JPS60178753A - Dc offset addition system - Google Patents

Dc offset addition system

Info

Publication number
JPS60178753A
JPS60178753A JP59033537A JP3353784A JPS60178753A JP S60178753 A JPS60178753 A JP S60178753A JP 59033537 A JP59033537 A JP 59033537A JP 3353784 A JP3353784 A JP 3353784A JP S60178753 A JPS60178753 A JP S60178753A
Authority
JP
Japan
Prior art keywords
offset
levels
bit
circuit
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59033537A
Other languages
Japanese (ja)
Inventor
Michinaga Yamagishi
道長 山岸
Sadao Takenaka
竹中 貞夫
Eisuke Fukuda
英輔 福田
Yukio Takeda
幸雄 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59033537A priority Critical patent/JPS60178753A/en
Publication of JPS60178753A publication Critical patent/JPS60178753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • H04L25/4919Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes using balanced multilevel codes

Abstract

PURPOSE:To eliminate the effects of temperatures by applying an DC offset with a means which converts either one of n-bit multi-value orthogonal signals into an (n+2)-bit signal corresponding to the 2<n> multi-value level having a center shifted in a digital stage. CONSTITUTION:The 3-bit inputs A-C show levels 0-7 as shown in a figure (a); while the outputs are turned into 4-bit Q1-Q4 outside a circuit. The corresponding output levels are turned into 8 levels 5-C among 4-bit 16 levels as shown by figures (b) and (c). The middle of 8 levels shown by the inputs A-C is set at ''0'' in the form of plus-minus symmetry. Thus the middle of 16 levels of outputs Q1-Q4 can also be set at ''0''. Then both middle points are set at each other and therefore the outputs Q1-Q4 are turned into 8 levels 4-B out of 16 levels. Thus no DC offset appears. In such a connection, 8 levels are assumed as 5-C in order to leave the DC component by shifting by every one level. Then a DC offset is applied. In such a way the DC offset is supplied in a digital stage, a level change of the DC offset is eliminated.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は受信側で搬送波の再生を行う為に、送信側で2
つの多値直交信号のうちいづれか一方に直流オフセット
を加え搬送波の洩れを生じさせる多値直交振幅変調通信
方式の直流オフセット付加方式に係り、温度に影響を受
けずに直流オフセラトラ付加出来る直流オフセット付加
方式に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention provides two
This method is related to the DC offset addition method of the multi-value quadrature amplitude modulation communication system, which adds a DC offset to one of the two multi-value orthogonal signals to cause carrier wave leakage.The DC offset addition method allows DC offset addition without being affected by temperature. Regarding.

(b) 従来技術と問題点 2つの直交信号のうちいづれか一方に直流オフセットを
加え搬送波の洩れを生じさせる多値直交振幅変調(以下
多値QAMと称す)方式に付き先づ説明する。
(b) Prior Art and Problems The multi-value quadrature amplitude modulation (hereinafter referred to as multi-value QAM) method in which a DC offset is added to one of two orthogonal signals to cause carrier wave leakage will be explained first.

第1図は従来例の64値QAM方式の送信系を示すブロ
ック図であシ、図中1は直列並列変換器(以下S/Pと
称す)、2は符号器、3,4はディジタル・アナログ変
換器(以下D/A変換器と称す〕、5.6は低域P波器
、7は加算器、8は直流オフセット源、9.10はミキ
ガ、11はπ/2移相器、12はバイブリド回路を示す
FIG. 1 is a block diagram showing a conventional 64-value QAM transmission system. In the figure, 1 is a serial-to-parallel converter (hereinafter referred to as S/P), 2 is an encoder, and 3 and 4 are digital Analog converter (hereinafter referred to as D/A converter), 5.6 is a low-frequency P-wave converter, 7 is an adder, 8 is a DC offset source, 9.10 is a mixer, 11 is a π/2 phase shifter, 12 indicates a hybrid circuit.

