki Kaisha Visible light surface emitting laser device
FR2671238A1 (en) * 1990-12-28 1992-07-03 Thomson Csf METHOD OF MAKING SURFACE - EMITTING SEMICONDUCTOR LASERS, AND LASERS OBTAINED BY THE PROCESS
US5271028A (en) * 1991-07-22 1993-12-14 Sharp Kabushiki Kaisha Semiconductor laser device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115364A (en) * 1984-11-10 1986-06-02 Agency Of Ind Science & Technol Manufacture of semiconductor laser
JPS6286883A (en) * 1985-10-14 1987-04-21 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS6421991A (en) * 1987-06-26 1989-01-25 Philips Nv Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115364A (en) * 1984-11-10 1986-06-02 Agency Of Ind Science & Technol Manufacture of semiconductor laser
JPS6286883A (en) * 1985-10-14 1987-04-21 Matsushita Electric Ind Co Ltd Semiconductor laser
JPS6421991A (en) * 1987-06-26 1989-01-25 Philips Nv Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488510A2 (en) * 1990-11-28 1992-06-03 Mitsubishi Denki Kabushiki Kaisha Visible light surface emitting laser device
US5166945A (en) * 1990-11-28 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Visible light surface emitting laser device
FR2671238A1 (en) * 1990-12-28 1992-07-03 Thomson Csf METHOD OF MAKING SURFACE - EMITTING SEMICONDUCTOR LASERS, AND LASERS OBTAINED BY THE PROCESS
US5204870A (en) * 1990-12-28 1993-04-20 Thomson-Csf Method of implementation of surface-emission semiconductor lasers, and lasers obtained by the method
US5271028A (en) * 1991-07-22 1993-12-14 Sharp Kabushiki Kaisha Semiconductor laser device

Similar Documents

Publication Publication Date Title
US6320893B1 (en) Surface emitting semiconductor laser
JPH06224521A (en) Integrated short-cavity laser
JP2857256B2 (en) Vertical semiconductor laser
JPH06314854A (en) Surface light emitting element and its manufacture
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JP2000196189A (en) Surface-emission semiconductor laser
JPH0196980A (en) Semiconductor laser element and manufacture thereof
JPH04144183A (en) Surface light emitting type semiconductor laser
JPH0555713A (en) Light emitting semiconductor element
Burnham et al. Nonplanar large optical cavity GaAs/GaAlAs semiconductor laser
JPS63188983A (en) Semiconductor light emitting device
JPH01108789A (en) Surface emission semiconductor laser element
JP2002141611A (en) Semiconductor light emitting element and its fabricating method
JP2000353858A (en) Surface-emitting laser and manufacture thereof
JPH0542148B2 (en)
JPH01266779A (en) Surface emission laser
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JP2846668B2 (en) Broad area laser
JP2007227861A (en) Semiconductor light-emitting device
EP1076389A1 (en) Surface-emitting semiconductor laser
US6661821B2 (en) Semiconductor laser element having great bandgap difference between active layer and optical waveguide layers, and including arrow structure formed without P-As interdiffusion
JP3415043B2 (en) Surface emitting laser device
JP2669373B2 (en) Surface emitting laser
JP3674139B2 (en) Visible semiconductor laser
JP3408247B2 (en) Semiconductor laser device