JPS601783B2 - DC solid shredder - Google Patents

DC solid shredder

Info

Publication number
JPS601783B2
JPS601783B2 JP54028967A JP2896779A JPS601783B2 JP S601783 B2 JPS601783 B2 JP S601783B2 JP 54028967 A JP54028967 A JP 54028967A JP 2896779 A JP2896779 A JP 2896779A JP S601783 B2 JPS601783 B2 JP S601783B2
Authority
JP
Japan
Prior art keywords
current
thyristor
circuit
auxiliary
main thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54028967A
Other languages
Japanese (ja)
Other versions
JPS55121745A (en
Inventor
敏正 秦泉寺
孝二 今井
淳男 小林
浩男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54028967A priority Critical patent/JPS601783B2/en
Publication of JPS55121745A publication Critical patent/JPS55121745A/en
Publication of JPS601783B2 publication Critical patent/JPS601783B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/73Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region for dc voltages or currents

Landscapes

  • Power Conversion In General (AREA)
  • Thyristor Switches And Gates (AREA)

Description

【発明の詳細な説明】 本発明はサィリス外こより数百乃至数千V、数千乃至数
万Aの直流主回路の定常電流を開閉または事故電流をし
や断できる2端子の両方向性直流固体しや断装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a two-terminal bidirectional DC solid-state device that can switch on and off the steady current of several hundred to several thousand V, several thousand to tens of thousands of A, or cut off the fault current in a DC main circuit from outside the SIRIS. Concerning a shredder.

直流固体しや断装置は、機構部分および可動接触部分が
なく、しや断時、回路のィンダクタンスに貯えられたェ
ネルギを固体素子に消費させア−クレスで回路を開閉で
きるので、従来の直流電鉄変電所のき亀用高速度しや断
器および直流電気車の高速度しや断器に代るものとして
実用化されつつある。
DC solid-state shearing devices have no mechanical parts or movable contact parts, and when the sheathing occurs, the energy stored in the inductance of the circuit is consumed by the solid-state element, and the circuit can be opened and closed without an arc. It is being put into practical use as a replacement for high-speed breakers for electric railway substations and high-speed breakers for DC electric cars.

この直流固体しや断装置はサィリスタ等の制御極付電気
弁のゲート制御とコンデンサの放電による転流作用とに
より、直流主回路を開閉制御するものである。
This DC solid state shearing device controls the opening and closing of a DC main circuit by gate control of an electric valve with a control pole such as a thyristor and commutation effect by discharge of a capacitor.

これを高速度しや断器として利用する場合には、一般に
制御極付電気弁をオフ状態とした際に電源ィンダクタン
スおよび負荷ィンダクタンスを流れる主回路電流を外部
に設けた主回路要素にバイパスさせることなく急速に消
滅させるための手段を具備していることが問題となる。
ところで、2端子の直流しや断装置の主回路電流を確実
に消滅させる手段として、転流コンデンサの容量を極端
に大きくすると、装置全体が大形化するとともに経済的
にも不利となる欠点がある。また、直流しや断装置を3
端子とし、その入出力様子と負母線間に大容量のコンデ
ンサとフリーホィリングダィオードを接続する方法もあ
るが、この場合には主回路電流の減衰率が著るしく低下
する。本発明は上記事情に鑑みてなされたものであり、
金属酸化物系非直線抵抗器と減流抵抗器との直列回路に
主回路電流をバイパスごせ急速に消滅し得るようにして
、装置全体を小形化し且つ経済的にし得るとともに、こ
れによって、しや断直後に転流コンデンサに貯えられる
過剰な電荷の量を最小にし、小容量の補充電装暦で短時
間内に確実に補充電を終え、引き続き再閉路後再しや断
のできる2端子の両方向性直流固体しや断装置を提供す
ることを目的とする。
When using this as a high-speed circuit breaker, the main circuit current flowing through the power supply inductance and load inductance is generally bypassed to an external main circuit element when the electric valve with control pole is turned off. The problem is that we have a means to quickly eliminate them without causing any damage.
By the way, if the capacitance of a commutating capacitor is extremely increased as a means of reliably extinguishing the main circuit current of a two-terminal direct current or disconnection device, the disadvantage is that the entire device becomes larger and is economically disadvantageous. be. In addition, 3
There is also a method of connecting a large capacity capacitor and a freewheeling diode between the input/output terminal and the negative bus, but in this case, the attenuation rate of the main circuit current decreases significantly. The present invention has been made in view of the above circumstances,
By bypassing the main circuit current through a series circuit of a metal oxide non-linear resistor and a current reducing resistor, it is possible to quickly dissipate the current, thereby making the entire device smaller and more economical. It minimizes the amount of excess charge stored in the commutating capacitor immediately after a power disconnection, ensures that recharging is completed within a short time using a small-capacity recharging device, and provides a two-terminal system that can be re-disconnected after reclosing. The purpose of the present invention is to provide a bidirectional direct current solid shredding device.

