JPS60178684A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS60178684A
JPS60178684A JP3347284A JP3347284A JPS60178684A JP S60178684 A JPS60178684 A JP S60178684A JP 3347284 A JP3347284 A JP 3347284A JP 3347284 A JP3347284 A JP 3347284A JP S60178684 A JPS60178684 A JP S60178684A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
semiconductor laser
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3347284A
Other languages
Japanese (ja)
Other versions
JPH0554279B2 (en
Inventor
Kentarou Onabe
尾鍋 研太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3347284A priority Critical patent/JPS60178684A/en
Publication of JPS60178684A publication Critical patent/JPS60178684A/en
Publication of JPH0554279B2 publication Critical patent/JPH0554279B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/327Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIBVI compounds, e.g. ZnCdSe-laser

Abstract

PURPOSE:To contrive the realization of the semiconductor laser in a wavelength band of green by a method wherein the crystal ratio of a material and the structure made of II-VI group compound semiconductors and whose lattice constant is put in approximate matching in the interface of each layer are used for a substrate, the first clad layer, an active layer, and the second clad layer, respectively, in the titled device of double hereto junction structure. CONSTITUTION:ZnSe (EG=2.67eV) is used as the active layer 1. ZnTe1-x-ySexSy (x=0.30, y=0.44) is used as the first and second clad layers 3 and 4, and n type and p type conductivities are given to them, respectively. Using n type GaAs for the substrate 2, the first clad layer 3 is deposited immediately thereon to a thickness of 2-3mum; thereafter, the n or p type active layer 1 is deposited by 0.1-0.2mum, further the second clad layer 4 by 2mum, and a p type GaAs cap layer 5 approx. by 1mum. Besides, a p-side electrode 6 and an n-side electrode 7 to yield the laser oscillation due to current injection are provided. In this structure, the distribution of the lattice constant alpha0 in the direction along the layer thickness, band gap energy EG, and optical dielectric constant epsilon is as graphs shown by B, C, and D. Thus, the semiconductor laser whereby the light emission of a wavelength of gree can be obtained can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザの材料および構造に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to semiconductor laser materials and structures.

(従来技術とその問題点) 赤外もしくは赤色可視領域の波長帯の半導体レーザの材
料および構造としてはInk−xGaxPH−、As。
(Prior art and its problems) Ink-xGaxPH- and As are used as materials and structures for semiconductor lasers in the infrared or red visible wavelength range.

/GaAs、 Ga、−xAt、As/GaAs (0
< x * y< 1 )等のIII−v族化合物半導
体材料より成るダブルへテロ接合構造が用いられている
。しかしながらより短波長の緑色もしくは青色波長帯の
半導体レーザ材料および構造としては上記の系は材料固
有のバンド・ギヤ、プ・エネルギーが小さ過ぎる等の理
由で不適当である。上記の材料に代わるものとして■−
■族化合物半導体が考えられるが、ダブルへテロ接合構
造を作製するための材料および構造とし:C1tk適な
構成は確立されるに主っていない。
/GaAs, Ga, -xAt, As/GaAs (0
A double heterojunction structure made of a III-v group compound semiconductor material such as <x*y<1) is used. However, the above-mentioned system is unsuitable as a semiconductor laser material and structure for the shorter green or blue wavelength band because the band gear and energy inherent to the material are too small. As an alternative to the above materials ■−
Group (3) compound semiconductors are considered, but the material and structure for fabricating the double heterojunction structure: C1tk A suitable structure has not yet been established.

(発明の目的) 本発明の目的はJl−Vl族化合物半導体より成る材料
および構造によシ、青色波長帯の半導体レーザを実現す
ることにある。
(Objective of the Invention) An object of the present invention is to realize a blue wavelength band semiconductor laser using a material and structure made of a Jl-Vl group compound semiconductor.

