JPS6017913A - Electron beam annealer - Google Patents

Electron beam annealer

Info

Publication number
JPS6017913A
JPS6017913A JP12469583A JP12469583A JPS6017913A JP S6017913 A JPS6017913 A JP S6017913A JP 12469583 A JP12469583 A JP 12469583A JP 12469583 A JP12469583 A JP 12469583A JP S6017913 A JPS6017913 A JP S6017913A
Authority
JP
Japan
Prior art keywords
faraday cup
electron
electron beam
annealing
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12469583A
Other languages
Japanese (ja)
Inventor
Tomoyasu Inoue
井上 知泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12469583A priority Critical patent/JPS6017913A/en
Publication of JPS6017913A publication Critical patent/JPS6017913A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To improve uniformity and reproducibility by a method wherein a Faraday cup, which has an aperture whose diameter is smaller than that of a beam, is provided to a prescribed position near a specimen and at least one of an electron gun or a lens system is controlled so as to make the detected maximum beam current constant. CONSTITUTION:A Faraday cup 11 whose aperture diameter is far smaller than that of an electron beam is provided to an edge of a stage on which a specimen 5 is placed. Captured electrons flow through an ammeter 12 and a beam current at a peak part of the beam is detected. Every time the specimen 5 is scanned, the Faraday cup 11 is scanned and the maximum value of a current signal synchronized with it is measured. This measured value is used as a feedback signal and controls lens driving circuits 8, 9 so as to make the measured value constant by optimizing a beam focus.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電子ビームアニール装置に係わシ、特にビー
ム電流の安定化をはかった電子ビームアニール装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron beam annealing apparatus, and more particularly to an electron beam annealing apparatus in which beam current is stabilized.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、半導体製造技術分野においては、電子ビーム、レ
ーザ光或いはイオンビーム等ヲ半導体表面に照射して、
半導体表面層をアニールするビームアニール技術が盛ん
に研究開発されている。これらのビームアニール技術は
、半導体表面を全面一括にビーム照射する方式と、細く
絞ったビームを半導体表面上に走査させて照射する方式
とに分けられる。
In recent years, in the field of semiconductor manufacturing technology, semiconductor surfaces are irradiated with electron beams, laser beams, ion beams, etc.
Beam annealing technology for annealing semiconductor surface layers is being actively researched and developed. These beam annealing techniques can be divided into two types: one in which the entire surface of the semiconductor is irradiated with a beam at once, and the other in which the semiconductor surface is scanned and irradiated with a narrowly focused beam.

ビームをX%Y方向に走査させて試料表面に変動を押え
きれず、アニール後の半導体の面内の特性分布が不均一
であったり、半導体試料毎にアニール特性が変化したり
する現象が起こり、これがビームアニール技術の実用化
を妨げる大きな要因となっている。
When the beam is scanned in the X%Y direction, fluctuations on the sample surface cannot be suppressed, resulting in uneven in-plane characteristic distribution of the semiconductor after annealing, or variations in annealing characteristics for each semiconductor sample. This is a major factor hindering the practical application of beam annealing technology.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体試料のビームアニールを均一性
良く、かつ再現性良く行うことができ、半導体製造技術
分野において極めて有用性の高い電子ビームアニール装
置を提供することにある。
An object of the present invention is to provide an electron beam annealing apparatus that can perform beam annealing of a semiconductor sample with good uniformity and good reproducibility, and is extremely useful in the field of semiconductor manufacturing technology.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、アニールに寄与する電子ビームの強度
を測定し、これを光学系にフィードバックして電流の安
定化をはかることにある。
The gist of the present invention is to measure the intensity of the electron beam contributing to annealing and feed it back to the optical system to stabilize the current.

走査型ビームアニールにおいては、アニールに寄与する
電子ビームはその半値幅よりも小径なぎ−ク部分が殆ん
どである。ビーム電流を検出する手段としては種々ある
が、ファラデーカップを用いるのが最も簡易にして実用
性が高いと考えられる。しかし、ファラデーカップの穴
径は一般にビームの直径(ビームの半値幅)より大きい
ので、ファラデーカップでビームのピヘチ。この点に着
目I一本発明者等は鉄量研究を重゛2ねた結果、ファラ
デーカップの穴径をビームの直径よりも小さくすること
によって、上記ピーク部分の強度検出を正確に行い得る
ことを見出した。
In scanning beam annealing, most of the electron beam contributing to annealing has a curved portion with a diameter smaller than its half width. Although there are various means for detecting the beam current, using a Faraday cup is considered to be the simplest and most practical. However, since the hole diameter of a Faraday cup is generally larger than the beam diameter (half-width of the beam), the diameter of the beam in the Faraday cup is smaller. Focusing on this point, the inventors have repeatedly conducted iron content research and found that by making the hole diameter of the Faraday cup smaller than the beam diameter, it is possible to accurately detect the intensity of the above peak portion. I found out.