図示しない入力段に印加された送信データは工(Inp
hase ) CHどQ (Quadrature )
 CHデータとからなる2つの2進データに分けられS
/PLにて並列信号に変換され、各々3ピツトの2系列
に分けられ符号器2に入力し、コーテングされ、コーテ
ングされた各3ビツトの2系列の2進信号は、D/A変
換器a+4に印加され、ここでディジタル・アナログ変
換され各々8値のアナログ信号が生成される。D/A変
換器3,4の出力は帯域制限の為低域沖波器5,6を経
、一方のF波器5の出力のみ加勢、器71C至り、直流
オフセット源8にて直流オフセラ) Vdcが加えられ
、ミキサ9,10に夫々型る。ミキサ9,10にはπ/
2移相器11により相互にπ/2だけ位相の異なる直交
した搬送波が印加され変調が行なわれる。変調された直
交した2系列の信号はノ・イブリド回路12にて合成さ
れ64値QAM信号となり次段に送られる。
The transmission data applied to an input stage (not shown) is
hase ) CHdoQ (Quadrature)
It is divided into two binary data consisting of CH data and S
/PL is converted into a parallel signal, divided into two series of 3 bits each, inputted to the encoder 2, and coated. The coated binary signals of 2 series of 3 bits each are sent to the D/A converter a+4. The signals are applied thereto, and digital-to-analog conversion is performed here to generate eight-valued analog signals. The outputs of the D/A converters 3 and 4 pass through low frequency transducers 5 and 6 to limit the band, and only the output of one F wave transducer 5 is energized, reaching the transducer 71C, which is then DC offset source 8 (DC offset source 8). are added to mixers 9 and 10, respectively. Mixers 9 and 10 have π/
A two-phase shifter 11 applies orthogonal carrier waves having phases different from each other by π/2 to perform modulation. The two orthogonal modulated signals are combined in a no-bridging circuit 12 to form a 64-value QAM signal and sent to the next stage.

ここで直流オフセラ) Vdcが加えられることにより
洩れ搬送波が生じ変調信号の中に搬送波が立つことにな
る。
Here, when DC offset Vdc is applied, a leakage carrier wave is generated and a carrier wave stands in the modulated signal.

第2図は従来例の直流オフセット付加回路の回路図であ
り、第1図の加算器7と直流オフセット源8に相当し、
図中8は直流オフセット源、13は加算増幅器を示す。
FIG. 2 is a circuit diagram of a conventional DC offset adding circuit, which corresponds to the adder 7 and DC offset source 8 in FIG.
In the figure, 8 indicates a DC offset source, and 13 indicates a summing amplifier.

従来の直流オフセットの付加はブナログ部分で行なわれ
ている為第2図に示す如く、低域p波器5よりの信号は
、加算増幅器13に入力し、ここで直流オフセット源8
よυの直流オフセットVdcが加えられる。ところがこ
の直流オフセットVdcの付加はアナログ的に行なわれ
るので温度によりレベルがかわる。即ち加算増幅器13
の各素子は温度特性を持っており温度によシ直流オフセ
ットVdcのレベルが変化する。若しこのレベル変化で
直流オフセットVdcが小さくなる方向罠変化すると洩
れ搬送波は小さくなり受信側で洩れ搬送波を抽出して搬
送波再生を行うのが困難となる。従来の直流オフセット
付加方式には以上のような欠点がある。
Conventionally, the addition of DC offset is done in the Bunalog section, so as shown in FIG.
A DC offset Vdc of υ is added. However, since the DC offset Vdc is added in an analog manner, the level changes depending on the temperature. That is, the summing amplifier 13
Each element has temperature characteristics, and the level of the DC offset Vdc changes depending on the temperature. If this level change causes a change in the direction in which the DC offset Vdc becomes smaller, the leakage carrier wave will become smaller, making it difficult for the receiving side to extract the leakage carrier wave and perform carrier wave regeneration. The conventional DC offset addition method has the above-mentioned drawbacks.

(cl 発明の目的 本発明の目的は上記の欠点に鑑み、温度変化に影響を受
けずに安定な直流オフセットを付加出来る直流オフセン
ト付加方式の提供にある。
(cl) OBJECT OF THE INVENTION In view of the above-mentioned drawbacks, an object of the present invention is to provide a DC offset addition method capable of adding a stable DC offset without being affected by temperature changes.

(d) 発明の構成 本発明は上記の目的全達成するために、ディジタル段階
で直流オフセットを付加すれば温度変化の影響全党けな
い点に着目し、いづれか一方のnビットの多値直交信号
を、ディジタル段階で、中心のずれた2n多値レベルに
対応したn+2ビットの信号に変換する手段で直流オフ
セントロ加えるようにして温度の影響を受けがいように
したことを特徴とする。
(d) Structure of the Invention In order to achieve all of the above objects, the present invention focuses on the fact that if a DC offset is added in the digital stage, the effect of temperature change will be reduced, The present invention is characterized in that a direct current off-centro is added at the digital stage by a means for converting into an n+2 bit signal corresponding to 2n multi-levels whose centers are shifted, thereby making it less susceptible to the influence of temperature.