(発明の構成) 本発明によれば、基板、第1のクラッド層、活性層およ
び第2のクラ、ド層をそれぞれGaAsまたはZn5s
p ZnTe3−、−.5stS、(0≦x(1、0(
yく1かつO< x+y< 1 ) + ZnTe5−
xI−,1sex#s、!(0<x’≦1.0≦y’<
 1かっ0≦1 + 、j≦1)、およびZ nT @
 3− x、−yIS @ xIS F# (0≦x’
< 1 * 0 < y’< 1がっ0 < x’+y
’< 1 )によ多構成し、かつ活性層のバンド・ギヤ
、ブ・エネルギーを第1および第2のクラッド層より小
さく設定し、かつ各層の界面において格子定数をはぼ整
合させた材料および構造を用いることによシ上記の目的
を達することが出来る。
(Structure of the Invention) According to the present invention, the substrate, the first cladding layer, the active layer, and the second cladding layer and the second cladding layer are made of GaAs or Zn5s.
p ZnTe3-, -. 5stS, (0≦x(1, 0(
yku1 and O<x+y<1) + ZnTe5-
xI-,1sex#s,! (0<x'≦1.0≦y'<
1k0≦1 + , j≦1), and Z nT @
3- x, -yIS @ xIS F# (0≦x'
< 1 * 0 <y'< 1 0 <x' + y
'< 1), the band gear and band energy of the active layer are set smaller than those of the first and second cladding layers, and the lattice constants are almost matched at the interface of each layer. By using the structure, the above objectives can be achieved.

(本発明の概4J) 本発明では波長410nm〜464nm (フォトン・
エネルギー2.67 eV〜約a、o eV )の青色
発光を得るためにZn5mまたは4元混晶znT・l−
8−ylSexISアI(0<X’≦1.0≦y′〈1
かつ0≦x’+ y’< 1 )を活性層とし、これを
バンド・ギヤ、ブ・エネルギーのより広い3元混晶Zn
Te 1□Sアまたは4元混晶ZnTe3.、−.5s
xS、 (0≦x<1.0<y<1かつ0〈x+y<1
)で挾んだ構造を用いている。2元化合物ZnTe +
 Zn8* + Zn8はいずれも閃亜鉛鉱型の結晶構
造をとりうるために任意の割合で混合し合って混晶を形
成する。Z n T e 1− x −y S e x
 S yの混晶比X。
(Summary of the present invention 4J) In the present invention, the wavelength is 410 nm to 464 nm (photon
Zn5m or quaternary mixed crystal znT·l-
8-ylSexISAI(0<X'≦1.0≦y'<1
and 0 ≤
Te 1□SA or quaternary mixed crystal ZnTe3. ,-. 5s
xS, (0≦x<1.0<y<1 and 0<x+y<1
) is used. Binary compound ZnTe +
Since both Zn8* + Zn8 can have a zincblende crystal structure, they can be mixed in any proportion to form a mixed crystal. Z n T e 1- x -y S e x
Mixed crystal ratio X of S y.

yと格子定数α。、バンド・ギヤ、プ・エネルギーE。y and lattice constant α. , Band Gear, Pu Energy E.

および元学的rrs鑞率εとの関係は線型近似によシそ
れぞれ α6 = 6.10(1−x −y )+5.67x+
5.417(A) −(1)Eo=2.26(1−x 
y)+2.6’7x+3.667(eV)−(2ンε 
=9.1.(1−スーy)+9.2 ズ+8.91 ・
・・(3)で与えられる。第1図は以上の関係を図で表
わしたものである。第1図において、実線はそれぞれ印
された値のバンド・ギヤ、プ・エネルギーを有する組成
を表わし、破線はそれぞれ印された僅の光学的誘電率を
有する組成を表わし、また一点鎖線はzest (格子
定数α、=5.67X)またはQaAs(格子定数α。
and the relationship with the elementary rrs ratio ε is calculated by linear approximation, α6 = 6.10(1-x −y) + 5.67x+, respectively.
5.417(A)-(1)Eo=2.26(1-x
y) + 2.6'7x + 3.667 (eV) - (2n ε
=9.1. (1-su y) + 9.2 zu + 8.91 ・
... is given by (3). FIG. 1 graphically represents the above relationship. In FIG. 1, the solid lines represent compositions with band gear and p energies of the respective values marked, the dashed lines represent compositions with respective nominal optical dielectric constants, and the dash-dotted line represents zest ( lattice constant α, = 5.67X) or QaAs (lattice constant α.