すなわち本発明は、電子銃から発射された電子ビームを
レンズ系により集束すると共に、偏向系により試料上で
走査して該試料を了ニールする電子ビームアニール装置
において、上記試料近傍の所定位置に上記ビームの直径
より小さい直径の開孔部を有するファラデーカップを設
け、このファラデーカップで検出される最大ビーム電流
が一定となるよう上記電子銃及びレンズ系の少なくとも
一方を制御するようにしたものである。
That is, the present invention provides an electron beam annealing apparatus in which an electron beam emitted from an electron gun is focused by a lens system, and is scanned over a sample by a deflection system to anneal the sample. A Faraday cup having an aperture having a diameter smaller than the diameter of the beam is provided, and at least one of the electron gun and the lens system is controlled so that the maximum beam current detected by the Faraday cup is constant. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子ビームアニール作業中に随時ビー
ムのモニタを行うことができ、かつビームのピーク部分
の強度を正確に検出すると用件は絶大である。
According to the present invention, it is extremely important to be able to monitor the beam at any time during electron beam annealing and to accurately detect the intensity of the peak portion of the beam.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる電子ビームアニール
装置を示す概略構成図である。図中1は電子銃で、この
電子銃1から発射された電子ビームは第1及び第2の集
束レンズ2.3により集束され、偏向器4により半導体
試料5上で走査される。ここで、上記電子銃1、レンズ
2.3及び偏向器4は、制御系6により制御される駆動
回路7,8,9.10によりそれぞれ駆動されるものと
なっている。また、上記試料5は図示しないステージ上
に載置されるものと5− なっている。
FIG. 1 is a schematic configuration diagram showing an electron beam annealing apparatus according to an embodiment of the present invention. In the figure, reference numeral 1 denotes an electron gun, and an electron beam emitted from the electron gun 1 is focused by first and second focusing lenses 2.3, and scanned on a semiconductor sample 5 by a deflector 4. Here, the electron gun 1, lens 2.3, and deflector 4 are each driven by drive circuits 7, 8, 9.10 controlled by a control system 6. Further, the sample 5 is placed on a stage (not shown).

ここオでの構成は従来一般な装置と同様であ泥化するよ
う前記駆動回路8,9が制御されるものとなっている。
The configuration in E here is similar to that of a conventional general device, and the drive circuits 8 and 9 are controlled so as to reduce the noise.

一般に、細く絞ったエネルギビーム(電子ビームやレー
ザビーム)はがウス型の空間的強度分布を示す。そして
、通常ビームの直径はその半値幅(FWHM )で表わ
される。電子銃1の制御系を充分に定電化する事によっ
て、電子銃1から放射される電子電流をいかに安定化し
ても、集束レンズ2,3に不安定性があると、試料5表
面上でのビーム強度分布が変化する。例えば、6一 ビーム強度分布が第2図に示す如く実線から破線へと僅
かに変化した場合、その半値幅及びピーク強度共に変化
する。アニールに寄与するのはピーク付近のビームであ
り、通常それは半値幅よりも径の小さいものである。
Generally, a narrowly focused energy beam (electron beam or laser beam) exhibits a Gaussian spatial intensity distribution. The diameter of the beam is usually expressed by its half-width at half maximum (FWHM). No matter how much you stabilize the electron current emitted from the electron gun 1 by making the control system of the electron gun 1 sufficiently constant, if the focusing lenses 2 and 3 are unstable, the beam on the surface of the sample 5 The intensity distribution changes. For example, when the 6-beam intensity distribution changes slightly from a solid line to a broken line as shown in FIG. 2, both the half width and the peak intensity change. It is the beam near the peak that contributes to the annealing, and typically has a diameter smaller than the half-width.

ビーム電流の測定には、2次電子放射効果による誤差を
防ぐためにファラデー力、fを用いるのが一般的である
が、通常ファラデーカップの穴径は測定しようとする電
子ビームの半値幅よりも大きなものである。この場合、
上記第2図の実線と破線で示したような分布の変化があ
っても、上記ファラデーカップではビームの全電流を計
測するために、計測値の変化は極く僅かしか観測されな
い。しかるに、このような変化は、ピーク付近での微小
な強度変化がアニールに大きな影響を与えるわけであシ
、上記のようなファラデーカップを用いたのではピーク
付近の強度を一定に保つことは不可能である。
To measure the beam current, it is common to use the Faraday force, f, to prevent errors due to secondary electron radiation effects, but the hole diameter of the Faraday cup is usually larger than the half width of the electron beam to be measured. It is something. in this case,
Even if there is a change in the distribution as shown by the solid line and broken line in FIG. 2, only a small change in the measured value is observed because the Faraday cup measures the entire beam current. However, such changes mean that minute changes in intensity near the peak have a large effect on annealing, and it is impossible to keep the intensity constant near the peak when using the Faraday cup as described above. It is possible.

