JPS60179633A - Method for analyzing quantitatively layer state sample by emission spectrochemical analysis - Google Patents

Method for analyzing quantitatively layer state sample by emission spectrochemical analysis

Info

Publication number
JPS60179633A
JPS60179633A JP3710984A JP3710984A JPS60179633A JP S60179633 A JPS60179633 A JP S60179633A JP 3710984 A JP3710984 A JP 3710984A JP 3710984 A JP3710984 A JP 3710984A JP S60179633 A JPS60179633 A JP S60179633A
Authority
JP
Japan
Prior art keywords
sample
depth direction
emission intensity
area
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3710984A
Other languages
Japanese (ja)
Other versions
JPH0656361B2 (en
Inventor
Isao Fukui
福井 勲
Takao Miyama
隆男 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59037109A priority Critical patent/JPH0656361B2/en
Publication of JPS60179633A publication Critical patent/JPS60179633A/en
Publication of JPH0656361B2 publication Critical patent/JPH0656361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make the quantitative analysis in the depth direction of a sample surface possible, by recording the variation with time of the emission intensity of each element, obtaining the evaporated quantity of each element from the area of the characteristic curve of the emission intensity, and obtaining the distribution of each element in the depth direction based on the vaporized quantity. CONSTITUTION:In emission spectrochemical analysis of a sample processed by multilayer plating, etc. by glow discharge, the variation in the emission intensity with time of each element is recorded. The vaporized quantity of each element is obtained based on the calibration curve between the area of the emission intensity curve and the evaporated quantity of each element relating the reference sample prepared previously, from the area of the characteristic curve of the emission intensity. The ratio of each element is calculated from the evaporated quantity to obtain the distribution of each element in the depth direction. Thereby, the quantitative analysis of each element in the depth direction becomes possible.

Description

【発明の詳細な説明】 イ・産業上の利用分野 本発明はグロー放電によって試料面を削除しながら深さ
方向に分析を進めて行く発光分光分析で多層メッキ等の
付着量を測定する分析方法に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention is an analytical method for measuring the amount of adhesion of multilayer plating, etc. by optical emission spectrometry, in which the analysis proceeds in the depth direction while removing the sample surface using glow discharge. Regarding.

口・従来技術 試料をグロー放電管の陰極にして、陰極スパッタリング
によって試料面を削りながら蒸発した試料原子をグロー
放電で発光させる発光分析法は試料面の深さ方向の成分
変化を分析できる特徴があるが、従来は定性的な分析し
かできなかった。例えば鉄地亜鉛メッキを分析すると、
当初亜鉛の発光が強く鉄の発光が弱くて、時間が経つと
鉄の発光が強くなり亜鉛の発光が弱くなる。これは亜鉛
のメッキ層、%次第に揮発し去って鉄地が出て来るから
であるが、各元素の発光強度の時間的な変化の記録で、
単純に発光強度軸を元素濃度に、時間軸を試料表面から
の深さに読み替えることができれば、定量分析になるの
であるが、両軸を元素濃度、深さに換算する適当な操作
が見当らず、定量分析ができなかった。
- Conventional technology The optical emission spectrometry method uses the sample as the cathode of a glow discharge tube and uses cathode sputtering to scrape the sample surface while emitting light from the evaporated sample atoms by glow discharge.The method is characterized by the ability to analyze changes in composition in the depth direction of the sample surface. However, until now only qualitative analysis was possible. For example, when analyzing galvanized steel,
Initially, the luminescence of zinc is strong and the luminescence of iron is weak, but as time passes, the luminescence of iron becomes stronger and the luminescence of zinc becomes weaker. This is because the zinc plating layer gradually evaporates and the iron base comes out, but by recording the temporal changes in the luminescence intensity of each element,
If we could simply convert the emission intensity axis into elemental concentration and the time axis into depth from the sample surface, quantitative analysis would be possible, but we cannot find an appropriate operation to convert both axes into elemental concentration and depth. , quantitative analysis was not possible.

ハ・ 目 的 本発明は発光強度及び時間から元素濃度及び深さを算出
する方法を与え、グロー放電発光分光分析で試料面の深
さ方向の定量分析を可能にしようとするものである。
C. Purpose The present invention provides a method for calculating element concentration and depth from luminescence intensity and time, and aims to enable quantitative analysis in the depth direction of a sample surface using glow discharge emission spectrometry.