=165^)にほぼ格子整合する組成を表わす。図より
明らかなようにZn8s tたはGaAm Kl’tは
格子整合する組成のZnTe1−1−.5sx8゜はZ
nS*の2.67 eVからznT’eaatso、s
aの3.1 eVK至エネルギーが小さいほど太き(な
っている。従ってこれらの相互に格子定数の一致する組
成を用いて、所望の1色発光波長に相当するバンド・ギ
ャップ・エネルギーを有するものを活性層、それよりバ
ンド、・ギ、ヤケグー・エネルギーの大きいものを第1
および第2のクラ、ド層とし、かつそれぞれの層に適当
な導電型を付与してやればレーザ発振に必要なダブルへ
テロ構造が得られることになる。
=165^) represents a composition that is approximately lattice matched. As is clear from the figure, Zn8s t or GaAm Kl't has a lattice-matched composition of ZnTe1-1-. 5sx8゜ is Z
2.67 eV of nS* to znT'eaatso,s
3.1 of a. The smaller the eVK energy, the thicker it becomes. Therefore, by using compositions with mutually matching lattice constants, one that has a band gap energy corresponding to the desired one-color emission wavelength. The active layer, the band, the energy, the energy is the first
A double heterostructure necessary for laser oscillation can be obtained by forming the second cladding layer and the second cladding layer, and by imparting an appropriate conductivity type to each layer.

基板としては現在液も高品質のものが得られているGa
A−を用いることができる。あるいは基板としてZnS
@を用いることも可能である。また第2のクラッド層に
続いて適当な導電型を有するGaAsキャ、プ層を設け
ておけば電極形成に際して従来の111−v化合物を用
いた半導体レーザと同様の技術を用いることができる利
点がある。
As a substrate, Ga is currently available in high quality liquids.
A- can be used. Or ZnS as a substrate
It is also possible to use @. Furthermore, if a GaAs capping layer of an appropriate conductivity type is provided following the second cladding layer, it is possible to use the same technology as in the conventional semiconductor laser using a 111-v compound when forming the electrodes. be.

(実施例1) 以下、本発明の実施例について詳細に説明する。(Example 1) Examples of the present invention will be described in detail below.

第1の実施′例における半導体レーザの基本構造を第2
図AK示した。本実施例では活性層lとして第1図中の
A点に相当するZn5s (EG = 2.67 eV
 )を用いている。また第1および第2のクラ、ド層3
および4としては第1図中のB点に相当するZnTe1
−、−、S@xS、 (x’::0.30 * y:0
.44 )を用いておシ、それぞれn型およびp型導電
性が付与されている。基板2としてはrsfjIGmA
mを用いてお夛、その直上には第1のクラッド層3が2
〜3μmの厚さに堆積された後、nまたはp型活性層1
が0.1〜0.2μm、さらに第2のクラ、ド層4が2
μ票。
The basic structure of the semiconductor laser in the first embodiment is
Figure AK is shown. In this example, Zn5s (EG = 2.67 eV) corresponding to point A in FIG. 1 is used as the active layer l.
) is used. In addition, the first and second Kura and Do layers 3
and 4 is ZnTe1 corresponding to point B in FIG.
−, −, S@xS, (x'::0.30 * y:0
.. 44) were used to impart n-type and p-type conductivity, respectively. As the board 2, rsfjIGmA
The first cladding layer 3 is placed directly on top of the first cladding layer 3.
After being deposited to a thickness of ~3 μm, the n- or p-type active layer 1
is 0.1 to 0.2 μm, and the second cladding layer 4 is 2 µm.
μ vote.

p型GaAmキャ、プ層5が1μm程度堆積されている
。また電流注入によるレーザ発振を得るためのp側電極
6および[側電極7が設けられている。
A p-type GaAm cap layer 5 of about 1 μm is deposited. Further, a p-side electrode 6 and a [side electrode 7 are provided for obtaining laser oscillation by current injection.

本実施例1の構造において層厚に沿った方向での格子定
数α。、バンド・ギヤ、プ・エネルギーEo。
In the structure of Example 1, the lattice constant α in the direction along the layer thickness. , Band Gear, Pu Energy Eo.