そこで本実施例では、前記ファラデーカップをタンタル
で形成し、その穴径を60[μm〕と電子ビームの直径
よりも大幅に小さくした。なお、実験に使用した電子ビ
ームの直径(半径幅)は300〔μm〕である6第3図
はビーム電流測定値の時間変化を示す特性図である。曲
線引はビーム電流測定値によるレンズ系の自動制御を行
なわない場合の結果であり、ビーム′取流の変動幅は最
大0.4[mA、]にも達している。これに対し、レン
ズ系自動制御を行なった本実施例における曲線32では
、ビーム電流の変動幅は極めて小さくなり0.01 [
rnA]以下である。この測定時に使用した電子ビーム
は、加速電圧10[kV]、全ビーム電流5.8[mA
]のものであった。なお、ビーム電流の測定は次のよう
にして行った。すなわち、試料5上でビームで1回走査
する毎に該ビームをファラデーカップ11上で走査し、
それと同期した電流信号の最大値を測定する。この測定
値をフィードバック信号として利用し、該測定値が一定
となるようビームフォーカスを最適化した。
Therefore, in this embodiment, the Faraday cup is made of tantalum, and its hole diameter is 60 μm, which is significantly smaller than the diameter of the electron beam. The diameter (radial width) of the electron beam used in the experiment was 300 [μm].6 Fig. 3 is a characteristic diagram showing the time change of the measured value of the beam current. The curve drawn is the result when the lens system is not automatically controlled based on the measured value of the beam current, and the fluctuation width of the beam current reaches a maximum of 0.4 [mA]. On the other hand, in curve 32 in this example in which the lens system was automatically controlled, the fluctuation width of the beam current was extremely small and was 0.01 [
rnA] or less. The electron beam used for this measurement had an accelerating voltage of 10 [kV] and a total beam current of 5.8 [mA].
]. Note that the beam current was measured as follows. That is, each time the beam scans the sample 5 once, the beam is scanned over the Faraday cup 11,
Measure the maximum value of the current signal that is synchronized with it. Using this measured value as a feedback signal, the beam focus was optimized so that the measured value remained constant.

かくして本装置によれば、半導体試料5の均一、かつ再
現性良いビームアニールが可能と々る。また、本装置を
用い絶縁膜上につけた多結晶シリコン膜をアニールして
溶融、再凝固させることにより大粒径結晶膜を形成させ
る実験を行なったところ、次のような結果が得られた・
従来の電子ビームアニール装置を使った場合に比べ表面
の平滑性が著しく改善され、さらにアニール条件を一定
とした場合の多結晶シリコン膜のアニール特性の再現性
が格段に良くなった。
Thus, according to the present apparatus, uniform beam annealing of the semiconductor sample 5 with good reproducibility is possible. In addition, when we conducted an experiment using this device to form a large-grain crystalline film by annealing, melting, and resolidifying a polycrystalline silicon film attached to an insulating film, we obtained the following results.
The surface smoothness was significantly improved compared to when a conventional electron beam annealing device was used, and the reproducibility of the annealing characteristics of the polycrystalline silicon film was also significantly improved when the annealing conditions were kept constant.

また、従来アニール後の凹凸は約1000 [X)程度
であったのが、本装置を用いることによシ100〔X〕
以下に減少するのが確認された。
In addition, conventionally the unevenness after annealing was approximately 1000 [X], but by using this device, it has been reduced to 100 [X].
It was confirmed that the decrease was as follows.

