JPS6017963B2 - Heat exchanger secondary fluid temperature control device - Google Patents

Heat exchanger secondary fluid temperature control device

Info

Publication number
JPS6017963B2
JPS6017963B2 JP7385978A JP7385978A JPS6017963B2 JP S6017963 B2 JPS6017963 B2 JP S6017963B2 JP 7385978 A JP7385978 A JP 7385978A JP 7385978 A JP7385978 A JP 7385978A JP S6017963 B2 JPS6017963 B2 JP S6017963B2
Authority
JP
Japan
Prior art keywords
flow rate
temperature
steam
evaporator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7385978A
Other languages
Japanese (ja)
Other versions
JPS55835A (en
Inventor
仁嗣 丸山
敏勝 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7385978A priority Critical patent/JPS6017963B2/en
Publication of JPS55835A publication Critical patent/JPS55835A/en
Publication of JPS6017963B2 publication Critical patent/JPS6017963B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 この発明は主として蒸気発生プラントに適用される熱交
換器の2次流体温度制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates primarily to improvements in a secondary fluid temperature control device for a heat exchanger applied to a steam generation plant.

向流型熱交換器を備え、原子炉等を熱源とする蒸気発生
プラントとして、第1図に示されるものが知られている
As a steam generation plant equipped with a countercurrent heat exchanger and using a nuclear reactor or the like as a heat source, the one shown in FIG. 1 is known.

図中、16は原子炉や中間熱交換器等の熱源で、加熱流
体を高温に加熱するところである。
In the figure, 16 is a heat source such as a nuclear reactor or an intermediate heat exchanger, which heats the heating fluid to a high temperature.

ここで高温に加熱された加熱流体は配管25を通じて蒸
気発生器に輸送される。蒸気発生器は過熱器1、蒸気器
2、およびこれらを連絡する配管27,28とで構成さ
れ、輸送された加熱流体は過熱器1を経たのち、配管2
8を介して蒸発器2に送られる。一方、給水ポンプ14
から, 23を通じて蒸気発生器に水が供給される。
この水は蒸発器2で加熱流体と熱交換して蒸気を発生し
、この蒸気は配管27を介して過熱器1に送られ、ここ
で加熱流体とさらに熱交換を行なって、過熱度を高める
。得られた過熱蒸気は蒸気配管24を介してタービン等
の負荷機器に供給されるが、通常は蒸気配管24に圧力
調節弁15を設けて、所定の圧力値に調整される。また
、蒸発器2で熱交換を終えた加熱流体は低温となり、配
管26を通して再び熱源16に戻される。
The heating fluid heated to a high temperature here is transported to the steam generator through the pipe 25. The steam generator is composed of a superheater 1, a steamer 2, and pipes 27 and 28 that connect these, and the heated fluid that is transported passes through the superheater 1 and then passes through the pipe 2.
8 to the evaporator 2. On the other hand, the water supply pump 14
Water is supplied to the steam generator through 23.
This water exchanges heat with the heating fluid in the evaporator 2 to generate steam, and this steam is sent to the superheater 1 via piping 27, where it further exchanges heat with the heating fluid to increase the degree of superheating. . The obtained superheated steam is supplied to load equipment such as a turbine via the steam pipe 24, and the pressure is normally adjusted to a predetermined pressure value by providing a pressure regulating valve 15 in the steam pipe 24. Further, the heated fluid that has completed heat exchange in the evaporator 2 becomes low temperature and is returned to the heat source 16 through the pipe 26.

このような蒸気発生プラントは、蒸発器2の出口蒸気温
度に大変動が生ずると、材料強度および運転操作に悪影
響を及ぼすから、蒸気温度を適切に調節する必要がある
In such a steam generation plant, a large fluctuation in the steam temperature at the outlet of the evaporator 2 will adversely affect material strength and operation, so it is necessary to appropriately adjust the steam temperature.

そのため、従来よりつぎに述べるような温度制御操作が
行なわれてきた。
For this reason, temperature control operations such as those described below have conventionally been performed.