以下本発明の一実施例を図面につき説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は2端子の両方向性直流固体しや断装置の基本回
路の例を示すものである。図中10は内部にィンダクタ
ンスを含む直流電源で、この電源10の両端子間に、直
流固体しや断装置の逆並列接続された主サィリスタ11
,12および誘導性負荷20を直列に接続する。主サィ
リスタ11,12に並列にそれぞれ定電圧特性をもった
金属酸化物系非直線抵抗器13と減流抵抗器14との直
列回路および図示極性の補助サィリスタ15と転流コン
デンサ16と転流リアクトル17との直列回路を接続す
る。補助サィリスタ15に図示樋性のバイパスダイオー
ド18を接続する。また、前記転流コンデンサ16の端
子間に図示極性の補充電装暦19を接続する。而して、
上記各サイリスタ11,12,15には図示しない点弧
装置により所定の点弧信号が与えられ夫々導通制御され
るようになっている。
FIG. 1 shows an example of the basic circuit of a two-terminal bidirectional direct current solid state shearing device. In the figure, reference numeral 10 denotes a DC power supply containing an inductance inside, and between both terminals of this power supply 10, a main thyristor 11 of a DC solid state insulation device is connected in antiparallel.
, 12 and an inductive load 20 are connected in series. A series circuit of a metal oxide nonlinear resistor 13 and a current reducing resistor 14 each having a constant voltage characteristic in parallel with the main thyristors 11 and 12, an auxiliary thyristor 15 with the polarity shown, a commutating capacitor 16, and a commutating reactor. Connect the series circuit with 17. The illustrated bypass diode 18 is connected to the auxiliary thyristor 15. Additionally, an auxiliary charging device 19 having the polarity shown is connected between the terminals of the commutating capacitor 16. Then,
Each of the thyristors 11, 12, and 15 is supplied with a predetermined ignition signal by an ignition device (not shown), and is controlled to be conductive.

転流コンデンサ16は図示極性に充電され、その充電電
圧は補充電装層19の電源電圧に達しているものとする
。次に主サィリスタ11,12のゲートにゲートパルス
を加えたとき主サイリスタ11が導通し、負荷201こ
順負荷電流が流れ定常状態に達したものとする。負荷電
流の大きさと方向は絶えず変化するので、主サイリスタ
11,12のゲートパルスは、補助サィリスタ15にゲ
ート信号を与えて回路電流のしや断操作を始めるまで継
続させておくのが好ましい。順負荷電流をしや断するに
は、補助サィリスタ15を導通させる。補助サィリスタ
15を導通させると、転流コンデンサ16の電荷は補助
サィリスタ15、主サィリスタ11、転流リアクトル1
7を通って放電するが、放電電流の大きさが負荷電流よ
り大きくなると、主サィリスタ11はターンオフする。
放電電流のうちの負荷電流の大きさを上廻る部分は主サ
ィリスタ12に流す。主サィリスタ12にゲートパルス
を与え点弧させる方法としては放電電流が正のピーク値
に達するまで主サィリスタ12にゲートパルスを接続さ
せておけばよい。放電電流が正のピーク値に達すると転
流コンデンサ16の電荷は0になる。放電電流が正のピ
ーク値を越えると、転流コンデンサ16は図示極性とは
逆の極性に充電される。この電流が次第に減衰し、再び
負荷電流に等しくなると、主サィリスタ12は阻止状態
になる。負荷電流は転流コンデンサ16の端子電圧が定
電圧特性をもった非直線抵抗器13の制限電圧に等しく
なるまで転流コンデンサー6を充電する。転流コンデン
サー6の端子電圧が非直線抵抗器13の制限電圧を越え
ると、負荷電流は非直線抵抗器13と滅流抵抗器14と
の直列回路に分流する。予め非直線抵抗器13の制限電
圧が直流電源10の電圧の1.5乃至数倍の値であるよ
うに選定しておくと、この期間には譲導性負荷19の端
子に負電圧が印加され、負荷電流は急速に減衰し消滅す
る。転流コンデンサ16の充電電流が0になると補助サ
ィリスタ15はターンオフする。補助サィリスタ15が
ターンオフした一定時限後に、転流コンデンサ16は補
充電装層19の作用で元の図示極性に充電される。次は
直流電源10‘こ誘導性負荷20からの逆起電力は、主
サィリスタ12を通って逆向に負荷電流が流れているも
のとする。
It is assumed that the commutating capacitor 16 is charged to the illustrated polarity, and its charging voltage reaches the power supply voltage of the auxiliary charging device layer 19. Next, when a gate pulse is applied to the gates of the main thyristors 11 and 12, the main thyristor 11 becomes conductive, and a forward load current flows through the load 201, reaching a steady state. Since the magnitude and direction of the load current are constantly changing, the gating pulses of the main thyristors 11, 12 are preferably maintained until a gating signal is applied to the auxiliary thyristor 15 to begin cutting off the circuit current. To cut off the forward load current, the auxiliary thyristor 15 is turned on. When the auxiliary thyristor 15 is made conductive, the charge in the commutation capacitor 16 is transferred to the auxiliary thyristor 15, the main thyristor 11, and the commutation reactor 1.
7, but when the magnitude of the discharge current becomes greater than the load current, the main thyristor 11 turns off.
A portion of the discharge current that exceeds the load current is passed through the main thyristor 12. As a method of applying a gate pulse to the main thyristor 12 and igniting it, the gate pulse may be connected to the main thyristor 12 until the discharge current reaches a positive peak value. When the discharge current reaches a positive peak value, the charge on the commutating capacitor 16 becomes zero. When the discharge current exceeds a positive peak value, the commutating capacitor 16 is charged to a polarity opposite to that shown. When this current gradually decays and becomes equal to the load current again, the main thyristor 12 becomes blocked. The load current charges the commutating capacitor 6 until the terminal voltage of the commutating capacitor 16 becomes equal to the limiting voltage of the nonlinear resistor 13 having constant voltage characteristics. When the terminal voltage of the commutating capacitor 6 exceeds the voltage limit of the non-linear resistor 13, the load current is shunted into the series circuit of the non-linear resistor 13 and the dead current resistor 14. If the limiting voltage of the nonlinear resistor 13 is selected in advance to be 1.5 to several times the voltage of the DC power supply 10, a negative voltage will be applied to the terminals of the concessional load 19 during this period. The load current rapidly decays and disappears. When the charging current of the commutating capacitor 16 becomes 0, the auxiliary thyristor 15 is turned off. After a certain time period when the auxiliary thyristor 15 is turned off, the commutating capacitor 16 is charged to the original polarity shown by the auxiliary charging layer 19. Next, it is assumed that the back electromotive force from the inductive load 20 of the DC power supply 10' causes the load current to flow in the opposite direction through the main thyristor 12.