光学的誘電率εの分布は第2図B、C,Dに示したグラ
フのようになっている。活性層1と第1および8g2の
クラ、ド層3および4とのバンド・ギヤ、プ・エネルギ
ー差ΔEoおよび光学的誘電率差Δεはそれぞれ0.3
3eVおよび0.05で、あ#)%ダブルへテロ接合構
造半導体レーザの動作に必要な注入電子および光の活性
層への閉じ込めが行える構造となっていることは明らか
である。
The distribution of the optical permittivity ε is as shown in the graphs shown in FIG. 2B, C, and D. The band gear, P energy difference ΔEo and optical permittivity difference Δε between the active layer 1 and the C and D layers 3 and 4 of the first and 8g2 are each 0.3.
It is clear that at 3 eV and 0.05, the structure is such that the injected electrons and light necessary for operation of the double heterojunction semiconductor laser can be confined in the active layer.

(実施例2) 本発明の第2の実施例における半導体レーザの基本構造
を第3図Aに示した。又、格子定数α。。
(Example 2) The basic structure of a semiconductor laser in a second example of the present invention is shown in FIG. 3A. Also, the lattice constant α. .

バンドギャップエネルギーEo、誘電率eの分布はそれ
ぞれ第2図B、C,Dに示した。本実施例では活性層1
として第1図中の0点に相当するZnTe1−、−、S
exS、 (x:0.73 、 y’::0.17 )
を用いてお9、EG = 2.8 eVによる発光が可
能である。さらに第1および第2のり2ラド層3および
4としては第1図中のD点に相当するZnTe 3−y
 Sy ()’ =0.63)を用いておりそれぞれn
型およびp型導電性を付与しである。他は実施例1と変
わらない。
The distributions of bandgap energy Eo and dielectric constant e are shown in FIGS. 2B, C, and D, respectively. In this embodiment, the active layer 1
ZnTe1-,-,S corresponding to 0 point in Fig. 1 as
exS, (x:0.73, y'::0.17)
9, it is possible to emit light with EG = 2.8 eV. Further, as the first and second glue 2 Rad layers 3 and 4, ZnTe 3-y corresponding to point D in FIG.
Sy ()' = 0.63) and n
type and p-type conductivity. Other aspects are the same as in Example 1.

活性層と第1および第2クラ、ド層とのバンド・ギヤ、
プ・エネルギー差ΔEGおよび光学的誘電率差Δeはそ
れぞれ0.3@Vおよび0,17であシ実施例1と同様
半導体レーザ動作を行える。
a band gear with an active layer and first and second club and do layers;
The optical dielectric constant difference ΔEG and the optical dielectric constant difference Δe are 0.3@V and 0.17, respectively, and the semiconductor laser can operate as in the first embodiment.

(発明の効果) 以上説明したように、基板、第1のクラッド層。(Effect of the invention) As explained above, the substrate and the first cladding layer.

活性層および第2のクラ、ド層をそれぞれGaAsまた
はZnS* 、 ZnTe1−x−、Se、S、 (0
≦x<1.0<y<1かつ0 < x + y < 1
 ) * ZnTe1−xz−ysexas、t(0<
x’<1 、 o<y’<tかつ0≦x’+y’<1 
) 、およびZnTeI−xz−、#Sex*S、#(
0≦x’<1 、0<y’<1かつ0 < x’+y’
< 1 )によシ構成しかつ各層の界面で格子定数を#
よぼ整合させた材料および構造を用いることによシ、従
来実現不可能であった青色波長帯の発光が得られる半導
体レーザが実現できる。
The active layer and the second clad and de layers are made of GaAs or ZnS*, ZnTe1-x-, Se, S, (0
≦x<1.0<y<1 and 0<x+y<1
) * ZnTe1-xz-ysexas, t(0<
x'<1, o<y'<t and 0≦x'+y'<1
), and ZnTeI-xz-, #Sex*S, #(
0≦x'<1, 0<y'<1 and 0<x'+y'
< 1), and the lattice constant is # at the interface of each layer.
By using materials and structures that are closely matched, it is possible to realize a semiconductor laser that can emit light in the blue wavelength band, which was previously impossible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はZnTsl−x−、Se、S、混晶における組
成と格子定数、バンド・ギャップ・エネルギーおよび光
学的誘電率との関係を示す図、第2図A、B。 C,Dは本発明の第1の実施例におけるダブルへテロ接
合半導体レーザの構造及びα。lo、εの分布を示す図
、第3図A、B、C,Dは本発明の第2の実施列におけ
る同じくダブルへテロ接合半導体レーザの構造及びαO
y Eolεの分布を示す図である。図において、1・
・・nまたはp型活性層、2・・・n型GaAs基板、
3・・・n型クラッド層、4・・・p型りラ、トノ−9
5・・・p#lキャップ層、6・・・p側電極、7・・
・n側電極。 n5 ZnTe Ln’5e
FIG. 1 is a diagram showing the relationship between composition, lattice constant, band gap energy, and optical permittivity in ZnTsl-x-, Se, S, and mixed crystals, and FIG. 2A and B. C and D are the structure and α of the double heterojunction semiconductor laser in the first embodiment of the present invention. FIGS. 3A, B, C, and D are diagrams showing the distribution of lo and ε, and the structure of the double heterojunction semiconductor laser in the second embodiment of the present invention and αO
It is a figure showing the distribution of yEolε. In the figure, 1.
...n-type or p-type active layer, 2...n-type GaAs substrate,
3...n-type cladding layer, 4...p-type cladding layer, tonneau-9
5...p#l cap layer, 6...p side electrode, 7...
・N-side electrode. n5 ZnTe Ln'5e

