JPS60177844A - Main shaft speed control of numerically controlled device - Google Patents

Main shaft speed control of numerically controlled device

Info

Publication number
JPS60177844A
JPS60177844A JP3395684A JP3395684A JPS60177844A JP S60177844 A JPS60177844 A JP S60177844A JP 3395684 A JP3395684 A JP 3395684A JP 3395684 A JP3395684 A JP 3395684A JP S60177844 A JPS60177844 A JP S60177844A
Authority
JP
Japan
Prior art keywords
speed
main shaft
chuck
rotation speed
rotating speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3395684A
Other languages
Japanese (ja)
Inventor
Atsushi Shima
淳 島
Naoki Fujita
直樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP3395684A priority Critical patent/JPS60177844A/en
Publication of JPS60177844A publication Critical patent/JPS60177844A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43125Speed as function of size of chuck, diameter tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43203Limitation of speed, permissible, allowable, maximum speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49302Part, workpiece, code, tool identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To control the rotating speed of a main shaft to within the allowable maximum rotating speed and prevent the accident of a work getting out of place by making the main shaft speed control of a numerically controlled device automatically set the allowable maximum rotating speed in accordance with the size of a chuck. CONSTITUTION:The main shaft speed contol of a numerically controlled device controls the speed of a main shaft motor 12 so that the rotating speed of a main shaft 14 will agree with the directed value. In this main shaft speed control, a memory is set to store the allowable maximum rotating speed corresponding to the discrimination result of a chuck discriminator 23 which functions to detect the size of a chuck 19 for fixing a work 18 on a head stock 17 of the main shaft 14. In addition, it is equipped with a device which clamps the speed value directed to the main shaft motor 12 at the allowable maximum rotating speed or issues an alarm when the direction is given over the allowable maximum rotating speed according to the discrimination result of the chuck discriminator 23.

Description

【発明の詳細な説明】 発明の技術分野 本発明は数値制御装置の主軸速度制御器に関し、特に主
軸モータに対する速度指令値が許容最大回転数を越えた
場合に何等かの保護措置を講じるようにした主軸速度制
御器に関するものである。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to a spindle speed controller of a numerical control device, and in particular, to a spindle speed controller for a numerical control device, and particularly to a spindle speed controller that takes some protective measures when the speed command value for the spindle motor exceeds the allowable maximum rotation speed. The present invention relates to a spindle speed controller.

従来技術と問題点 従来のこの種主軸速度制御器は、主軸の許容最大回転数
を予めキーボード等よりパラメータとして手動で設定し
ておくか或はNC指令プログラムで指令するものであっ
た為、設定や指令忘れがあると、主軸が本来の許容最大
回転数以上で回転することにより機械的な悪影響が生し
たりワークがチャックより離れるといった事故を生じる
危険性があった。また、一般に主軸の許容最大回転数は
、チャックやワークの大きさにより異なる。即ち、チャ
ックは油圧によりワークを締め付けることでワークを把
持するものであるが、その強さは一定である。一方、チ
ャックの径が大きい程また回転数が高い程遠心力は大き
くなり締め付は力は小さくなる。従って、一定以上の締
め付は力を保証する為には径の大きなチャックを使用し
た場合は最大回転数を小さく抑えなければならない。こ
の為従来、大きさの異なるチャックを使用する度にオペ
レータが許容最大回転数の設定をやり直しておリ、比較
的面倒な操作が必要であった。
Conventional technology and problems In conventional spindle speed controllers of this type, the maximum allowable rotation speed of the spindle must be manually set as a parameter from a keyboard, etc., or commanded using an NC command program. If a command is forgotten, there is a risk that the spindle will rotate at a speed higher than its original allowable maximum rotation speed, resulting in mechanical damage or an accident in which the workpiece separates from the chuck. Additionally, the maximum allowable rotation speed of the spindle generally varies depending on the size of the chuck and workpiece. That is, a chuck grips a workpiece by tightening the workpiece using hydraulic pressure, and its strength is constant. On the other hand, the larger the diameter of the chuck and the higher the rotational speed, the larger the centrifugal force and the smaller the tightening force. Therefore, if a chuck with a large diameter is used, the maximum rotational speed must be kept low in order to guarantee the tightening force beyond a certain level. For this reason, in the past, the operator had to reset the allowable maximum rotation speed each time a chuck of a different size was used, which required a relatively troublesome operation.