(e)発明の実施例 以下本発明の実施例につき図に従って説明する6第3図
は本発明の実施例の入力3ビ・ソトを中心のずれた8値
レベルに対応した4ビツトの信号に変換する直流オフセ
ント付加回路の回路図で、図中14.20#′iアンド
回路、15.17はオア回路、16はノア回路、18.
22はインバータ回路、19はナンド回路、21は排他
的論理和(以下EX−ORと称す)回路を示す。
(e) Embodiments of the Invention Below, embodiments of the present invention will be explained according to the drawings. 6 Figure 3 shows how the input 3-bit signal of the embodiment of the present invention is converted into a 4-bit signal corresponding to an 8-level level shifted from the center. This is a circuit diagram of the converting DC offset addition circuit. In the figure, 14.20#'i AND circuit, 15.17 is an OR circuit, 16 is a NOR circuit, and 18.
22 is an inverter circuit, 19 is a NAND circuit, and 21 is an exclusive OR (hereinafter referred to as EX-OR) circuit.

第4図は第3図の回路の入力3ビア)とFJ1力4ビッ
トのレベル関係を示す図である。
FIG. 4 is a diagram showing the level relationship between the input 3 vias of the circuit of FIG. 3 and the FJ1 input 4 bits.

本発明の場合は洩れ搬送波を生じさせる為の直流オフセ
ットの付加を、例えばICHで行う場合は第1図の符号
器2とD/A変換器3との間で行う。従って符号器2と
D/Af換器3との間に直流オフセット付加回路を挿入
し、加算器7及び直流オフセット源8は用いない。
In the case of the present invention, the addition of a DC offset to generate a leakage carrier wave is performed between the encoder 2 and the D/A converter 3 in FIG. 1 when using ICH, for example. Therefore, a DC offset adding circuit is inserted between the encoder 2 and the D/Af converter 3, and the adder 7 and DC offset source 8 are not used.

この符号器2とD/A変換器3との間に挿入する直流オ
フセット付加回路の例を第3図に示している。第3図は
64値QAM方式の場合のICHの3ビツトの入力に直
流オフセットを加えるものであり、A、B、Cは3ビツ
トの入力を表はし、Q、。
An example of a DC offset adding circuit inserted between the encoder 2 and the D/A converter 3 is shown in FIG. FIG. 3 shows how a DC offset is added to the 3-bit input of the ICH in the case of the 64-value QAM system, where A, B, and C represent the 3-bit input, Q, and .

(b 、Qs 、Q−は4ビツトの出力を表はしている
(b, Qs, Q- represent 4-bit output.

3ビツトの入力A、B、Cは第4図(a)に示す如く0
〜7レベルを示すが、第3図の回路を通ると出力は4ビ
ツトのQ1〜Q4となり、対応する出力レベルは第4図
(b)(c)に示す如く、4ビツトの16レベル内の8
レベルの5〜Cとなる。
The 3-bit inputs A, B, and C are 0 as shown in Figure 4(a).
~7 levels, but when it passes through the circuit of Figure 3, the output becomes 4 bits Q1 to Q4, and the corresponding output level is within 16 levels of 4 bits, as shown in Figures 4(b) and (c). 8
Level 5 to C.

3ビツトの入力A、B、Cの示す8レベルの真中を0と
し、プラスマイナス対称と考へると、4ビツトの出力Q
1〜Q4の示す16レベルの真中も0と考えることが出
来る。両者の真中を合すようにすると4ビツトの出力Q
、〜Q4 u 16レベル内の8レベルの4〜Bとなる
が、これでは直流オフセットが現われない。その為第3
図の回路では、直流分を残すよう、ルベルずらし8レベ
ルを5〜Cとし、直流オフセットを加えるようにしであ
る。
If we assume that the middle of the 8 levels represented by 3-bit inputs A, B, and C is 0, and consider that they are symmetrical, then the 4-bit output Q is
The middle of the 16 levels indicated by 1 to Q4 can also be considered to be 0. If you match the middle of both, you will get a 4-bit output Q.
, ~Q4 u 8 levels of 4~B within 16 levels, but no DC offset appears in this case. Therefore, the third
In the circuit shown in the figure, the Lebel shift 8 level is set to 5 to C and a DC offset is added so as to leave a DC component.