逆向の負荷電流をしや断するときも、補助サイリスタ1
5を導通させる。補助サィリスタ15を導通させると、
転流コンデンサ16の電荷は補助サイリスタ15、主サ
ィリスタ12、転流リアクトル17を通って放電する。
このとき、主サィリス夕12には負荷電流iLに放電電
流が重畳して流れる。放電電流が正のピーク値に達する
と転流コンデンサ16の電荷は0になる。放電電流が正
のピーク値を越えると、転流コンデンサ16は図示極性
とは逆の樋性に充電される。充電電流が0になると、次
に転流コンデンサー6の電荷は転流リアクトル17、主
サイリスタ12、バイパスダイオード18を通って放電
するが、放電電流の大きさが負荷電流に等しくなると、
主サイリスタ12はターンオフする。放電電流は転流コ
ンデンサ16の端子電圧が定電圧特性をもった非直線抵
抗器13の制限電圧に等しくなるまで転流コンデンサ1
6を図示極性に充電する。転流コンデンサ16の端子電
圧が非直線抵抗器13の制限電圧を越えると、負荷電流
は非直線抵抗器13と滅流抵抗器14との直列回路に分
流する。予め非直線抵抗器13の制限電圧が直流電源1
0の電圧の1.5乃至数倍の値であるように選定してお
くと、この期間には逆起電力の発生する誘導性負荷20
の端子に正の高電圧が印加され、負荷電流は急速に減衰
し消滅する。転流コンデンサ16の充電電流が0になる
とバイパスダイオード18は阻止状態になる。転流コン
デンサ16は補充電装層19の作用がなくても元の図示
極性に充電されている。事故電流のしや断の過程も負荷
電流のしや断と良く似ている。
When cutting off the load current in the opposite direction, the auxiliary thyristor 1
5 becomes conductive. When the auxiliary thyristor 15 is made conductive,
The charge in the commutating capacitor 16 is discharged through the auxiliary thyristor 15, the main thyristor 12, and the commutating reactor 17.
At this time, a discharge current flows through the main circulator 12 in a manner superimposed on the load current iL. When the discharge current reaches a positive peak value, the charge on the commutating capacitor 16 becomes zero. When the discharge current exceeds a positive peak value, the commutating capacitor 16 is charged with a polarity opposite to that shown. When the charging current becomes 0, the charge in the commutation capacitor 6 is then discharged through the commutation reactor 17, the main thyristor 12, and the bypass diode 18, but when the magnitude of the discharge current becomes equal to the load current,
Main thyristor 12 is turned off. The discharge current continues until the terminal voltage of the commutating capacitor 16 becomes equal to the limiting voltage of the non-linear resistor 13 having constant voltage characteristics.
6 to the polarity shown. When the terminal voltage of the commutating capacitor 16 exceeds the voltage limit of the non-linear resistor 13, the load current is shunted into the series circuit of the non-linear resistor 13 and the dead current resistor 14. The limited voltage of the nonlinear resistor 13 is set in advance to the DC power supply 1.
If the value is selected to be 1.5 to several times the voltage at zero, the inductive load 20 that generates back electromotive force during this period
A high positive voltage is applied to the terminals of , and the load current rapidly decays and disappears. When the charging current of the commutating capacitor 16 becomes 0, the bypass diode 18 enters a blocking state. The commutating capacitor 16 is charged to the original polarity shown even without the action of the auxiliary charger layer 19. The process of breakage of fault current is very similar to that of load current.