発明の目的 本発明はこのような従来の欠点を改善したものであり、
その目的は、チャックの大きさに応じた許容最大回転数
の設定を自動的に行なわせることにより、オペレータの
介在を不要とし、主軸の回転数が許容最大回転数を越え
ないように制御することにある。
Purpose of the Invention The present invention improves these conventional drawbacks, and
The purpose is to automatically set the maximum allowable rotation speed according to the size of the chuck, thereby eliminating the need for operator intervention and controlling the spindle rotation speed so that it does not exceed the maximum allowable rotation speed. It is in.

発明の実施例 ′第1図は本発明の実施例のブロック図であり、本発明
をNC旋盤に適用した例を示す。同図において、1はマ
イクロプロセッサで、周辺回路とはバス2を介して接続
されている。3はシステムプログラム等を記憶するRO
M、4はNCテープ5のNC指令プログラムをテープリ
ーダ6で読取った内容、磁気バブルメモリ7に記憶され
たNC指令プログラム、各種パラメータ等を一時記憶す
る領域とその他演算等のためのワーク領域を有するRA
M、8は警告ランプ8aを有する表示パネル、9は主軸
に対するディジタル値の回転指令値がセットされるラン
チ回路、10はレジスタ10の内容をアナログ量に変換
するD/A変換器、11はD/A変換器10の出力に応
じた速度で主軸モータ12を回転させる速度アンプであ
り、主軸モータ12に取付けられたタコジェネレータ1
3の出力をフィードバンク信号として取り込んでいる。
Embodiment of the Invention' FIG. 1 is a block diagram of an embodiment of the invention, showing an example in which the invention is applied to an NC lathe. In the figure, reference numeral 1 denotes a microprocessor, which is connected to peripheral circuits via a bus 2. 3 is RO that stores system programs etc.
M, 4 is an area for temporarily storing the contents of the NC command program on the NC tape 5 read by the tape reader 6, the NC command program stored in the magnetic bubble memory 7, various parameters, etc., and a work area for other calculations, etc. RA with
M, 8 is a display panel having a warning lamp 8a, 9 is a launch circuit in which a digital rotation command value for the spindle is set, 10 is a D/A converter that converts the contents of register 10 into an analog quantity, 11 is D A speed amplifier that rotates the main shaft motor 12 at a speed according to the output of the /A converter 10, and a tachogenerator 1 attached to the main shaft motor 12.
The output of 3 is taken in as a feed bank signal.

また、13a、13bは主軸モータ12の軸12aに取
付けられたギヤ、13c、13dは主軸14に取付けら
れたギヤ、13 Q 。
Further, 13a and 13b are gears attached to the shaft 12a of the main shaft motor 12, and 13c and 13d are gears attached to the main shaft 14, 13Q.

13 fは補助ギヤ、15.16はクラッチであり、こ
れらは可変減速器を構成し、ラッチ回路21の出力によ
りクラッチ15をオン、゛クラッチ16をオフとすると
ギヤ13a、13Cが働き主軸モータ12の軸12aと
主軸14との回転伝達比(ギヤ比)は1:1となり、ク
ラッチ15をオフ、クラッチ16をオンすれとギヤ13
b、13e 〜13fが働きギヤ比は1:2となる。
13 f is an auxiliary gear, and 15.16 is a clutch, which constitute a variable speed reducer. When the clutch 15 is turned on by the output of the latch circuit 21 and the clutch 16 is turned off, the gears 13a and 13C are activated to drive the main shaft motor 12. The rotation transmission ratio (gear ratio) between the shaft 12a and the main shaft 14 is 1:1, and when the clutch 15 is turned off and the clutch 16 is turned on, the gear 13
b, 13e to 13f work, and the gear ratio is 1:2.