二・構 成 今第1図に示すような発光強度の時間記録が得られたと
する。この図でAはへ元素の発光強度、BはB元素の発
光強度を示す。この結果は定性的には試料表面はへ元素
で覆われ、両元素の混合層があって下地はB元素である
と云うことを物語っている。この図で斜線を入れた部分
の面積は時間tl、t2間のA元素の蒸発量に関係して
いる。
2. Configuration Now suppose that we have obtained a time record of luminescence intensity as shown in Figure 1. In this figure, A indicates the luminescence intensity of the element B, and B indicates the luminescence intensity of the B element. This result qualitatively shows that the surface of the sample is covered with element B, that there is a mixed layer of both elements, and that the underlying layer is element B. The area of the shaded part in this figure is related to the amount of evaporation of element A between times tl and t2.

また発光強度はその時点でのへ元素の蒸発速度に関係し
ている。同様の関係はB元素についても成立っている。
Furthermore, the luminescence intensity is related to the evaporation rate of the element at that point. A similar relationship holds true for element B as well.

そこで一般に発光強度曲線の時間t1、t2間の面積を
Sとすると、この時間内における元素蒸発量WはW−f
 (S)と書ける。標準試料を用いてf (S)の形を
めておく。第1図においてtl)t2時間の間のへ元素
の発光強度曲線の面積をSa、同じくB元素の面積をs
bとし、夫々の蒸発量の面積関数をfa(S)及びfb
(S)とすると、この関数からtl、t2間のA、 B
両元素の蒸発量がまる。これをWa、Wbとすると、時
間t1、t≧間において露出していた試料面の組成はA
元素 W a / (W a、 + W b )B元素
 Wb/(Wa+Wb) となる。この組成の合金の比重をg、試料面積をσとす
ると、 (W 、a + W b ) / gσに、よって時間
t’l、t2の間に削られた試料面の深さdがまる。こ
の操作を第1図で時間0の点から時間幅を適当に区切っ
て行って行くと、各区分毎の組成比及び削れ深さがめら
れて、第2図のような深さ方向のA、B両元素の組成比
の変化を示すグラフを画くことができる。
Therefore, if the area between times t1 and t2 of the luminescence intensity curve is generally S, then the amount of element evaporation W within this time is W - f
It can be written as (S). Determine the shape of f (S) using a standard sample. In Figure 1, the area of the luminescence intensity curve of element B during tl)t2 time is Sa, and the area of element B is s.
b, and the area functions of the respective evaporation amounts are fa(S) and fb
(S), from this function A, B between tl and t2
The amount of evaporation of both elements is equal. Assuming that these are Wa and Wb, the composition of the exposed sample surface during times t1 and t≧ is A
Element W a / (W a, + W b ) B element Wb/(Wa+Wb). If the specific gravity of the alloy with this composition is g and the sample area is σ, then (W , a + W b )/gσ, and therefore the depth d of the sample surface cut between times t′l and t2 is reduced. By performing this operation by appropriately dividing the time width from the point of time 0 in Figure 1, the composition ratio and abrasion depth for each section can be determined, and the A in the depth direction as shown in Figure 2, A graph showing changes in the composition ratio of both elements B can be drawn.

ホ・実 施・例 関数fの形をas3+b8”+cs+dの形で近似し、
係数a、b、c、dを各元素毎に標準試料によって決定
しておく。
E. Implementation/Example Approximate the form of the function f in the form as3+b8"+cs+d,
The coefficients a, b, c, and d are determined for each element using standard samples.

第3図は三層メッキが施町れた試料の分析結果である。Figure 3 shows the analysis results of a sample coated with three layers of plating.

定性分析によって、第1層はC−rメッキ、第2層はF
e、Zn合金メッキ、第3層はNi。
Qualitative analysis shows that the first layer is Cr plated and the second layer is F plated.
e, Zn alloy plating, third layer is Ni.

Znの合金メッキで素地はlreと見当がついている。The base material is thought to be lre with Zn alloy plating.

そこでこれら各元素について前記関数の各係数を決めて
おく。第3図でCrはクロム、Feは鉄、Znは亜鉛、
N1はニッケルの発光強度曲線である。図で矢印イア口
、ノ・は夫々クロム、鉄。
Therefore, each coefficient of the function is determined for each of these elements. In Figure 3, Cr is chromium, Fe is iron, Zn is zinc,
N1 is the luminescence intensity curve of nickel. In the figure, the arrows at the ear opening and ``no'' indicate chrome and iron, respectively.