第2図、第3図は、本発明の直流固体しや断装置による
事故電流しや断時のオシログラムである。第2図におい
て、主サィリスタ11,12のゲートにそれぞれゲート
パルスeGMF,eGMRを加えたとき主サィリスタ1
1が導通し、負荷電流iLが流れ定常電流loに達した
ものとする。時間Lにおいて誘導性負荷19の内部で短
絡事故を生じたと仮定すると、負荷電流iLは推定短絡
電流leに向って急速に増加している。時間T,におい
て負荷電流iLがしや断器の設定値(定常順電流)ls
に達したとき、補助サィリスタ15のゲートにゲートパ
ルスeG^を加え、補助サィリスタ15を導通させる。
補助サイリスタ15を導通させると、転流コンデンサー
6の電荷は補助サィリスタ15、主サィリスタ11、転
流リアクトル17を通って放電する。予め放電電流i。
の増加率は事故電流(負荷電流)iLの増加率より、極
めて大きくなるように選定しておく。放電電流iCの大
きさがしや断器の設定値lsより大きくなると、主サイ
リスタ11はターンオフする。放電電流i。のうちしや
断器の設定値lsを上廻る部分は主サイリスタ12に流
す。主サィリスタ12にゲートパルスを与え点弧させる
方法としてはT=T,で、主サイリスタ12のゲートパ
ルスeGMFを取り除く代りに、放電電流iCが正のピ
ーク値lpf‘こ達するまで主サィリスタ11のゲート
パルスeGMR接続させておけばよい。放電電流i。が
正のピーク値lpfに達すると転流コンデンサ16の電
荷は0になる。放電電流iCが正のピーク値を越えると
、転流コンデンサ16は第1図の図示極性とは逆の極性
に充電される。この電流が次第に減衰し、T2で再びし
や断器の設定値lsに等しくなると、主サィリスタ12
は阻止状態になる。事故電流(負荷電流)iLは転流コ
ンデンサー6の端子電圧が非直線抵抗器13の制限電圧
に等しくなるまで転流コンデンサ16を充電する。転流
コンデンサ16の端子電圧が非直線抵抗器13の制限電
圧を越えると、事故電流iLは非直線抵抗器13と減流
抵抗器14との直列回路に分流する。これ以後回路のィ
ンダクタンスに貯えられたェネルギは非直線抵抗器13
と減流抵抗器14とで消費され、事故電流iLは、急速
に減衰しT4で消滅する。転流コンデンサ16の充電電
流i。が0になると、補助サィリスタ15はターンオフ
する。誘導性負荷20の議起電圧が直流電源10の電圧
より高いときは、第3図において、主サィリスタ11,
12のゲートにそれぞれゲートパルスeGMF,eGM
Rを加えたとき主サィリスタ12が導通し負荷電流iL
が流れ定常電流lo′に達する。時間To′において直
流電源1 0の内部で短絡事故を生じたと仮定すると負
荷電流iLは推定短絡電流le′に向って急速に増加し
ていく。時間T,′において負荷電流iLがしや断器の
設定値(定常逆電流)ls′に達し、このとき、補助サ
ィリスタ15のゲートにゲートパルスeG^を加え補助
サィリスタ16を導通させると転流コンデンサ16の電
荷は補助サィリスタ15、主サィリスタ12、転流リア
クトル17を通って放電する。放電流iCが正のピーク
値lpfに達すると転流コンデンサ16の電荷は0にな
る。放電電流iCが正のピーク値lpfを越えると、転
流コンデンサ16は第1図の図示樋性とは逆の極性に充
電される。充電亀流が0になると、次に転流コンデンサ
16の電荷は転流リアクトル17、主サィリスタ12、
バイパスダイオード18を通って放電するが、L′で放
電電流iCの大きさがしや断器の設定値ls′に等しく
なると、主サィリスタ12はターンオフする。事故電流
iLは転流コンデンサ16の端子電圧が非直線抵抗器1
3の制限電圧に等しくなるまで転流コンデンサ16を充
電する。転流コンデンサ16の端子電圧が非直線抵抗器
13の制限電圧を越えると、事故電流iLは非直線抵抗
器13と滅流抵抗器14との直列回路に分流する。これ
以後回路のィンダクタンスに貯えられたェネルギは非直
線抵抗器13と減流抵抗器14とで消費され、事故電流
は急速に減衰しT4′で消滅する。転流コンデンサの充
電電流iCが0になると、バイパスダイオード18は阻
止状態になる。かかる直流固体しや断装置に使用する定
電圧特性をもった非直線抵抗器13には、酸化亜鉛また
は酸化亜鉛と酸化マグネシウムとを主体にした金属酸化
物系焼結体材料が適している。
FIGS. 2 and 3 are oscillograms at the time of fault current shear breakage using the DC solid state shear breakage device of the present invention. In FIG. 2, when gate pulses eGMF and eGMR are applied to the gates of main thyristors 11 and 12, respectively, main thyristor 1
1 is conductive, and the load current iL flows to reach the steady current lo. Assuming that a short circuit fault occurs inside the inductive load 19 at time L, the load current iL is rapidly increasing toward the estimated short circuit current le. At time T, the load current iL is the set value of the disconnector (steady forward current) ls
When it reaches, a gate pulse eG^ is applied to the gate of the auxiliary thyristor 15 to make the auxiliary thyristor 15 conductive.
When the auxiliary thyristor 15 is made conductive, the charge in the commutation capacitor 6 is discharged through the auxiliary thyristor 15, the main thyristor 11, and the commutation reactor 17. Pre-discharge current i.
The rate of increase in the fault current (load current) iL is selected to be much larger than the rate of increase in the fault current (load current) iL. When the magnitude of the discharge current iC becomes larger than the set value ls of the breaker, the main thyristor 11 is turned off. Discharge current i. The portion exceeding the set value ls of the insulator and disconnector is passed to the main thyristor 12. The method of applying a gate pulse to the main thyristor 12 and igniting it is T=T, and instead of removing the gate pulse eGMF of the main thyristor 12, the main thyristor 11 is gated until the discharge current iC reaches a positive peak value lpf'. It is sufficient to connect the pulse eGMR. Discharge current i. When the voltage reaches the positive peak value lpf, the electric charge on the commutating capacitor 16 becomes zero. When the discharge current iC exceeds a positive peak value, the commutating capacitor 16 is charged with a polarity opposite to that shown in FIG. When this current gradually attenuates and becomes equal to the set value ls of the breaker again at T2, the main thyristor 12
becomes blocked. The fault current (load current) iL charges the commutating capacitor 16 until the terminal voltage of the commutating capacitor 6 becomes equal to the limiting voltage of the nonlinear resistor 13. When the terminal voltage of the commutating capacitor 16 exceeds the voltage limit of the non-linear resistor 13, the fault current iL is shunted into the series circuit of the non-linear resistor 13 and the current reducing resistor 14. After this, the energy stored in the inductance of the circuit is transferred to the non-linear resistor 13.
and the current reducing resistor 14, the fault current iL rapidly attenuates and disappears at T4. Charging current i of commutating capacitor 16. When becomes 0, the auxiliary thyristor 15 is turned off. When the induced voltage of the inductive load 20 is higher than the voltage of the DC power supply 10, the main thyristor 11,
Gate pulses eGMF and eGM are applied to each of the 12 gates.
When R is applied, the main thyristor 12 conducts and the load current iL
flows and reaches a steady current lo'. Assuming that a short-circuit accident occurs inside the DC power supply 10 at time To', the load current iL rapidly increases toward the estimated short-circuit current le'. At time T,', the load current iL reaches the set value of the circuit breaker (steady reverse current) ls', and at this time, when a gate pulse eG^ is applied to the gate of the auxiliary thyristor 15 to make the auxiliary thyristor 16 conductive, commutation occurs. The charge in the capacitor 16 is discharged through the auxiliary thyristor 15, the main thyristor 12, and the commutation reactor 17. When the discharge current iC reaches the positive peak value lpf, the charge on the commutating capacitor 16 becomes zero. When the discharge current iC exceeds the positive peak value lpf, the commutating capacitor 16 is charged with a polarity opposite to that shown in FIG. When the charging current becomes 0, the charge in the commutation capacitor 16 is transferred to the commutation reactor 17, the main thyristor 12,
Discharge occurs through the bypass diode 18, and when the magnitude of the discharge current iC at L' becomes equal to the set value ls' of the circuit breaker, the main thyristor 12 is turned off. The fault current iL is caused by the terminal voltage of the commutating capacitor 16 being the non-linear resistor 1.
The commutating capacitor 16 is charged until it becomes equal to the limit voltage of 3. When the terminal voltage of the commutating capacitor 16 exceeds the voltage limit of the non-linear resistor 13, the fault current iL is shunted into the series circuit of the non-linear resistor 13 and the dead current resistor 14. After this, the energy stored in the inductance of the circuit is consumed by the nonlinear resistor 13 and the current reducing resistor 14, and the fault current rapidly attenuates and disappears at T4'. When the charging current iC of the commutating capacitor becomes 0, the bypass diode 18 enters the blocking state. For the non-linear resistor 13 having constant voltage characteristics used in such a DC solid state breaker, a metal oxide sintered material containing zinc oxide or zinc oxide and magnesium oxide as main components is suitable.