主軸14には主軸台17が連結され、ワーク18は油圧
式のチャック19により把持されて主軸台17に固定さ
れる。また、主軸14の他端に回転数検出器20が装着
され、ここで検出された主軸回転数はレジスタ21を介
してマイクロプロセッサ1に読取られる。
A headstock 17 is connected to the main shaft 14, and a workpiece 18 is gripped by a hydraulic chuck 19 and fixed to the headstock 17. Further, a rotation speed detector 20 is attached to the other end of the main shaft 14, and the rotation speed of the main shaft detected here is read by the microprocessor 1 via a register 21.

詔はチャック19の大きさを検出するチャック識別器で
あり、その識別結果はラッチ回路24を介してマイクロ
プロセッサ1により読取られる。またX軸制御回路5と
X軸モータ拐が設けられている。
The yoke is a chuck discriminator that detects the size of the chuck 19, and the discrimination result is read by the microprocessor 1 via the latch circuit 24. Further, an X-axis control circuit 5 and an X-axis motor circuit are provided.

NC指令プログラムは、NCテープ5の形式で与えられ
たときはテープリーダ6を介して、磁気バブルメモリ7
に記憶されて与えられたときはこれから直接にそれぞれ
読取られてRAM4に記憶される。このNC指令プログ
ラムの中には、主軸の回転指令値(周速一定制御を行な
う場合は指令周速値が、行なわない場合は指令回転数値
が記憶される)、ギヤ選択指令値等が含まれ、第2図に
示すように、これらの情報がRAM4に記憶される。ま
た、マイクロプロセラ−’l−1は電源が投入されると
、初期化処理を行ない、その中でチャック識別器詔の識
別信号をラッチ回路24を介して読取り、これを第2図
に示すようにRAM4に記憶する。なお、初期化処理以
外のときに識別信号を記憶するようにしても良い。一方
、RAM4のパラメータ設定領域には第3図に示すよう
に、チャック大の識別結果に対応して許容最大回転数例
えば11000rpが記憶され、チャック小の識別結果
に対応して許容最大回転数例えば3000rpmが記憶
される。また、図示しないがRAM4のギヤ比パラメー
タ設定領域には、ギヤ比1:1と1:2に対応するパラ
メータ値が設定される。これらのパラメータの設定はオ
ペレータにより行なわれる。
When the NC command program is given in the form of an NC tape 5, it is sent to the magnetic bubble memory 7 via the tape reader 6.
When the data is stored in the RAM 4 and given, the data is directly read from the data and stored in the RAM 4. This NC command program includes the spindle rotation command value (if constant peripheral speed control is performed, the command circumferential speed value is stored; if not, the command rotation value is stored), gear selection command value, etc. , these pieces of information are stored in the RAM 4, as shown in FIG. Furthermore, when the power is turned on, the microprocessor 1-1 performs initialization processing, during which it reads the identification signal of the chuck discriminator command via the latch circuit 24, and reads this as shown in FIG. is stored in RAM4. Note that the identification signal may be stored at times other than initialization processing. On the other hand, as shown in FIG. 3, in the parameter setting area of the RAM 4, a maximum allowable rotation speed, for example 11000 rpm, is stored in response to the identification result of a large chuck, and a maximum allowable rotation speed, e.g. 3000 rpm is stored. Although not shown, parameter values corresponding to gear ratios of 1:1 and 1:2 are set in a gear ratio parameter setting area of the RAM 4. Setting of these parameters is performed by the operator.

第4図はマイクロプロセッサ1が行なう主軸速度制御処
理の一例を示すフローチャートである。
FIG. 4 is a flowchart showing an example of spindle speed control processing performed by the microprocessor 1.