又全加算器を用い、以上と同様のことを行ったのが第5
図に示したものである。
The fifth example also used a full adder and did the same thing as above.
This is shown in the figure.

第5図は本発明の他の実施例の入力3ビツトを中心のず
れた8値レベルに対応した4ビツトの信号に変換する全
加算器を用いた直流オフセット付加回路のブロック図で
あり、図中23は全加算器を示す。
FIG. 5 is a block diagram of a DC offset adding circuit using a full adder that converts 3-bit input into a 4-bit signal corresponding to 8-value levels shifted from the center according to another embodiment of the present invention. 23 in the middle shows a full adder.

全加算器23は4ビツトの全加算器で、一方の入力の下
位3ビツトには、ICHの3ビツトのA。
The full adder 23 is a 4-bit full adder, and the lower 3 bits of one input are the 3-bit A of ICH.

B、(J入力し、最上位ビットはアースしておき、他方
の入力にハ最上位ビットより01014ニ一人力さす。
Input B, (J, ground the most significant bit, and apply 01014 from the most significant bit to the other input.

このように丁れば4ビツトの出力QI”Q4には第3図
の回路と同様に4ビツトの16レベル内の8レベルの5
〜Cとなる。又他方の入力に最上位ビットより0110
?入力さすと出力Q I”−Q< &’116レベル内
の8レベルの6〜Dとなる。
If arranged in this way, the 4-bit output QI"Q4 will have 5 of 8 levels within 16 levels of 4 bits, similar to the circuit shown in Figure 3.
~C. Also, input 0110 from the most significant bit to the other input.
? When the input is input, the output Q is 6 to D, which is 8 levels within 116 levels.

このように、直流オフセット付加をディジタル段階で行
なえば温度変化による直流オフセットのレベル変化はな
くガる。尚以上は入力3ビツトを4ビツトの出力とする
場合で説明したが入力nピッ)fn+2ビットの出力と
することで直流オフキ セラトラ加えることが出来る。
In this way, if the DC offset is added digitally, the level of the DC offset will not change due to temperature changes. The above description has been made on the case where the input 3 bits are used as a 4 bit output, but by setting the input n bits as an output of fn+2 bits, it is possible to add a DC off-axis controller.

(f) 発明の効果 以上詳細に説明せる如く本発明によれば、直流オフセッ
ト付加をディジタル段階で行うので、温度変化による直
流オフセットのレベルの変化はなくなり、受信側で安定
な搬送波再生を行なうことが出来る効果がある。
(f) Effects of the Invention As explained in detail above, according to the present invention, since the DC offset is added in a digital stage, there is no change in the DC offset level due to temperature changes, and stable carrier wave regeneration can be performed on the receiving side. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の64値QAM方式の送信系を示すブロ
ック図、第2図は従来例の直流オフセント付加回路の回
路図、第3図は本発明の実施例の入力3ビットt−中心
のずれた8値レベルに対応した4ビツトの信号に変換す
る直流オフセット付加回路の回路図、第4図は第3図の
回路の入力3ビツトと出力4ビツトのレベル関係を示す
図、第5図は本発明の他の実施例の入力3ピツ)f中心
のずれた8値レベルに対応した4ビツトの信号に変換す
る全加算器を用いた直流オフセット付加回路のブロック
図である。 図中1は直列並列変換器、2は符号器、3,4はディジ
タルΦアナログ変換器、5,6は低域ヂ波器、7は加算
器、8は直流オフセット源、9゜10はミキサ、11は
π/2移相器、12は/%イブリド回路、13は加算増
幅器、14.20はアンド回路、15.17はオア回路
、16はノア回路、18.221′iインバ一タ回路、
19はナンド回路、21は排他的論理和回路、23は全
加算器を示す。
Fig. 1 is a block diagram showing a transmission system of a conventional 64-value QAM system, Fig. 2 is a circuit diagram of a conventional DC offset addition circuit, and Fig. 3 is an input 3-bit t-center of an embodiment of the present invention. Figure 4 is a diagram showing the level relationship between the input 3 bits and output 4 bits of the circuit in Figure 3. The figure is a block diagram of a DC offset adding circuit using a full adder for converting input 3 bits into a 4-bit signal corresponding to an 8-value level shifted from the center of f, according to another embodiment of the present invention. In the figure, 1 is a serial-parallel converter, 2 is an encoder, 3 and 4 are digital Φ analog converters, 5 and 6 are low-frequency waveformers, 7 is an adder, 8 is a DC offset source, 9° and 10 are mixers. , 11 is a π/2 phase shifter, 12 is a /% hybrid circuit, 13 is a summing amplifier, 14.20 is an AND circuit, 15.17 is an OR circuit, 16 is a NOR circuit, 18.221'i inverter circuit ,
19 is a NAND circuit, 21 is an exclusive OR circuit, and 23 is a full adder.