Claims (1)

【特許請求の範囲】 第1導電型を有する半導体より成る単結晶基板上に第1
導電型を有する半導体より成るmlのクラッド層、第1
もしくは第2の導−ft型を有する半導体よ構成る活性
層、および第2導電型を有する半導体より成る第2のク
ラッド層を順次形成し、かつ前記第1および第2のクラ
、ド層が前記活性層に比較して大きいバンド・ギヤ、ブ
・エネルギーと小さい光学的誘電率とを有するダブルへ
ゾロ接合構造半導体レーザにおいて、前記基板、第1の
クラッド層、活性層および第2のクラ、ド層をそれぞれ
GaAsまたはZn5s 、 ZnTe1−x−、Se
、S。 (0<x<1.0<y<1 、かつO<x+1<1 )
*Z*T e 1− 、lIイ5−exrs、z (0
< x’≦1,0≦y’<o、かり0<x’+y’≦1
)、およびZ n’r e 1− *I−y#Se x
t b yz (0≦x’<1* 0<y’<1 fか
つ0<c’+y’<1)により構成し、かつ各層の界面
において格子定数をほぼ整合させたことを特徴とする半
導体レーザ。
[Scope of Claims] A first conductive layer is formed on a single crystal substrate made of a semiconductor having a first conductivity type.
a first ml cladding layer made of a semiconductor having a conductivity type;
Alternatively, an active layer made of a semiconductor having a second conductivity type -FT and a second cladding layer made of a semiconductor having a second conductivity type are sequentially formed, and the first and second cladding layers are In the double hesozojunction semiconductor laser having a large band gear, band energy, and small optical permittivity compared to the active layer, the substrate, the first cladding layer, the active layer, and the second cladding layer, GaAs or Zn5s, ZnTe1-x-, Se
,S. (0<x<1.0<y<1 and O<x+1<1)
*Z*T e 1-, lIi5-exrs, z (0
<x'≦1,0≦y'<o,0<x'+y'≦1
), and Z n'r e 1- *I-y#Sex
t b yz (0≦x'<1* 0<y'<1 f and 0<c'+y'<1), and the lattice constants are substantially matched at the interfaces of each layer. laser.
JP3347284A 1984-02-24 1984-02-24 Semiconductor laser Granted JPS60178684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347284A JPS60178684A (en) 1984-02-24 1984-02-24 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347284A JPS60178684A (en) 1984-02-24 1984-02-24 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS60178684A true JPS60178684A (en) 1985-09-12
JPH0554279B2 JPH0554279B2 (en) 1993-08-12