なお、本発明は上述した実施例に限定されるものではな
い、実施例では丸穴のファラデーカップを用いたが、使
用する電子ビームの半値幅よりも充分に小さい穴であれ
ば角型、楕円型等いかなる形状でもよい。さらに、実施
例ではタンタル製のファラデーカップを用いて熱対策を
講じたが、より本格的にはファラデーカップを水冷する
のがよい。また、ビーム電流信号をレ9− ンズ制御系にフィードバックさせる代りに電子銃制御系
にフィードバックさせてビーム電流制御を行なってもよ
い。さらに、レンズ制御系及び電子銃制御系の双方にビ
ーム電流信号をフィードバックさせるようにしてもよい
。その他、本発明の要旨を逸脱しない範囲で種々変形し
て実施することができる。
Note that the present invention is not limited to the embodiments described above. In the embodiments, a Faraday cup with a round hole was used, but a square or elliptical hole may be used as long as the hole is sufficiently smaller than the half width of the electron beam used. It can be of any shape such as a mold. Further, in the example, a Faraday cup made of tantalum was used to take heat countermeasures, but in a more serious manner, it is better to cool the Faraday cup with water. Furthermore, instead of feeding back the beam current signal to the lens control system, the beam current may be controlled by feeding it back to the electron gun control system. Furthermore, the beam current signal may be fed back to both the lens control system and the electron gun control system. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる電子ビームアニール
装置を示す概略構成図、第2図は電子ビーム強度分布を
示す特性図、第3図はビーム電流の時間的変化を示す特
性図である。 1・・・電子銃、2,3・・・集束レンズ、4・・・偏
向器、5・・・試料、6・・・制御系、7〜1o・・・
駆動回路、1ノ・・・ファラデーカップ、12・・・電
流計。 出願人 工業技術院長 川 1)裕 部10− □ γ!に苓李 −(VLLI) 痔連¥専
FIG. 1 is a schematic configuration diagram showing an electron beam annealing apparatus according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the electron beam intensity distribution, and FIG. 3 is a characteristic diagram showing temporal changes in beam current. be. DESCRIPTION OF SYMBOLS 1... Electron gun, 2, 3... Focusing lens, 4... Deflector, 5... Sample, 6... Control system, 7-1o...
Drive circuit, No. 1... Faraday cup, No. 12... Ammeter. Applicant: Director of the Agency of Industrial Science and Technology Kawa 1) Yube 10- □ γ! Ni Ling Li (VLLI) Hemorrhoids

Claims (1)

【特許請求の範囲】[Claims] 電子銃から発射された電子ビームをレンズ系により集束
すると共に、偏向系により試料土で走査して該試料をア
ニールする電子ビームアニール装置において、前記ビー
ムの直径より小さい直径の開孔部を持ち前記試料近傍の
所定位置に設けられたファラデーカップと、このファラ
デーカップで検出される最大ビーム電流が一定となるよ
う前記電子銃及びレンズ系の少なくとも一方を制御する
手段とを具備してなることを特徴とする電子ビームアニ
ール装置。
An electron beam annealing device that focuses an electron beam emitted from an electron gun using a lens system and scans the sample soil using a deflection system to anneal the sample. It is characterized by comprising a Faraday cup provided at a predetermined position near the sample, and means for controlling at least one of the electron gun and the lens system so that the maximum beam current detected by the Faraday cup is constant. Electron beam annealing equipment.
JP12469583A 1983-07-11 1983-07-11 Electron beam annealer Pending JPS6017913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12469583A JPS6017913A (en) 1983-07-11 1983-07-11 Electron beam annealer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12469583A JPS6017913A (en) 1983-07-11 1983-07-11 Electron beam annealer

Publications (1)

Publication Number Publication Date
JPS6017913A true JPS6017913A (en) 1985-01-29

Family

ID=14891802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12469583A Pending JPS6017913A (en) 1983-07-11 1983-07-11 Electron beam annealer

Country Status (1)

Country Link
JP (1) JPS6017913A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734621A (en) * 1980-08-08 1982-02-25 Mitsubishi Electric Corp Tank type disconnecting switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734621A (en) * 1980-08-08 1982-02-25 Mitsubishi Electric Corp Tank type disconnecting switch

Similar Documents

Publication Publication Date Title
US20190189392A1 (en) Charged particle beam system and methods
JP2648642B2 (en) Method and apparatus for performing ion implantation with a wide beam
JP2009200050A (en) Method and device for implanting ion beam into workpiece inclined at implantation angle
JP2015531984A (en) Dual lens gun electron beam apparatus and method for high resolution imaging using both high and low beam currents
KR100313845B1 (en) An electron gun used in an electron beam exposure apparatus
JPH07192669A (en) Adjusting method for electric field ionization type gas phase ion source
JPH11213934A (en) Method for observing secondary ion image formed by focused ion beam
US6392230B1 (en) Focused ion beam forming method
JP2001273865A (en) Scanning electron microscope apparatus and its control method
JPS6017913A (en) Electron beam annealer
JP2012018790A (en) Driving method of electron gun, electron beam lithography apparatus, and electron beam lithography method
JPH0215544A (en) Charged particle beam apparatus
JP6920539B2 (en) Scanning electron microscope and its imaging method
JPH0451438A (en) Electron beam exposure device and method
JPH1196954A (en) Scanning electron microscope
JPH11273601A (en) Focused ton beam device and design method for optical system therefor
JPS6364255A (en) Particle beam radiating device
JP2007139633A (en) Method of preparing sample for scanning electron microscope
JPS61126753A (en) High energy flux irradiator
JPH0610964B2 (en) Linear electron beam generator
JPS62213051A (en) Linear electron beam generator
JPH05343021A (en) Scanning electron microscope
JPS62219442A (en) Linear electron beam generator
Schäfer et al. Time‐resolved thermal‐emission electron microscopy of laser‐pulsed metal surfaces
JPH08264142A (en) Electron beam apparatus