Claims (1)

【特許請求の範囲】[Claims] 多値直交振幅変調通信方式の、2つのnビットの多値直
交信号のうち、いづれか一方に搬送波の洩れを生じさせ
る為に直流オフセットを加える直流オフセクト付加方式
において、nビットの多値直交信号を、ディジタル・ア
ナログ変換する前に、中心のずれた2n多値レベルに対
応したn+2ビットの信号に変換する手段で直流オフセ
ントを加えるようにしたことを特徴とする直流オフセフ
)付加方式。
In the DC offset addition method in which a DC offset is added to one of the two n-bit multi-value orthogonal signals to cause carrier wave leakage in the multi-value quadrature amplitude modulation communication system, the n-bit multi-value orthogonal signal is A DC offset (DC offset) addition method characterized in that, before digital-to-analog conversion, a DC offset is added by means of converting the signal into an n+2 bit signal corresponding to a 2n multi-value level with a shifted center.
JP59033537A 1984-02-24 1984-02-24 Dc offset addition system Pending JPS60178753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033537A JPS60178753A (en) 1984-02-24 1984-02-24 Dc offset addition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033537A JPS60178753A (en) 1984-02-24 1984-02-24 Dc offset addition system

Publications (1)

Publication Number Publication Date
JPS60178753A true JPS60178753A (en) 1985-09-12

Family

ID=12389311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033537A Pending JPS60178753A (en) 1984-02-24 1984-02-24 Dc offset addition system

Country Status (1)

Country Link
JP (1) JPS60178753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753953A1 (en) * 1995-07-12 1997-01-15 Nec Corporation Method and apparatus for multi-level quadrature amplitude modulation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753953A1 (en) * 1995-07-12 1997-01-15 Nec Corporation Method and apparatus for multi-level quadrature amplitude modulation
US5825828A (en) * 1995-07-12 1998-10-20 Nec Corporation Method and apparatus for multi-level quadrature amplitude modulation
EP1511263A2 (en) * 1995-07-12 2005-03-02 Nec Corporation Method and apparatus for multi-level quadrature amplitude modulation
EP1511263A3 (en) * 1995-07-12 2005-11-23 Nec Corporation Method and apparatus for multi-level quadrature amplitude modulation
EP1699201A1 (en) * 1995-07-12 2006-09-06 NEC Corporation Method and apparatus for multi-level quadrature amplitude modulation

Similar Documents

Publication Publication Date Title
JP3419484B2 (en) Modulator, transmitter
JP2926615B2 (en) SSB signal generator
JPS60112344A (en) Radio wave receiver and demodulating method
US6025758A (en) Method and apparatus for performing digital data signal modulation
JPH05236033A (en) System for generating modulation base band analog signal in accordance with series bit for digital data
JPH0824260B2 (en) Phase comparator
JPS5820181B2 (en) Tasoui Soudou Kifukuchiyousouchi
JP3147000B2 (en) Pseudo GMSK modulator
JPS60178753A (en) Dc offset addition system
JPH0821859B2 (en) D / A conversion method
JP3191895B2 (en) SSB modulator
US5751198A (en) Angular modulator with a phase variation divided and integrated
JPH0122787B2 (en)
US5838208A (en) Modulation of transmission data signal in sychronous with transmission clock signal
US5905413A (en) Angular modulator with a phase variation divided and integrated
US20090096650A1 (en) Methods and systems for continuous-time digital modulation
JP2707797B2 (en) Quadrature modulator
US5157344A (en) Digital quadrature phase detector for angle modulated signals
JPH0758796A (en) Quadrature amplitude modulator
JPS63209348A (en) Modulation system
KR0153011B1 (en) Modulator
US6891445B2 (en) Phase modulator
JPH0738280B2 (en) Signal storage / playback method
JP3140645B2 (en) Analog-to-digital converter
JP2512021B2 (en) Digital signal recording / reproducing device