同図において、ステップS1では、指令回転数が所謂S
4桁直接指令で行なわれ且つ周速一定制御がオフの場合
は、指令されたS4桁の値を目標回転数Pとして決定し
、また周速一定制御がオンの場合は、指令されたS4桁
の値を目標周速値として認識し、これとRAM4に逐次
記憶されるX軸の現在値とから目標回転数Pを算出する
。次に、RAM4に記憶されたチャック識別結果に対応
する許容最大回転数LPを予めチャック大、小に対応し
てRAM4に記憶されたパラメータから選択し、この選
択した許容最大回転数LPと先にめた目標回転数Pとを
比較しくS2)、目標回転数Pが許容最大回転数LPよ
り小さければステップS3に移行し、許容最大回転数L
P以上であれば許容最大回転数LPを目標回転数Pとし
て決定し、ステップS3へ移行する(S4)。即ち、許
容最大回転数LP以上の回転指令が発せられようとする
場合は許容最大回転数LPに指令がクランプされる。ス
テップS3は、RAM4に記憶されたギヤ選択信号とギ
ヤ比パラメータとから実際に速度アンプ11に出力すべ
き指令値を算出するものである。
In the figure, in step S1, the command rotation speed is set to so-called S
If it is performed with a 4-digit direct command and the constant circumferential speed control is off, the commanded value of the S4 digit is determined as the target rotation speed P, and if the constant circumferential speed control is on, the commanded value of the S4 digit is determined. The value of is recognized as the target circumferential speed value, and the target rotational speed P is calculated from this and the current value of the X axis sequentially stored in the RAM 4. Next, the maximum allowable rotation speed LP corresponding to the chuck identification result stored in the RAM 4 is selected from the parameters previously stored in the RAM 4 corresponding to large and small chucks, and the selected maximum allowable rotation speed LP and the Compare the set target rotation speed P with the target rotation speed P (S2), and if the target rotation speed P is smaller than the allowable maximum rotation speed LP, proceed to step S3, and set the allowable maximum rotation speed L.
If it is greater than or equal to P, the maximum allowable rotation speed LP is determined as the target rotation speed P, and the process moves to step S3 (S4). That is, when a rotation command higher than the allowable maximum rotation speed LP is about to be issued, the command is clamped to the allowable maximum rotation speed LP. Step S3 is to calculate a command value to be actually output to the speed amplifier 11 from the gear selection signal and gear ratio parameter stored in the RAM 4.

なお、上記のように指令値を許容最大回転数でクランプ
する代りに、目標回転数Pを無条件で速度アンプ11に
与え、回転数検出器20で許容最大回転数LPを越える
回転が行なわれたとき、マイクロプロセッサ1がこれを
検出して表示パネル8の警告ランプ8aを点灯させる等
、外部にアラームを発するようにしても良い。
In addition, instead of clamping the command value at the maximum allowable rotation speed as described above, the target rotation speed P is unconditionally given to the speed amplifier 11, and the rotation speed detector 20 detects rotation exceeding the maximum allowable rotation speed LP. When this occurs, the microprocessor 1 may detect this and issue an alarm externally, such as by lighting up a warning lamp 8a on the display panel 8.

第5図〜第7図はチャック識別器詔の実施例の説明図で
あり、主軸台17のチャンク19と対向する面の半径方
向に所定間隔を置いてスイッチ50〜52を設け、これ
らスイッチ50〜52を第7図に示すように結線し、ま
た、主軸台17の周囲等にスリップリング53〜55(
図示せず)を設け、スリップリング53の一婦を+24
V電源に、スリップリング54゜55を端子56.57
を介してラッチ回路24に接続する。
5 to 7 are explanatory diagrams of an embodiment of the chuck discriminator command, in which switches 50 to 52 are provided at predetermined intervals in the radial direction of the surface of the headstock 17 facing the chunk 19, and these switches 52 are connected as shown in FIG. 7, and slip rings 53 to 55 (
) is provided, and the mating member of the slip ring 53 is +24
Connect slip ring 54゜55 to terminal 56.57 to V power supply.
It is connected to the latch circuit 24 via.

なお、スイッチ50.52はA接点、スイッチ51はB
接点である。このようにすれば、第5図に示すように大
きなチャック19を装着したときにはスイッチ50が閉
、スイッチ51.52が開となって端子56がハイレベ
ル、′端子57がローレベルとなり、第6図に示すよう
に小さいチャック19を装着したときはスイッチ50が
開、スイッチ51 、 、52が閉となるので端子56
はローレベル、端子57はハイレベルとなる。
Note that the switches 50 and 52 are A contacts, and the switch 51 is B contacts.
It is a point of contact. In this way, when the large chuck 19 is mounted, as shown in FIG. As shown in the figure, when the small chuck 19 is attached, the switch 50 is open and the switches 51, 52 are closed, so the terminal 56
is at a low level, and the terminal 57 is at a high level.

第8図はチャック識別器詔の他の実施例の説明図であり
、チャック19が装着される位置を挾んで一方の側に発
光素子90.91を設け、他方の側に発光素子90.9
1の出射光を受光する受光素子92.93を設けたもの
で、小さなチャックが取付けられたときは下側の発光素
子90の出射光のみがチャックにより遮断され、大きな
チャックが取付けられたときは両方の発光素子90.9
1の出射光がチャックに、より遮断されることによりチ
ャックの大きさを識別するものである。
FIG. 8 is an explanatory diagram of another embodiment of the chuck discriminator order, in which a light emitting element 90.91 is provided on one side of the position where the chuck 19 is mounted, and a light emitting element 90.9 is provided on the other side.
1. When a small chuck is attached, only the light emitted from the lower light emitting element 90 is blocked by the chuck, and when a large chuck is attached, Both light emitting elements 90.9
The size of the chuck can be identified by the fact that the emitted light of No. 1 is blocked by the chuck.

なお、以上の実施例ではチャックの大きさを大。Note that in the above embodiments, the size of the chuck is large.

小の2種に分けて識別したがより細かく識別するように
しても良い。
Although the classification is divided into two types (small and small), the classification may be made more finely.

発明の詳細 な説明したように、本発明によれば、チャックを交換す
れば自動的にそのチャックに対応した許容最大回転数が
選択され、この選択された許容最大回転数を越える指令
が行なわれた場合に主軸モータに対する速度指令値がそ
の許容最大回転数にクランプされるか或はアラームが発
せられるので、従来の如くチャックを交換する度に許容
最大回転数を設定し直す必要がなくなり、また、チャッ
クからワークが離脱する等の事故を未然に防止すること
ができる利点がある。
As described in detail, according to the present invention, when a chuck is replaced, the maximum allowable rotation speed corresponding to the chuck is automatically selected, and a command is issued to exceed the selected maximum allowable rotation speed. In this case, the speed command value for the spindle motor is clamped to the maximum allowable rotation speed or an alarm is issued, so there is no need to reset the maximum allowable rotation speed every time the chuck is replaced, This has the advantage of being able to prevent accidents such as the workpiece coming off from the chuck.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロック図、第2図及び第3
図はRAM4の記憶内容の説明図、第4図はマイクロプ
ロセッサ1が行なう処理の一例を示すフローチャート、
第5図〜第7図はチャック識別器詔の実施例の説明図、
第8図はチャック識別器詔の他の実施例の説明図である
。 lはマイクロプロセッサ、2はバス、11は速度アンプ
、12は主軸モータ、14は主軸、15.16はクラッ
チ、詔はチャック識別器である。 特許出願人ファナソク株式会社 代理人弁理士玉蟲久五部外2名 第2図 第3図 第4図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 and FIG.
The figure is an explanatory diagram of the storage contents of the RAM 4, and FIG. 4 is a flowchart showing an example of processing performed by the microprocessor 1.
5 to 7 are explanatory diagrams of embodiments of the chuck discriminator order,
FIG. 8 is an explanatory diagram of another embodiment of the chuck discriminator command. 1 is a microprocessor, 2 is a bus, 11 is a speed amplifier, 12 is a main shaft motor, 14 is a main shaft, 15 and 16 are clutches, and 1 is a chuck discriminator. Patent Applicant Fanasoku Co., Ltd. Representative Patent Attorney Gogo Tamamushi 2 people from outside the department Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 主軸の回転速度が指令された値に一致するように主軸モ
ータの速度制御を行なう数値制御装置の主軸速度制御器
において、前記主軸の主軸台にワークを固定する為のチ
ャックの大きさを検出するチャック識別手段の識別結果
に対応した許容最大回転数を記憶する記憶手段と、前記
チャック識別手段の識別結果に対応する許容最大回転数
を越える指令が行なわれた場合に前記主軸モーフに対す
る速度指令値を該許容最大回転数にクランプするか或は
アラームを発する手段とを具備したことを特徴とする数
値制御装置の主軸速度制御器。
In a spindle speed controller of a numerical control device that controls the speed of a spindle motor so that the rotational speed of the spindle matches a commanded value, the size of a chuck for fixing a workpiece to the headstock of the spindle is detected. storage means for storing a maximum allowable rotation speed corresponding to the identification result of the chuck identification means; and a speed command value for the spindle morph when a command exceeding the allowable maximum rotation speed corresponding to the identification result of the chuck identification means is issued. 1. A spindle speed controller for a numerical control device, comprising means for clamping the rotation speed to the maximum allowable rotation speed or emitting an alarm.
JP3395684A 1984-02-24 1984-02-24 Main shaft speed control of numerically controlled device Pending JPS60177844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3395684A JPS60177844A (en) 1984-02-24 1984-02-24 Main shaft speed control of numerically controlled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3395684A JPS60177844A (en) 1984-02-24 1984-02-24 Main shaft speed control of numerically controlled device