この種の非直線抵抗器は長時間直流電圧を印加したまま
の状態におくと劣化が箸るしく促進される欠点があるが
、一般に直流電鉄変電所のき蚤用高速度しや断器は直列
に断路器を接続して使用し、長時間負荷回路を開放状態
におくときには、断路器を開放するので、本発明による
と団体しや断器に電源電圧が印加される期間はしや断直
後から、再閉路または断路器が開放されるまでの数十秒
間に過ぎない。非直線抵抗器13に直列に接続した減流
抵抗器14は比較的高価な非直線抵抗器13の分担電圧
の一部の負担と転流LC回路の充放電電流を減衰させる
のに役立つ。第4図はこの発明の他の実施例を示すもの
で、直流電源10を共通として複数の負荷(ここでは第
1図の実施例に別の譲導性負荷30を追加したものであ
る)を図のように接続し、その各誘導性負荷20,30
に流れる電流をしや断可能に構成したものである。
This type of non-linear resistor has the disadvantage that its deterioration accelerates significantly if DC voltage is left applied for a long period of time, but high-speed flea breakers and breakers for DC electric railway substations are generally used. When a disconnector is connected in series and the load circuit is left open for a long time, the disconnector is opened. It only takes a few tens of seconds from immediately after that until the circuit is reclosed or the disconnector is opened. A current reducing resistor 14 connected in series with the non-linear resistor 13 serves to bear a portion of the voltage shared by the relatively expensive non-linear resistor 13 and to attenuate the charging and discharging current of the commutating LC circuit. FIG. 4 shows another embodiment of the present invention, in which a DC power supply 10 is used in common for a plurality of loads (here, another concessional load 30 is added to the embodiment of FIG. 1). Connect as shown in the figure, and each inductive load 20, 30
It is constructed so that the current flowing through it can be cut off.