Family

ID=12387480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347284A Granted JPS60178684A (en) 1984-02-24 1984-02-24 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60178684A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393189A (en) * 1986-10-08 1988-04-23 Seiko Epson Corp Semiconductor light-emitting device and manufacture thereof
JPS63245984A (en) * 1987-04-01 1988-10-13 Seiko Epson Corp Semiconductor light emitting element and manufacture thereof
US4992837A (en) * 1988-11-15 1991-02-12 Kokusai Denshin Denwa Co., Ltd. Light emitting semiconductor device
US5045897A (en) * 1990-03-14 1991-09-03 Santa Barbara Research Center Quaternary II-VI materials for photonics
WO1992021170A2 (en) * 1991-05-15 1992-11-26 Minnesota Mining And Manufacturing Company Blue-green laser diode
EP0523597A2 (en) * 1991-07-15 1993-01-20 Sony Corporation Semiconductor laser
US5299217A (en) * 1990-10-11 1994-03-29 Hitachi, Ltd. Semiconductor light-emitting device with cadmium zinc selenide layer
JPH0684524U (en) * 1993-04-09 1994-12-02 松下電器産業株式会社 Tape cassette detector
EP0632510A2 (en) * 1993-06-08 1995-01-04 Rohm Co., Ltd. Semiconductor light emitting device and its manufacturing method
US5404027A (en) * 1991-05-15 1995-04-04 Minnesota Mining & Manufacturing Compay Buried ridge II-VI laser diode
US5513199A (en) * 1991-05-15 1996-04-30 Minnesota Mining And Manufacturing Company Blue-green laser diode

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393189A (en) * 1986-10-08 1988-04-23 Seiko Epson Corp Semiconductor light-emitting device and manufacture thereof
JPS63245984A (en) * 1987-04-01 1988-10-13 Seiko Epson Corp Semiconductor light emitting element and manufacture thereof
US4992837A (en) * 1988-11-15 1991-02-12 Kokusai Denshin Denwa Co., Ltd. Light emitting semiconductor device
US5045897A (en) * 1990-03-14 1991-09-03 Santa Barbara Research Center Quaternary II-VI materials for photonics
US5299217A (en) * 1990-10-11 1994-03-29 Hitachi, Ltd. Semiconductor light-emitting device with cadmium zinc selenide layer
WO1992021170A2 (en) * 1991-05-15 1992-11-26 Minnesota Mining And Manufacturing Company Blue-green laser diode
US5404027A (en) * 1991-05-15 1995-04-04 Minnesota Mining & Manufacturing Compay Buried ridge II-VI laser diode
US5513199A (en) * 1991-05-15 1996-04-30 Minnesota Mining And Manufacturing Company Blue-green laser diode
US5538918A (en) * 1991-05-15 1996-07-23 Minnesota Mining And Manufacturing Company Method of fabricating a buried-ridge II-VI laser diode
EP0523597A2 (en) * 1991-07-15 1993-01-20 Sony Corporation Semiconductor laser
JPH0684524U (en) * 1993-04-09 1994-12-02 松下電器産業株式会社 Tape cassette detector
EP0632510A2 (en) * 1993-06-08 1995-01-04 Rohm Co., Ltd. Semiconductor light emitting device and its manufacturing method
EP0632510A3 (en) * 1993-06-08 1995-04-12 Rohm Co Ltd Semiconductor light emitting device and its manufacturing method.
US5548127A (en) * 1993-06-08 1996-08-20 Rohm Co., Ltd. Semiconductor light emitting device and its manufacturing method

Also Published As

Publication number Publication date
JPH0554279B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
US5548137A (en) Group II-VI compound semiconductor light emitting devices and an ohmic contact therefor
DE69629183T2 (en) Heterostructure assembly of nitride compound semiconductor materials and substrate therefor
DE60317862T2 (en) Light-emitting semiconductor device
JPS60178684A (en) Semiconductor laser
JP2724827B2 (en) Infrared light emitting device
JPS63236387A (en) Optical semiconductor device
US5296718A (en) Light emitting semiconductor device having multilayer structure
WO1986005925A1 (en) Luminescent semiconductor element
JPS61244086A (en) Semiconductor laser element
US6876006B1 (en) Radiation source
JPH0632340B2 (en) Semiconductor light emitting element
JP3056062B2 (en) Semiconductor light emitting device
JPH0794822A (en) Semiconductor light emitting element
JPS59184583A (en) Semiconductor laser
JPS63140588A (en) Semiconductor light emitting device
JPS60178682A (en) Semiconductor laser
JP2876543B2 (en) Semiconductor device and manufacturing method thereof
WO2024019098A1 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JPH05275745A (en) Laminated semiconductor
JPH01169985A (en) Semiconductor laser
EP0523597B1 (en) Semiconductor laser
JPH10242511A (en) Strained multiple quantum well structure
JPH0370392B2 (en)
JPH0864908A (en) Semiconductor device
DE19725809A1 (en) Light emitting semiconductor heterostructure especially for laser diode