Publications (1)

Publication Number Publication Date
JPS60177844A true JPS60177844A (en) 1985-09-11

Family

ID=12400939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3395684A Pending JPS60177844A (en) 1984-02-24 1984-02-24 Main shaft speed control of numerically controlled device

Country Status (1)

Country Link
JP (1) JPS60177844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644549U (en) * 1987-06-29 1989-01-12
JPS6487103A (en) * 1987-09-29 1989-03-31 Alps Tool Kk Bar conveyance amount detecting device for bar feed device
EP2124118A1 (en) 2008-05-19 2009-11-25 Siemens Aktiengesellschaft Control device for controlling a machine tool from which tools can be driven

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644549U (en) * 1987-06-29 1989-01-12
JPS6487103A (en) * 1987-09-29 1989-03-31 Alps Tool Kk Bar conveyance amount detecting device for bar feed device
EP2124118A1 (en) 2008-05-19 2009-11-25 Siemens Aktiengesellschaft Control device for controlling a machine tool from which tools can be driven
US8148930B2 (en) 2008-05-19 2012-04-03 Siemens Aktiengesellschaft Control device for controlling a machine tool which can be used to drive tools

Similar Documents

Publication Publication Date Title
US6252367B1 (en) Servo controller
US4288849A (en) Machine tool control systems
CA1215446A (en) Control system for presses
US4604560A (en) Numerical control machine tool with an emergency origin returning function
US4245316A (en) System for providing time control data in a numerical control system
JPS54141472A (en) System for detecting tool abrasion
EP0034927A2 (en) Spindle orientation control apparatus
JPS60177844A (en) Main shaft speed control of numerically controlled device
US20050240301A1 (en) Numerical controller with function of selecting spindle according to program
EP0146633A4 (en) Numerical control system.
JPS61131105A (en) Control system of lathe having two tool boxes
EP0065576B1 (en) Monitoring system for numerically controlled machine tool
US5260630A (en) Numerical control apparatus
WO1996038261A1 (en) Abnormal load detecting method
JP5061292B2 (en) Electric tapping machine and its machining condition switching system
JPS61142053A (en) Tool breakage detecting device
JP2527588B2 (en) Spindle motor control method for machine tools and its control device
WO1989008875A1 (en) Numerical controller
KR100213614B1 (en) Apparatus and method for controlling robot
JPH02205445A (en) Numerical control work device
JP3371198B2 (en) Device control method and device
KR830002787B1 (en) Industrial Robot System
JPS59142049A (en) Abnormality detector for tool
JPH0440838Y2 (en)
KR0136695B1 (en) Combined numerical controller