この場合のしや断器として転流リアクトル27と転流コ
ンデンサ26および補充電装層19を共通とし、これに
主サィリスタI1,12,21,22、非直線抵抗器1
3,23、減流抵抗器14,24、補助サイリスタ15
,25およびバイパスダイオード18,28を図のよう
に接続したものである。このような構成にすることによ
り、複数の負荷電流をしや断する場合第1図のしや断装
置を負荷数に応じて配設することが考えられるが、これ
に比べて転流リアクトル27および転流コンデンサ26
が共通になっているので構成が簡単となる。さらに前述
した構成の固体しや断器は、直流電流しや断時アークが
発生しないので、第1図の構成のものを複数個縫合せる
場合あるいは第4図の構成装置を用いる場合には各主サ
イリスタを共通のタンク内に収納でき、これによって従
来のように高速度直流しや断器を用いるものに比べて軽
量でしかもコンパクトにまとめることができる。
In this case, the commutating reactor 27, the commutating capacitor 26, and the auxiliary charging layer 19 are used as a common disconnector, and the main thyristors I1, 12, 21, 22, and the nonlinear resistor 1
3, 23, current reducing resistor 14, 24, auxiliary thyristor 15
, 25 and bypass diodes 18, 28 are connected as shown in the figure. With such a configuration, when multiple load currents are to be cut off, it is possible to arrange the cutting-off devices shown in Fig. 1 according to the number of loads, but compared to this, the commutation reactor 27 and commutation capacitor 26
Since these are common, the configuration is simple. Furthermore, since the solid shear breaker with the above-mentioned configuration does not generate direct current or disconnection arcs, it is recommended to The thyristors can be housed in a common tank, making it lighter and more compact than conventional systems that use high-speed direct current or disconnectors.

また各主サィリスタを共通のタンク内に収納できること
から、特に冷却を必要とする主サィIJスタの冷却器を
1台で共通にすることにより、直流電源10つまり整流
器の容量に見合って冷却器の総容量を小さくできる。そ
の他この発明の要旨を変更しない範囲で種々変形して実
施できる。このように、本発明はサィリスタ等の制御極
付電気弁のゲート制御と、転流コンデンサの放電による
転流作用とにより、直流主回路を開閉制御する直流固体
しや断装置において、回路構成を2端子とし、単極の断
路器による主回路開放を可能にし、事故時、電源側およ
び負荷側のインダクタンスに貯えられたェネルギを金属
酸化物系非直線抵抗器と減流抵抗器との直列回路で消費
させることで電流を急速に消滅させることを可能にし、
非直線抵抗器の制限電圧を直流電源電圧の1.5乃至数
倍以上に選定することによって、事故電流消滅後は実質
的に端子間絶縁抵抗を無限大にし、簡単な回路で回路を
開放状態に保ち、これによって装置全体を小形化し得安
価に製作し得るとともにしや断後、引き続き再閉路、再
しや断のできる2端子の両方向性直流固体しや断装置を
提供できる。
In addition, since each main thyristor can be housed in a common tank, the cooler for the main thyristor, which especially requires cooling, can be shared in one unit, making it possible to increase the number of coolers commensurate with the capacity of the DC power supply 10, that is, the rectifier. The total capacity can be reduced. In addition, various modifications can be made without changing the gist of the invention. As described above, the present invention improves the circuit configuration of a DC solid state shunt breaker that controls the opening and closing of a DC main circuit by gate control of an electric valve with a control pole such as a thyristor and commutation action by discharging a commutation capacitor. It has two terminals, which enables the main circuit to be opened using a single-pole disconnector, and in the event of an accident, the energy stored in the inductance on the power supply side and the load side can be transferred to a series circuit with a metal oxide nonlinear resistor and a current reducing resistor. This makes it possible to quickly eliminate the current by consuming it in
By selecting the limiting voltage of the non-linear resistor to be 1.5 to several times higher than the DC power supply voltage, the insulation resistance between the terminals becomes virtually infinite after the fault current disappears, and the circuit can be placed in an open state with a simple circuit. This makes it possible to miniaturize the entire device, manufacture it at low cost, and provide a two-terminal bidirectional DC solid state shearing device that can be reclosed and re-broken after shearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す結線図、第2図、第3
図は同実施例の動作を説明するためのオシログラム、第
4図は本発明の他の実施例を示す結線図である。 10・・・・・・直流電源、11,12…主サィリス夕
、13・・・・・・非直線抵抗器、14・…・・減流抵
抗器、15・・・…補助サイリスタ、16・・・・・・
転流コンデンサ、17・・・・・・転流リアクトル、1
8・・・・・・バイパスダイオード、19・・・・・・
補充電装層、20・・…・誘導性負荷、21,22・・
・・・・主サィリスタ、23・・・・・・非直線抵抗器
、24・・・・・・減流抵抗器、25・・・・・・補助
サィリス夕、26・・・・・・転流コンデンサ、27・
・・・・・転流リアクトル、28・・・・・・バイパス
ダイオード、30・・・・・・誘導性負荷。 第2図 第1図 第3図 第4図
Figure 1 is a wiring diagram showing one embodiment of the present invention, Figures 2 and 3 are
The figure is an oscillogram for explaining the operation of the same embodiment, and FIG. 4 is a wiring diagram showing another embodiment of the present invention. 10...DC power supply, 11, 12...Main thyristor, 13...Non-linear resistor, 14...Reducing current resistor, 15...Auxiliary thyristor, 16...・・・・・・
Commutation capacitor, 17... Commutation reactor, 1
8... Bypass diode, 19...
Auxiliary charging layer, 20... Inductive load, 21, 22...
...Main thyristor, 23...Non-linear resistor, 24...Reducing current resistor, 25...Auxiliary thyristor, 26... current capacitor, 27.
... Commutation reactor, 28 ... Bypass diode, 30 ... Inductive load. Figure 2 Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 直流電源から負荷に対して電流を供給可能で逆並列
接続された主サイリスタと、この主サイリスタに並列に
接続され転流リアクトルと転流コンデンサと補助サイリ
スタ及びこの補助サイリスタに逆並列接続されたバイパ
スダイオードの直列回路からなる上記主サイリスタをタ
ーンオフさせるための転流回路と、上記主サイリスタに
並列に接続され金属酸化物系非直線抵抗器と減流抵抗器
の直列回路からなる減流回路と、上記転流コンデンサを
充電する補充電装置とを備えた両方向性直流固体しや断
装置。 2 直流電源から負荷に対して電流を供給可能で逆並列
接続された主サイリスタと、この主サイリスタに並列に
接続され転流リアクトルと転流コンデンサと補助サイリ
スタ及びこの補助サイリスタに逆並列接続されたバイパ
スダイオードの直列回路からなる上記主サイリスタをタ
ーンオフさせるための転流回路と、上記主サイリスタに
並列に接続され非直線抵抗器と減流抵抗器の直列回路か
らなる減流回路と、上記転流コンデンサを充電する補充
電装置とを備えた直流固体しや断装置を少なくとも2組
設け、上記直流電源および上記補充電装置を1組ずつ用
い、これらを上記直流固体しや断装置に共用したことを
特徴とする両方向性直流固体しや断装置。
[Claims] 1. A main thyristor that can supply current from a DC power source to a load and is connected in antiparallel; a commutating reactor, a commutating capacitor, and an auxiliary thyristor that are connected in parallel to the main thyristor; and the auxiliary thyristor. a commutation circuit for turning off the main thyristor consisting of a series circuit of bypass diodes connected in antiparallel to the main thyristor; and a series circuit of a metal oxide nonlinear resistor and a current reducing resistor connected in parallel to the main thyristor. A bidirectional direct current solid state shielding device comprising a current reducing circuit consisting of a current reducing circuit and an auxiliary charging device for charging the commutating capacitor. 2. A main thyristor that can supply current to the load from a DC power source and is connected in anti-parallel; a commutating reactor, a commutating capacitor, and an auxiliary thyristor that are connected in parallel to this main thyristor; and a thyristor that is connected in anti-parallel to this auxiliary thyristor. a commutation circuit for turning off the main thyristor consisting of a series circuit of bypass diodes; a current reduction circuit connected in parallel to the main thyristor and consisting of a series circuit of a non-linear resistor and a current reduction resistor; At least two sets of DC solid-state shearing devices equipped with an auxiliary charging device for charging the capacitor are provided, one set each of the above-mentioned DC power supply and the above-mentioned auxiliary charging device are used, and these are shared by the above-mentioned DC solid-state shearing device. A bidirectional DC solid shredding device featuring:
JP54028967A 1979-03-13 1979-03-13 DC solid shredder Expired JPS601783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54028967A JPS601783B2 (en) 1979-03-13 1979-03-13 DC solid shredder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54028967A JPS601783B2 (en) 1979-03-13 1979-03-13 DC solid shredder

Publications (2)

Publication Number Publication Date
JPS55121745A JPS55121745A (en) 1980-09-19
JPS601783B2 true JPS601783B2 (en) 1985-01-17

Family

ID=12263173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54028967A Expired JPS601783B2 (en) 1979-03-13 1979-03-13 DC solid shredder

Country Status (1)

Country Link
JP (1) JPS601783B2 (en)

Also Published As

Publication number Publication date
JPS55121745A (en) 1980-09-19

Similar Documents

Publication Publication Date Title
US6075684A (en) Method and arrangement for direct current circuit interruption
JP6250153B2 (en) High voltage direct current interrupting device and method
EP3093941B1 (en) Direct current circuit breaker and method using the same
JPS63131411A (en) Commutation circuit
US4745513A (en) Protection of GTO converters by emitter switching
Raghavendra et al. Modified Z-source DC circuit breaker with enhanced performance during commissioning and reclosing
CN110739167A (en) DC switch equipment
US5598311A (en) D.C. breaker arc extinguishing circuit
JPS61153905A (en) Arc extinguisher
US4670830A (en) Method and apparatus for the protection of converter equipment with GTO thyristors against short circuit
JP3355066B2 (en) Bidirectional DC circuit breaker
DE69411651T2 (en) Switching device in a DC circuit for diverting a current from one circuit to another
DE1463645A1 (en) Control system for electrical devices
JPS601783B2 (en) DC solid shredder
JPS601784B2 (en) DC solid shredder
JP3757030B2 (en) Surge voltage suppressor
JPH0346934B2 (en)
RU2074472C1 (en) Overvoltage protective gear for ac mains loads
JPH11275872A (en) Overvoltage protective device for capacitor of power conversion circuit
RU2095906C1 (en) Surge voltage protection device for ac mains loads
RU2113046C1 (en) Device for protecting loads against abnormal ac supply voltage
JP2784142B2 (en) Circuit breakers and circuit breakers
JPH0235414B2 (en)
KR830000220B1 (en) Transient Voltage Suppressor for High Speed Driving System
JPH06168820A (en) Power supply for nuclear fusion device