亜鉛の夫々の曲線の半値幅の点で、この点の所が各層の
境界であると見て、時間0からtl4で、tlからt2
まで、t2からt3−1での各時間帯における各発光強
度曲線の面積をめて、各層における各元素の蒸発量をめ
、それから各元素のの厚さ方向の組成変化に変換して画
いたのが第4図である。
At the half-width point of each curve of zinc, considering that this point is the boundary of each layer, from time 0 to tl4 and from tl to t2
Until then, the area of each emission intensity curve in each time period from t2 to t3-1 was calculated, the amount of evaporation of each element in each layer was calculated, and then converted to the composition change of each element in the thickness direction. This is shown in Figure 4.

上述実施例では関数f (S)の形を3次多項式で表わ
したが、この式の形は任意であり、この形で表わすとコ
ンピュータによる演算のプログラムが簡単になる。また
上述実施例は発光強度曲線の面積と蒸発量との間の関数
形をめて、蒸発量を決定し、蒸発量から層の深さを算出
しているが、発光強度の瞬時値工と蒸発速度Wとの関係
を予めめておいて、各時点における蒸発速度から組成を
決定し、組成から比重をめて、各時点における試料面の
削れ速さをめて、深さ方向の組成変化を画くことも可能
である。
In the embodiments described above, the form of the function f (S) is expressed as a third-order polynomial, but the form of this equation can be arbitrary, and if it is expressed in this form, the program of the calculation by the computer becomes easier. Furthermore, in the above embodiment, the evaporation amount is determined by determining the functional form between the area of the emission intensity curve and the evaporation amount, and the depth of the layer is calculated from the evaporation amount. The relationship with the evaporation rate W is determined in advance, the composition is determined from the evaporation rate at each time point, the specific gravity is calculated from the composition, the abrasion speed of the sample surface at each time point is determined, and the composition change in the depth direction is determined. It is also possible to draw

へ、効 果 グロー放電発光分光分析では、同じ元素であってもメッ
キ条件の違い等によって蒸発速度がかなり異り、従って
発光強度も異る。このため発光強度即その元素の含有量
と云うわけに行かない0蒸発速度が異るから時間経過が
深さ方向の距離と一義的に対応していない。強い発光強
度で継続時間が短いのはその元素が多くて層厚が薄く、
弱い発光で継続時間が長い′のはその元素が少く層厚が
厚いと云うことにはならない。一方は蒸発速度が速く、
他方は蒸発速度が遅いのである。
In glow discharge emission spectroscopy, the evaporation rate of the same element varies considerably depending on the plating conditions, and therefore the luminescence intensity also varies. For this reason, the emitted light intensity cannot be said to be the content of the element, and since the evaporation rate is different, the elapsed time does not correspond uniquely to the distance in the depth direction. The reason why the emission intensity is strong and the duration is short is because there are many elements and the layer thickness is thin.
The fact that the light emission is weak and the duration is long does not mean that the element is small and the layer thickness is thick. On the one hand, the evaporation rate is fast;
On the other hand, the evaporation rate is slow.

本発明では発光強度曲線の面積によって蒸発量をめるよ
うにしたので、蒸発速度のばらつきの影響を受けず、試
料面の深さ方向の定量分析が可能となった。
In the present invention, since the amount of evaporation is calculated by the area of the emission intensity curve, quantitative analysis in the depth direction of the sample surface is possible without being affected by variations in the evaporation rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するだめのグラフ第2図は
本発明によって得られる結果を説明するグラフ、第3図
は本発明方法を実行した分析例のグラフ、第4図は第3
図の分析結果を本発明方法により解析した結果を示すグ
ラフである。 代理人 弁理士 縣 浩 介
FIG. 1 is a detailed graph explaining the present invention. FIG. 2 is a graph explaining the results obtained by the present invention. FIG. 3 is a graph of an analysis example in which the method of the present invention was carried out.
It is a graph which shows the result of analyzing the analysis result of a figure by the method of this invention. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 試料を陰極とするグロー放電管で試料表面を揮散させな
がら試料面の深さ方向に分析を進めて行く発光分光分析
において、試料を構成する各元素の発光強度の時間的変
化を記録し、発光強度とそのときの元素の蒸発速度或は
発光光度曲線の面積とその元素の蒸発量との関係を標準
試料によって予めめておき、これを用いて上記試料の各
元素の物質の比重と全元素の蒸発量の総和とから、試料
表面の削れ量を算出して、各元素の深さ方向の分布をめ
ることを特徴とする発光分光分析による層状試料の定量
分析方法。
In optical emission spectrometry, the analysis proceeds in the depth direction of the sample surface while volatilizing the sample surface with a glow discharge tube that uses the sample as a cathode. The relationship between the intensity and the evaporation rate of the element at that time or the area of the luminescence light curve and the amount of evaporation of that element is determined in advance using a standard sample, and this is used to determine the specific gravity of the substance of each element in the sample and the total element. A quantitative analysis method for a layered sample using emission spectroscopy, characterized in that the amount of abrasion on the sample surface is calculated from the total amount of evaporation, and the distribution of each element in the depth direction is determined.
JP59037109A 1984-02-28 1984-02-28 Quantitative analysis method for layered samples by optical emission spectroscopy Expired - Fee Related JPH0656361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037109A JPH0656361B2 (en) 1984-02-28 1984-02-28 Quantitative analysis method for layered samples by optical emission spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037109A JPH0656361B2 (en) 1984-02-28 1984-02-28 Quantitative analysis method for layered samples by optical emission spectroscopy