出力要求信号発生器3から、タービン等の負荷の大きさ
に応じて出力要求信号が発せられ、これに合致するよう
に給水流量調節弁9が給水流量を調節する。
The output request signal generator 3 issues an output request signal in accordance with the magnitude of the load on the turbine, etc., and the water supply flow rate control valve 9 adjusts the water supply flow rate so as to match the output request signal.

図示の例では出力要求信号は蒸気流量、すなわち給水流
量に換算されて発信されるので、加算器6による修正を
受ける前では、給水流量目標信号と等しい。ところで、
出力変更時あるいは他の外乱を受けた場合は、蒸発器2
出口蒸気温度が変動する。
In the illustrated example, the output request signal is transmitted after being converted into a steam flow rate, that is, a feed water flow rate, and therefore, before being corrected by the adder 6, it is equal to the feed water flow rate target signal. by the way,
When changing output or receiving other disturbances, evaporator 2
Outlet steam temperature fluctuates.

そこで、温度検出器4で検出した温度信号を温度目標信
号発信器17にフィードバックし、PI調節器(以下、
P調節器は比例動作によるもの、1調節器は積分動作に
よるものを示す)5で給水流量を修正操作し、これによ
って蒸発器2の出口蒸気温度を制御する。この場合、P
I調節器5の発生信号は加算器6で出力要求信号に加算
され、加算器6の発生信号に給水流量検出器8の流量信
号が負帰還され、PI調節器7が給水調節弁9の操作信
号を発信する。
Therefore, the temperature signal detected by the temperature detector 4 is fed back to the temperature target signal transmitter 17, and the PI controller (hereinafter referred to as
The P regulator is a proportional action controller, and the 1 regulator is an integral action controller).5 adjusts the feed water flow rate, thereby controlling the steam temperature at the outlet of the evaporator 2. In this case, P
The signal generated by the I regulator 5 is added to the output request signal by an adder 6, the flow rate signal of the feed water flow rate detector 8 is negatively fed back to the signal generated by the adder 6, and the PI regulator 7 controls the operation of the feed water control valve 9. send a signal.

一方、加熱流体については蒸気発生器部分負荷特性に合
わせて、関数発生器10より流量目標信号が発信され、
これに加熱流量検出器11からの信号がフィードバック
され、流量調節器12が循環ポンプ13の回転速度を操
作する。上述した制御操作では、加熱流体の流量もしく
は入口温度等の変動により、蒸発器2出口蒸気温度に変
動が生じたのち、調節器5による制御が行なわれるため
、制御動作が遅れる煩向があり、十分な温度変動防止作
用が得られない問題がある。
On the other hand, for the heating fluid, a flow rate target signal is transmitted from the function generator 10 in accordance with the steam generator partial load characteristics.
A signal from the heating flow rate detector 11 is fed back to this, and the flow rate regulator 12 operates the rotation speed of the circulation pump 13. In the above-mentioned control operation, since the regulator 5 performs the control after the vapor temperature at the evaporator 2 outlet fluctuates due to a change in the flow rate of the heating fluid or the inlet temperature, etc., the control operation tends to be delayed. There is a problem that sufficient temperature fluctuation prevention effect cannot be obtained.

とくに循環ポンプ13が停止して加熱流体流量が急速に
減少する事故が生ずると、給水流量と加熱流体流量のバ
ランスが大きく損なわれ、蒸発器2出口蒸気温度が大き
く変動するので、上記の問題点は一層顕著となる。なお
、制御性能を改善するため、調節器5に微分動作を取入
れることも考えられるが、現実にはノイズの点で問題が
あり、実用的な対策ではない。この発明は上記事情に鑑
みてなされたもので、たとえば前述した蒸気発生プラン
トを例にとれば、それが加熱流体流量や加熱流体入口温
度の変動という影響の強い外乱を受けた場合でも、蒸発
器出口蒸気温度の大変動を抑止してこれを設計許容範囲
内にとどめ、また急激な蒸気温度の変化による蒸気発生
器の損傷を避けることができる、熱交換器の2次流体温
度制御装置を提供するものである。
In particular, if an accident occurs in which the circulation pump 13 stops and the heating fluid flow rate rapidly decreases, the balance between the water supply flow rate and the heating fluid flow rate will be greatly impaired, and the steam temperature at the evaporator 2 outlet will fluctuate greatly, which will cause the above problem. becomes even more pronounced. Note that in order to improve the control performance, it is possible to incorporate differential operation into the regulator 5, but in reality, this poses a problem in terms of noise and is not a practical countermeasure. This invention was made in view of the above circumstances. For example, if we take the above-mentioned steam generation plant as an example, even if it is subjected to a disturbance that has a strong influence on the heating fluid flow rate or the heating fluid inlet temperature, the evaporator Provided is a secondary fluid temperature control device for a heat exchanger that can suppress large fluctuations in outlet steam temperature and keep it within design tolerances, and can avoid damage to a steam generator due to sudden changes in steam temperature. It is something to do.

すなわちこの発明は向流型熱交換器を介して熱交換関係
を保持する1次流体循環系と2次流体循環系とを具備し
た装置において、1次流体循環系に設けられ中央指令器
に連絡された第1の流量制御器と、2次流体循環系に設
けられた第2の流量制御器と、1次流体循環系に設けら
れた流量検出器を含む2次流体流量指令器と、2次流体
循環系の熱交換器出口側に設けられた温度検出器を含む
温度補償器と、この温度補償器と上記流量指令器とに連
絡され両者の出力を受けるとともに上記第2の流量制御
器に連絡された位相調節器と、を鯨設したことを特徴と
する。
That is, the present invention provides an apparatus including a primary fluid circulation system and a secondary fluid circulation system that maintain a heat exchange relationship via a countercurrent heat exchanger, in which a fluid circulation system provided in the primary fluid circulation system and connected to a central controller is provided. a secondary fluid flow rate controller including a first flow rate controller provided in the secondary fluid circulation system, a second flow rate controller provided in the secondary fluid circulation system, and a flow rate detector provided in the primary fluid circulation system; a temperature compensator including a temperature detector provided on the heat exchanger outlet side of the fluid circulation system; and a temperature compensator that is connected to the temperature compensator and the flow rate command unit to receive outputs from both, and a second flow rate controller that is connected to the temperature compensator and the flow rate command unit. It is characterized by having a phase adjuster connected to it, and a whale.

以下、第2図に示す蒸気発生プラントの実施例に基づい
て、この発明を詳細に説明する。
Hereinafter, the present invention will be explained in detail based on the embodiment of the steam generation plant shown in FIG.

なお、給水、蒸気発生、過熱蒸気および加熱流体の挙動
については、第1図と同じなので、説明を省略する。1
0は加熱流体流量目標信号発生器で、これは出力要求信
号発生器3の発生信号を受けて、加熱流体流量調節器1
2の制御目標値を発生する。
Note that the behavior of water supply, steam generation, superheated steam, and heating fluid is the same as in FIG. 1, so a description thereof will be omitted. 1
0 is a heated fluid flow rate target signal generator, which receives a generated signal from the output request signal generator 3 and controls the heated fluid flow rate regulator 1.
2 control target values are generated.

12は加熱流体流量調節器で、加熱流体流量検出器11
からの信号を負帰還し、PI動作によって循環ポンプ1
3の回転速度を操作する。
12 is a heating fluid flow rate regulator; heating fluid flow rate detector 11;
The signal from the circulation pump 1 is fed back by negative feedback, and the PI operation
Operate the rotation speed in step 3.

21は関数発生器で、加熱流体流量信号を11から受信
することによって、給水流量目標信号を発生する。
21 is a function generator which receives the heated fluid flow rate signal from 11 and generates a feed water flow rate target signal.

19も関数発生器で、同様にして加熱流体温度目標信号
を発生する。
A function generator 19 similarly generates a heated fluid temperature target signal.

加熱流体温度検出器18の信号と加熱流体温度目礎信号
発生器19の目標信号はP調節器20に送られる。P調
節器20は18の信号と19の信号の偏差に対し所定の
倍率で増幅を行なった信号を発信し、この信号は加算器
29において、関数発生器21の給水流量目標信号に加
算修正を加える。加算器6では、加算器29とPI調節
器5からの信号を加算する。22は位相進み補償器で、
加算器6の発信した給水流量目標信号に対し位相進み補
償を与えるところである。
The signal of the heated fluid temperature detector 18 and the target signal of the heated fluid temperature indicator signal generator 19 are sent to the P regulator 20 . The P regulator 20 transmits a signal that is amplified by a predetermined factor for the deviation between the signal 18 and the signal 19, and this signal is added and corrected to the water supply flow rate target signal of the function generator 21 in the adder 29. Add. Adder 6 adds the signals from adder 29 and PI controller 5. 22 is a phase lead compensator;
This is where phase lead compensation is applied to the water supply flow rate target signal transmitted by the adder 6.

PI調節器7は、位相進み補償器22の発信した給水流
量目標信号に給水流量検出器8からの流量信号を負帰還
させることにより、給水調節弁9の操作信号を発信し、
給水流量を調節する。上述した装置構成によると、要求
出力に応じて蒸気発生器部分負荷特性に合致した加熱流
体流量目標値が関数発生器10によって与えられるから
、加熱流体流量は目標値に迫値制御される。
The PI regulator 7 sends an operation signal for the water supply control valve 9 by negatively feeding back the flow rate signal from the water supply flow rate detector 8 to the water supply flow rate target signal transmitted by the phase lead compensator 22.
Adjust the water supply flow rate. According to the above-described device configuration, the function generator 10 provides a heating fluid flow rate target value that matches the steam generator partial load characteristics according to the required output, so that the heating fluid flow rate is controlled close to the target value.

同時に、加熱流体流量と蒸発発生器部分負荷特性上のバ
ランスのとれた給水流量目標値が関数発生器21によっ
て与えられ、給水流量はこの目標値に追値制御される。
したがって加熱流体流量と給水流量とは、蒸気発生器部
分負荷特性上のバランスが常時保たれ、蒸気発生器の入
熱と出熱のバランスも保たれる。蒸気発生器が制御誤差
やその他の外乱を受けて、蒸発器2出口蒸気温度に変動
が生じると、温度調節器5のPI制御動作が働いて給水
流量が調節され、蒸発器2出口蒸気温度の変動を最小限
にとどめることができる。一方、蒸発器2入口加熱流体
温度が変動した場合は蒸発器2出口蒸気温度の大きな変
動応答が引起こされるが、このような場合は、加熱流体
実流量検出値に対し蒸気発生器部分負荷特性に合致した
標準の加熱流体温度が関数発生器19から発信せられ、
加熱流体温度検出値と標準温度との偏差に基づき、P調
節器20が給水流量目標値を補正する。
At the same time, the function generator 21 provides a feed water flow rate target value that is balanced between the heating fluid flow rate and the evaporation generator partial load characteristics, and the feed water flow rate is additionally controlled to this target value.
Therefore, the heating fluid flow rate and the feed water flow rate are always kept in balance in terms of steam generator partial load characteristics, and the balance between heat input and heat output of the steam generator is also maintained. When the steam generator receives a control error or other disturbance and the steam temperature at the evaporator 2 outlet fluctuates, the PI control operation of the temperature controller 5 is activated to adjust the feed water flow rate, thereby changing the steam temperature at the evaporator 2 outlet. Fluctuations can be kept to a minimum. On the other hand, if the heating fluid temperature at the evaporator 2 inlet fluctuates, the steam temperature at the evaporator 2 outlet fluctuates significantly. a standard heating fluid temperature consistent with the function generator 19 is transmitted;
Based on the deviation between the detected heating fluid temperature value and the standard temperature, the P regulator 20 corrects the target water flow rate value.

この補正によって給水流量の先行的な修正調節がなされ
る結果、前記変動応答は有効に抑制される。また、加熱
流体流量が循環ポンプ13の故障等により大幅な変動を
生じた場合には、給水流量の目標値が実際の加熱流体流
量の変動に応じた値で関数発生器21によって与えられ
るため、常時、加熱流体流量と給水流量のバランスが確
保され、蒸発器2の入熱出熱のバランスも確保され、そ
の結果、蒸発器2出口蒸気温度の変動は最小限に抑制さ
れる。
This correction provides a proactive corrective adjustment of the water supply flow rate, so that the fluctuating response is effectively suppressed. In addition, if the heating fluid flow rate fluctuates significantly due to a failure of the circulation pump 13, etc., the target value of the water supply flow rate is given by the function generator 21 at a value corresponding to the actual fluctuation of the heating fluid flow rate. A balance between the heating fluid flow rate and the feed water flow rate is always ensured, and a balance between heat input and output from the evaporator 2 is also ensured, and as a result, fluctuations in the steam temperature at the outlet of the evaporator 2 are suppressed to a minimum.

一方、加算器6から発生される修正ずみの給水流量目標
値に追従した給水流量を得るため、給水流量調節器7の
制御動作遅れに起因する給水流量応答の遅れを補償する
ことが、必要である。
On the other hand, in order to obtain a water supply flow rate that follows the corrected water supply flow rate target value generated from the adder 6, it is necessary to compensate for the delay in the water supply flow rate response caused by the delay in the control operation of the water supply flow rate regulator 7. be.

この補償作用を、この発明では位相進み補償器22で行
なわせる。たとえば弁に遅れがなく、給水流量を負帰還
させたときのPI調節器伝達特性は、通例、次式で与え
られる。
This compensation action is performed by the phase lead compensator 22 in the present invention. For example, the PI regulator transfer characteristic when there is no delay in the valve and negative feedback is applied to the water supply flow rate is typically given by the following equation.

T,S+1 …‘1’GP,(S
)=(1十・/KP)T,S+1たゞしGP,(S);
PI調節器伝達特性 KP;比例ゲイン T,;積分時定数 S;ラプラス演算子 したがってGP,(S)による遅れを補償するためには
、つぎの特性Gc(S)を持つ補償要素を用いればよい
T, S+1...'1'GP, (S
)=(10/KP)T, S+1 GP, (S);
PI controller transfer characteristic KP; proportional gain T,; integral time constant S; Laplace operator Therefore, in order to compensate for the delay due to GP, (S), a compensation element with the following characteristic Gc (S) can be used. .

1=GP,(S)・Gc(S) .・.Gc(S) 1 (1十1/KづT,S+1 一GP,6) T,S+1 .・・.・・.・・・・・‘21 たゞし‘21式で示される補償特性は単なる一例を示す
ものであり、類似の特性を持つ他の伝達関数式による補
償要素を用いても、作用は同じである。
1=GP, (S)・Gc(S).・.. Gc(S) 1 (111/KzuT, S+1 1 GP, 6) T, S+1 .・・・.・・・. ...'21 The compensation characteristic shown by the '21 formula is just an example, and the effect will be the same even if compensation elements based on other transfer function formulas with similar characteristics are used. .

以上で明らかな如く、従来装瞳では出口要求信号に応じ
て給水流量目標値が与えられていたが、この発明の装置
によれば、実際の加熱流体流量に基き蒸気発生器部分負
荷特性に合致した給水流量が得られるために、出力変更
時などプラント過渡時において、蒸気発生器の入熱と出
熱のバランスが常に確保される。
As is clear from the above, in the conventional pupil system, the feed water flow rate target value was given according to the outlet request signal, but according to the device of the present invention, it matches the steam generator partial load characteristics based on the actual heating fluid flow rate. As a result, the balance between heat input and heat output of the steam generator is always maintained during plant transitions such as when changing output.

その結果、蒸発器出口蒸気温度の変動発生が常に最小限
に抑制されるという効果を奏することができる。また蒸
発器入口加熱流体の温度が蒸気発生器部分負荷特性から
偏位した異常温度になった場合は、その偏差に応じて給
水流量を先行的に修正調節するのでt蒸発器の入熱と出
熱のバランスが常に保たれ、その結果、蒸発器出口蒸気
温度の変動発生が最小限に抑制されるという、効果が発
現する。さらに、給水流量目標値は従来と異なって最終
的に位相進み補償を行なうので、給水流量の操作遅れが
解消され、蒸発器の入熱、出熱のバランスをより完全に
保持することができ、その結果、蒸発器出口蒸気温度の
変動発生を最小限に抑制することができる。
As a result, it is possible to achieve the effect that fluctuations in the vapor temperature at the evaporator outlet are always suppressed to a minimum. In addition, if the temperature of the heating fluid at the evaporator inlet becomes an abnormal temperature that deviates from the steam generator partial load characteristic, the feed water flow rate is adjusted in advance according to the deviation, so that the heat input and output of the evaporator can be adjusted. The heat balance is always maintained, resulting in the effect that fluctuations in the steam temperature at the evaporator outlet are suppressed to a minimum. Furthermore, unlike the conventional method, the target value of the feed water flow rate is finally compensated for by phase advance, so the delay in operation of the feed water flow rate is eliminated, and the balance between heat input and heat output of the evaporator can be more perfectly maintained. As a result, fluctuations in the evaporator outlet steam temperature can be suppressed to a minimum.

さらにまた、従釆では加熱流体循環ポンプの故障等によ
り加熱流体流量が大幅かつ急激に変動したような場合、
給水流量のバランスをとる操作が、蒸発器出口蒸気温度
の変動があったのちに、温度変動を回復するための制御
動作として行なわれていたので、とかく蒸発器出口蒸気
温度の大変動が生じ易い問題があったが、この発明によ
れば加熱流体の実流量と常にバランスのとれた給水流量
が得られるという、効果が発揮されるので、蒸発器出口
蒸気温度の変動発生を最小限に抑えることができる。
Furthermore, if the flow rate of the heated fluid fluctuates significantly and suddenly due to a malfunction of the heated fluid circulation pump in the secondary,
Because the operation to balance the feed water flow rate was performed as a control operation to recover from temperature fluctuations after fluctuations in the evaporator outlet steam temperature occurred, large fluctuations in the evaporator exit steam temperature were likely to occur. Although there was a problem, according to this invention, the effect of obtaining a water supply flow rate that is always balanced with the actual flow rate of the heating fluid is achieved, so that fluctuations in the steam temperature at the evaporator outlet can be minimized. I can do it.

したがってこの発明はFBR用蒸発器過熱器分離型貫流
式蒸気発生器に限らず、向流型熱交換器を結合した熱交
換器一般分野において、工業的に大きな貢献をするもの
である。
Therefore, this invention makes an industrially significant contribution not only to the evaporator superheater separated type once-through steam generator for FBR, but also to the general field of heat exchangers combined with countercurrent heat exchangers.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は蒸気発生プラントを示すもので、第1図は従来例
、第2図はこの発明の一実施例の構成図である。 1…・・・過熱器、2・・・・・・蒸発器、3・・…・
出力要求信号発生器、4・・・…蒸発器出口蒸気温度検
出器、5・・…・蒸発器出口蒸気温度PI調節器、6…
・・・蒸発器出口蒸気温度調節加算器、7……給水流量
PI調節器、8…・・・給水流量検出器、9・・・…給
水流量調節弁、10…・・・加熱流体流量目標信号発生
器、11・・…・加熱流体流量検出器、12・・・…加
熱流体流量調節器、13・・・…加熱流体循環ポンプ、
14・・・・・・給水ポンプ、15・・・・・・蒸気発
生器出口弁、16・・・・・・加熱流体熱源、17…・
・・蒸発器出口蒸気温度目標信号発生器、18・・・…
蒸発器入口加熱流体温度検出器、19・・・・・・加熱
流体温度目標信号発生器、20・…・・加熱流体温度偏
差信号増幅用P調節器、21・…・・給水流量目標信号
発生器、22・・・…位相進み補償器、29……入口加
熱流体温度補正加算器。 第1図 第2図
The drawings show a steam generation plant; FIG. 1 is a conventional example, and FIG. 2 is a configuration diagram of an embodiment of the present invention. 1... Superheater, 2... Evaporator, 3...
Output request signal generator, 4...Evaporator outlet steam temperature detector, 5...Evaporator outlet steam temperature PI controller, 6...
... Evaporator outlet steam temperature control adder, 7... Feed water flow rate PI controller, 8... Feed water flow rate detector, 9... Water feed flow rate control valve, 10... Heating fluid flow rate target Signal generator, 11... heated fluid flow rate detector, 12... heated fluid flow rate regulator, 13... heated fluid circulation pump,
14... Water supply pump, 15... Steam generator outlet valve, 16... Heating fluid heat source, 17...
...Evaporator outlet steam temperature target signal generator, 18...
Evaporator inlet heating fluid temperature detector, 19... Heating fluid temperature target signal generator, 20... P regulator for heating fluid temperature deviation signal amplification, 21... Water supply flow rate target signal generation 22... Phase lead compensator, 29... Inlet heating fluid temperature correction adder. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 向流型熱交換器を介して熱交換関係を保持する1次
流体循環系と2次流体循環系とを具備した装置において
、1次流体循環系に設けられ中央指令器に連絡された第
1の流量制御器と、2次流体循環系に設けられた第2の
流量制御器と、1次流体循環系に設けられた流量検出器
を含む2次流体流量指令器と、2次流体循環系の熱交換
器出口側に設けられた温度検出器を含む温度補償器と、
この温度補償器と上記流量指令器とに連絡され、これら
の出力を受けるとともに上記第2の流量制御器に連絡さ
れた位相調節器と、を配設したことを特徴とする熱交換
器の2次流体温度制御装置。
1. In a device equipped with a primary fluid circulation system and a secondary fluid circulation system that maintain a heat exchange relationship via a countercurrent heat exchanger, a secondary fluid circulation system provided in the primary fluid circulation system and connected to a central controller. a secondary fluid flow rate controller including a first flow rate controller, a second flow rate controller provided in the secondary fluid circulation system, a flow rate detector provided in the primary fluid circulation system; a temperature compensator including a temperature detector provided on the heat exchanger outlet side of the system;
2 of a heat exchanger characterized in that a phase adjuster is connected to the temperature compensator and the flow rate controller, receives the output thereof, and is also connected to the second flow rate controller. Next fluid temperature control device.
JP7385978A 1978-06-19 1978-06-19 Heat exchanger secondary fluid temperature control device Expired JPS6017963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7385978A JPS6017963B2 (en) 1978-06-19 1978-06-19 Heat exchanger secondary fluid temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7385978A JPS6017963B2 (en) 1978-06-19 1978-06-19 Heat exchanger secondary fluid temperature control device

Publications (2)

Publication Number Publication Date
JPS55835A JPS55835A (en) 1980-01-07
JPS6017963B2 true JPS6017963B2 (en) 1985-05-08

Family

ID=13530301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7385978A Expired JPS6017963B2 (en) 1978-06-19 1978-06-19 Heat exchanger secondary fluid temperature control device

Country Status (1)

Country Link
JP (1) JPS6017963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108903612B (en) * 2018-06-14 2024-03-26 华帝股份有限公司 Electric steam box and water supplementing control method

Also Published As

Publication number Publication date
JPS55835A (en) 1980-01-07

Similar Documents

Publication Publication Date Title
US4437313A (en) HRSG Damper control
CN102323748A (en) Direct current stove monoblock directly can matter balance coordination control system
JP5665688B2 (en) Steam temperature control device and steam temperature control method
JPS6017963B2 (en) Heat exchanger secondary fluid temperature control device
JPH0942606A (en) Once-through boiler steam temperature control device
JPH0230425B2 (en)
JPS607162B2 (en) Evaporator outlet steam temperature control device
JP2758245B2 (en) Drain water level control device for feed water heater
US3133529A (en) Control of benson boilers and similar high pressure boilers
JPH0330044B2 (en)
JPS621161B2 (en)
JPS6015201B2 (en) Temperature control device for heated fluid
JPS607163B2 (en) Steam temperature control device
JPH0220565Y2 (en)
JP2931141B2 (en) Control method and apparatus for variable-pressure Benson boiler
JPH0330761B2 (en)
JPH04110507A (en) Steam temperature controller of superheater and reheater in cogeneration power plant
JP2744142B2 (en) Steam header pressure controller
JP2549711B2 (en) Process control equipment
JPS6014961B2 (en) Boiler steam temperature control device
JPS63290302A (en) Automatic controller for boiler plant
JPH1038213A (en) Two stage spray type main vapor temperature controller
JP2931152B2 (en) Boiler reheat steam temperature control method
JPS58205005A (en) Controller for drum level of waste heat boiler
JPS59119104A (en) Controller for temperature of steam