Publications (2)

Publication Number Publication Date
JPS60179633A true JPS60179633A (en) 1985-09-13
JPH0656361B2 JPH0656361B2 (en) 1994-07-27

Family

ID=12488430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037109A Expired - Fee Related JPH0656361B2 (en) 1984-02-28 1984-02-28 Quantitative analysis method for layered samples by optical emission spectroscopy

Country Status (1)

Country Link
JP (1) JPH0656361B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085352A (en) * 2002-08-27 2004-03-18 Horiba Ltd Glow discharge analysis apparatus and analysis result display method of the same
JP2013040875A (en) * 2011-08-18 2013-02-28 Jfe Steel Corp Film thickness uniformity evaluation method
RU2647533C1 (en) * 2016-10-06 2018-03-16 Валентин Николаевич Аполицкий Method of identification, diagnostics and evaluation of a substance quality using the integral scintillation method of substance investigation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACTA METALLURGICA SINICA=1979 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085352A (en) * 2002-08-27 2004-03-18 Horiba Ltd Glow discharge analysis apparatus and analysis result display method of the same
JP2013040875A (en) * 2011-08-18 2013-02-28 Jfe Steel Corp Film thickness uniformity evaluation method
RU2647533C1 (en) * 2016-10-06 2018-03-16 Валентин Николаевич Аполицкий Method of identification, diagnostics and evaluation of a substance quality using the integral scintillation method of substance investigation

Also Published As

Publication number Publication date
JPH0656361B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
Orfanou et al. A (not so) dangerous method: pXRF vs. EPMA-WDS analyses of copper-based artefacts
Cumpson The Thickogram: a method for easy film thickness measurement in XPS
DE69908113D1 (en) METHOD FOR THE QUANTITATIVE ANALYSIS OF ATOMARIAL MATERIAL COMPONENTS BY LIBS SPECTROSCOPY
Ja The use of a glow-discharge lamp as a light source in the spectrometric analysis of gold
JPS60179633A (en) Method for analyzing quantitatively layer state sample by emission spectrochemical analysis
DE69631395D1 (en) Quantitative microanalysis method with X-rays for metal alloys
Evans-Nguyen et al. Immunoaffinity nanogold coupled with direct analysis in real time (DART) mass spectrometry for analytical toxicology
WEISS Self-absorption in Quantitative Glow Discharge EmissionSpectrometry
JPH049736A (en) Method for sampling alloy membrane
Hasler et al. Quantitative spectrographic analysis of stainless steels
Rizzuto Quantitative analysis of archaeological and historical brasses using handheld X-ray fluorescence spectrometry
JPH09273992A (en) Quantitative analysis method for metallic surface-oxidized layer
JPS6227651A (en) Quantitative analysis method of double-layered type alloy plated plate
JPH02247516A (en) Method for evaluating film formation state of thin film
JPH0283439A (en) X-ray spectrochemical analysis of thin layer
Marcucci et al. Mapping the elemental distribution in archaeological findings through advanced Neutron Resonance Transmission Imaging
JP2001281176A (en) High-accuracy analysis method for carbon in steel
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JP2517749B2 (en) Quantitative analysis method in secondary ion mass spectrometer
Haschke et al. Quantification
Nakamura et al. A convenient and practical procedure to derive correction factors to estimate atomic ratios by XPS
JPH0149796B2 (en)
JPS60244844A (en) Quantitative analysis of thin film or thin layer by x-ray microanalyzer
JPH0474952A (en) Method for qualitative analysis of thin-film sample
JPH0968516A (en) Glow discharge mass-spectrometry

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees