JPS60177772A - Case of television camera - Google Patents

Case of television camera

Info

Publication number
JPS60177772A
JPS60177772A JP59032432A JP3243284A JPS60177772A JP S60177772 A JPS60177772 A JP S60177772A JP 59032432 A JP59032432 A JP 59032432A JP 3243284 A JP3243284 A JP 3243284A JP S60177772 A JPS60177772 A JP S60177772A
Authority
JP
Japan
Prior art keywords
case
heat
camera
inner case
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59032432A
Other languages
Japanese (ja)
Inventor
Kazuko Takahara
高原 和子
Atomi Noguchi
野口 跡見
Kenichiro Sadakane
健一郎 貞包
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59032432A priority Critical patent/JPS60177772A/en
Publication of JPS60177772A publication Critical patent/JPS60177772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

PURPOSE:To watch abnormal states in an atomic lamp container under high temperature environment by improving the cooling efficiency of a TV camera case. CONSTITUTION:An inner case 7 and the finned outer case 8 of the case and the part other than cooling module are wholly made of aluminium, and a good heat insulating material 10 such as rock wool etc. is packet between the two cases. A window for lens in front of the case is doubly glassed. Heat of 27b, 27c transmitted from the outer case 8 to the inner case through the heat insulating material 10 is attracted again from the inner case to the cooling module, and consequently, does not come into the inner case. Accordingly, intrusion of heat into the inner case is made only through the double glassed window 20 in front of the case. The intruded heat 21 and heat generation of the camera 17 are transmitted to the inner case 7b and carried to the outer case 8b by the cooling module 9. Accordingly, cooling efficiency higher than conventional technique can be obtained by a cooling module having the same cooling capacity as used in conventional techniques.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高温環境下におけるTVカメラの保護に係り
、ベルチェ素子によるカメラ冷却に好適なTV左カメラ
ースの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the protection of a TV camera in a high-temperature environment, and relates to the structure of a TV left camera case suitable for camera cooling using a Beltier element.

〔発明の背景〕[Background of the invention]

纂1図に、システムの全体構成ケ示す。TVカメラlは
原子炉格納容器などの厳E〜い環境下におかれており、
点検対象物を撮像しTV画面6に画像?送る。T’Vカ
メラはその有効温度が40C前後であるのに対し、特に
原子炉格納容器内においては通常運転時でも60〜70
”Cに達し、異常時には900以上にもなることが予想
される。従って、格納容器?監視し、異常ケ早期に発見
し対応するためKは、環境温度7(]iC〜90t?の
もとでもカメラケース内?カメラの有効温度以下に冷却
しておくことが要求される。
Figure 1 shows the overall system configuration. The TV camera is placed in a harsh environment such as a nuclear reactor containment vessel.
Capturing an image of the object to be inspected and displaying the image on the TV screen 6? send. The effective temperature of the T'V camera is around 40C, whereas the temperature inside the reactor containment vessel is 60-70C even during normal operation.
``C'', and is expected to reach 900 or more in the event of an abnormality. Therefore, in order to monitor the containment vessel and detect and respond to abnormalities at an early stage, K must be set at an environmental temperature of 7 (] iC ~ 90t?). But inside the camera case? It must be cooled below the effective temperature of the camera.

第2図に、従来のTV左カメラースの断面図會示す。冷
却モジュール9は、熱的に並列、電気的に直列に接続さ
れた多数のベルチェ素子で構成され、吸熱面倉内側ケー
スアルミブロック33、放熱面?外側ケースアルミフィ
ン34に接触させている。内側ケース、外側ケースの、
上記の冷却モジュール接触部以外はガラスエポキシなど
の断熱材12m+12bで側面、後面を覆い、その間?
空気35で断熱している。ケース前面はレンズ用ガラス
窓11Kjつて断熱しである。冷却モジュールによって
アルミフィン34に吸上げられた熱は、ファン風ダクト
14内のファン13による強制対流によって運び去られ
るという冷却設計紮とっている。
FIG. 2 shows a cross-sectional view of a conventional TV left camera. The cooling module 9 is composed of a large number of Vertier elements connected thermally in parallel and electrically in series, and includes a heat absorption surface, an inner case aluminum block 33, and a heat radiation surface. It is brought into contact with the outer case aluminum fin 34. inner case, outer case,
Except for the contact area of the cooling module mentioned above, cover the sides and rear with 12m + 12b of heat insulating material such as glass epoxy, and in between?
It is insulated with air 35. The front of the case is insulated with a lens glass window 11Kj. A cooling design is adopted in which the heat sucked up by the aluminum fins 34 by the cooling module is carried away by forced convection by the fan 13 in the fan air duct 14.

第3図に、ベルチェ素子の簡略図?示す。Is there a simplified diagram of a Bertier element in Figure 3? show.

ベルチェ素子は、熱電性能の大きいN型半導体15、P
型半導体16に電気的に直列接続したもので、直流電力
の供給によって吸熱面17から放熱面18へ能動的に熱
の輸送ケ行う。
The Bertier element is an N-type semiconductor 15, P with high thermoelectric performance.
It is electrically connected in series to the type semiconductor 16, and actively transports heat from the heat absorption surface 17 to the heat radiation surface 18 by supplying DC power.

吸熱量Q l n 1放熱量Q eatは次式で与えら
れる。
The amount of heat absorbed Q l n 1 and the amount of heat released Q eat is given by the following equation.

ここでα、 FL、 Kはそれぞれ、ベルチェ素子のゼ
ーベック係数、電気抵抗、熱伝導率であり、■は直流電
流、Tl11は吸熱側温度、T o、tは放熱側温度?
示す。各式の第1項はペルチェ効果によるもので、輸送
熱量は電流Iの大きさと温度(絶対温度)に比例する。
Here, α, FL, and K are the Seebeck coefficient, electrical resistance, and thermal conductivity of the Bertier element, respectively, ■ is the DC current, Tl11 is the temperature on the heat absorption side, and T o and t are the temperatures on the heat radiation side.
show. The first term in each equation is due to the Peltier effect, and the amount of heat transported is proportional to the magnitude of the current I and the temperature (absolute temperature).

第2項は、導体に電流■が流れる時に電気抵抗Rによっ
て発生するジュール熱(IR2)が、吸熱、放熱両側に
半分ずつ寄与すると仮定して与えられている。第3項は
、放熱側と吸熱側の温度差による熱伝導を与える式であ
る。
The second term is given on the assumption that the Joule heat (IR2) generated by the electrical resistance R when a current (2) flows through the conductor contributes half to both heat absorption and heat radiation. The third term is an equation that gives heat conduction due to the temperature difference between the heat radiation side and the heat absorption side.

従来のTV左カメラースの構造は、内側ケースを良熱伝
導体であるアルミブロック33とガラスエポキシなどの
断熱材12.により構成している。
The structure of the conventional TV left camera case is that the inner case is made of an aluminum block 33, which is a good heat conductor, and a heat insulating material 12, such as glass epoxy. It is composed of:

アルミブロック33は冷却モジュール9の吸熱部に接触
し、ケース内の熱を冷却モジュール9へ伝えるための伝
熱体であり、熱は冷却モジュールにより外側アルミフィ
ン34に輸送され、フィン表面より放出される。外側ケ
ース断熱材12b%窒気35、内側ケース123、ガラ
ス窓11は、外気の熱がカメラケース内へ侵入するのを
防いでいる。
The aluminum block 33 is a heat transfer body that contacts the heat absorption part of the cooling module 9 and transfers the heat inside the case to the cooling module 9. The heat is transported by the cooling module to the outer aluminum fin 34 and released from the fin surface. Ru. The outer case insulation material 12b% nitrogen 35, the inner case 123, and the glass window 11 prevent heat from outside air from entering the camera case.

第4図は、従来技術における熱輸送の概略?示したもの
である。
Figure 4 shows an outline of heat transport in the conventional technology. This is what is shown.

内111!1ケース内へ侵入する熱量は、ガラス窓から
の侵入熱29、ケース断熱材部からの侵入熱30の総和
となる。冷却モジュールは、これらの侵入熱とカメラ自
体の内部発熱量28ケケース外へ放出しなければならな
い。このため、ケース内?有効温朋以下に保つためには
高価な冷却モジュールケ多数取り付ける必要があり、直
流電力量の消費も大きくなるなど冷却効率が悪く不経済
であるという欠点があった。
The amount of heat that infiltrates into the case 111!1 is the sum of the intrusion heat 29 from the glass window and the intrusion heat 30 from the case insulation material. The cooling module must dissipate this intruded heat and the internal heat generated by the camera itself to the outside of the case. Because of this, in the case? In order to maintain the temperature below the effective temperature level, it is necessary to install a large number of expensive cooling modules, and this has the disadvantage that cooling efficiency is poor and uneconomical, such as increased consumption of DC power.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、原子炉格納容器内の高温環境下での異
常状態の監視?可能とするために、低コストかつ簡単な
方法にて、TV左カメラースの冷却効率?向上させる手
段全提案することにある。
Is the purpose of the present invention to monitor abnormal conditions in the high temperature environment inside the reactor containment vessel? In order to improve the cooling efficiency of the TV left camera in a low cost and easy way? We will suggest all possible ways to improve it.

〔発明の概要〕[Summary of the invention]

第5図に、本発明によるカメラケース構造の断面図奮示
す。
FIG. 5 shows a cross-sectional view of a camera case structure according to the present invention.

ケースは、内側ケース7、フィン付外側ケース8共に冷
却モジュール部以外も全面アルミとし、両ケースのh]
にロックウールなどの良断熱材10ケつめている。また
ケース前面のレンズ用窓72重ガラスとした。
Both the inner case 7 and the outer case 8 with fins are made entirely of aluminum except for the cooling module part, and the h]
It is packed with 10 pieces of good insulation material such as rock wool. In addition, the lens window on the front of the case is made of 72-layer glass.

第6図に熱輸送の概要ケ示す。Figure 6 shows an overview of heat transport.

外側カメラケース温度Tbは環境温度q+イより若干高
く、カメラケースの熱26 b f’f:外t11jケ
ース8の表面よりhk散されるが外気の熱がケース内に
侵入することはない。断熱材lOゲ介17外側ケース8
J:り内側ケースへ伝導する熱27b、27゜は、内側
ケースより再び冷却モジュール9に吸収略れるため、内
側ケースの中へ(は侵入しない。よって内側ケース内へ
の熱の侵入はケース前面の2重ガラス窓20からのみと
なり、この侵入熱21とカメラの発熱17が内側ケース
7bに伝達され、冷却モジュール9により外側ケース8
bへ輸送される。したがって、従来技術で用いられたも
のと同じ冷却能力?もつ冷却モジュールで、従来技術以
上の冷却効率ケ得ることができる。
The outer camera case temperature Tb is slightly higher than the environmental temperature q+a, and the heat of the camera case 26 b f'f: hk is dissipated from the surface of the case 8, but the heat of the outside air does not enter the case. Insulation material lOgesuke 17 outer case 8
J: The heat 27b and 27° conducted to the inner case is absorbed from the inner case into the cooling module 9 again, so it does not enter the inner case. Therefore, the heat intrusion into the inner case is from the front of the case. This intruding heat 21 and the heat generated by the camera 17 are transmitted to the inner case 7b, and are transferred to the outer case 8 by the cooling module 9.
transported to b. Therefore, the same cooling capacity as used in the prior art? With this cooling module, it is possible to obtain cooling efficiency higher than that of conventional technology.

〔発明の実施例〕[Embodiments of the invention]

本発明による冷却設計ヶ具体的に進めるために、ケース
内倉有効温度以下に保つのに必要な冷却モジュール数を
推定する手段として、モデリングによる数値解析ケ行っ
た。−)た、実験により、f!1mは同様の結果が得ら
れた。
In order to concretely proceed with the cooling design according to the present invention, a numerical analysis using modeling was performed as a means of estimating the number of cooling modules required to maintain the case inner compartment temperature below the effective temperature. -), and by experiment, f! Similar results were obtained for 1 m.

ケースの構造に対(−環境温度T、(一定)による定常
状態について熱輸送とエネルギー保存を与える15個の
多元1次方程式ヲ組立て、これ金解くことにエリ各部の
温度?計算した。
For the structure of the case, we assembled 15 multidimensional linear equations that give heat transport and energy conservation in a steady state with constant environmental temperature T, and solved them to calculate the temperature of each part.

第7図、第8図に、モデリングにおいて使用した変数と
バラノータ茫示す。
Figures 7 and 8 show the variables used in the modeling.

本設計では、内側ケース7と外側フィン8の間ケ、2段
のモジュール36.37とアルミブロック38で接続す
るという形式ヶとっている。
In this design, a two-stage module 36, 37 and an aluminum block 38 are used to connect the inner case 7 and the outer fin 8.

第8図は、第5,6−と同じ断面であり、第7図はカメ
ラケース茫前方(または後方)から見た断面図である。
FIG. 8 is the same cross-sectional view as the fifth and sixth figures, and FIG. 7 is a cross-sectional view of the camera case viewed from the front (or rear).

図中のQ、T、λ、δはそれぞれ、各部の輸送熱、絶対
温度、熱伝導率、厚さt示す。パラメータとしてこれら
の他に各部の表面積A5空気伝達係数α1、フィン効率
φ、冷却モジュールの個数N、など音用いる。
Q, T, λ, and δ in the figure represent the transport heat, absolute temperature, thermal conductivity, and thickness t of each part, respectively. In addition to these parameters, the surface area A5 of each part, the air transfer coefficient α1, the fin efficiency φ, the number N of cooling modules, etc. are used.

温度、輸送熱の変数15個(Tl 、 Tz 、 Ta
 。
15 variables of temperature and transport heat (Tl, Tz, Ta
.

T41 Tl1jTic lTt膠Ql+ r QIR
* Qt * Q2RIQ1・T・Q+tr s・QI
RB I QRム)に対【−112本の熱輸送の式と、
3本のエネルギー保存弐茫組み立てた。
T41 Tl1jTic lTt glue Ql+ r QIR
* Qt * Q2RIQ1・T・Q+tr s・QI
RB I QRm) versus [-112 heat transport equations,
I assembled three energy storage units.

熱輸送の式 %式%) ) )) ) )) エネルギー保存 Q2=Q、、 ■ NQ、+ =Q−−,+Ql−F+Ql++s+Q+、
a @NQ! =Qt、s+QRA @ 以上15本の方程式金牌き、各部の温度ケ求めた結果を
第9図に示す。環境温度70C1モジユ一ル数8個では
、実験値とはは一致しており、これによるとモジュール
数が12個ならば有効温度400以下の35C前後に保
てることが予想できる。
Heat transport formula % formula % ) )) ) )) Conservation of energy Q2=Q,, ■ NQ, + =Q--, +Ql-F+Ql++s+Q+,
a @NQ! =Qt, s+QRA @ Figure 9 shows the results of the above 15 equations and the temperature of each part. When the environmental temperature is 70C and there are 8 modules, this agrees with the experimental value, and based on this, it can be predicted that if the number of modules is 12, the effective temperature can be maintained at around 35C, which is 400C or less.

同モデル?環境温度90Cに適用した場合の必要モジュ
ール数は17個でろった。
Same model? When applied to an environmental temperature of 90C, the required number of modules was 17.

計算に用いたバラメークの主なものの値?記す。What are the main values of the rose makeup used in the calculation? write down

ゼーベック係数 a、 = o、 OI IJ/deg
)α、=0、Ol 伝熱係数 L、 = 0.116 [VMdeg〕Lz
 = 0.194 直流電流 11=2.7 [A ) I、=4.5 電気抵抗 R,=O,0O0447(Ω 〕1%、=# 断熱材熱伝導率 λd =0.004CW名1−deg
〕アルミ熱伝導率 λ0.λ1.λ2=2.28空気の
熱伝達係数α、 =5.81XIO−’C%/2m2@
deg)フィン効率φは、空気密度、ファン風速、フィ
ンの表面積、空気の熱伝達係数などから計算される。
Seebeck coefficient a, = o, OI IJ/deg
) α, = 0, Ol Heat transfer coefficient L, = 0.116 [VMdeg]Lz
= 0.194 DC current 11 = 2.7 [A) I, = 4.5 Electrical resistance R, = O, 0O0447 (Ω)] 1%, =# Insulation material thermal conductivity λd = 0.004CW name 1-deg
]Aluminum thermal conductivity λ0. λ1. λ2=2.28 Air heat transfer coefficient α, =5.81XIO-'C%/2m2@
deg) Fin efficiency φ is calculated from air density, fan wind speed, fin surface area, air heat transfer coefficient, etc.

なお、モジュール数Nは、1段目、2段目モジュール1
組?1個として数えたノくラメータでめる。
In addition, the number of modules N is the first stage module, the second stage module 1
set? It is counted as one piece and is calculated by the number of meters.

なお、上記の発明において、カメラケースの前面は2重
ガラス窓としているが、通常2型ガラスのはさまれた空
間には空気が充てんされている。
In the above invention, the front surface of the camera case is a double glass window, but the space between the two type glasses is usually filled with air.

このため、対流による熱伝導があるが、これ盆、真空に
近い構成にすれば、より断熱効果があるのはいうまでも
ない。
For this reason, there is heat conduction due to convection, but it goes without saying that if you create a structure that is close to a vacuum, you will have a better insulation effect.

同様に断熱材においても、できれば真空状態に工り実現
することが望しいが、耐圧上構造が頑丈にする必要がら
り、重量が増える、あるいは大型化する欠点がある。そ
こで、ロックウール等?軽くつめ、空気の対流?起りに
くくすることが好ましい。逆に強くつめすぎると、素材
の熱伝導性が大きく効いてくるため、程よくつめる必要
がある〔発明の効果〕 本発明により、高温環境下におかれるTVカメ2?冷却
モジュールによって冷却する方式において、高い冷却効
率を得ることができる効果がある。
Similarly, in the case of heat insulating materials, it is desirable to manufacture them in a vacuum state if possible, but this requires a sturdy structure in terms of pressure resistance, which has the disadvantage of increasing weight or increasing size. So, what about rock wool? Lightly packed, air convection? It is preferable to make it less likely to occur. On the other hand, if the material is tightened too tightly, the thermal conductivity of the material will be greatly affected, so it is necessary to tighten it moderately. [Effects of the Invention] According to the present invention, the TV camera 2 that is placed in a high temperature environment? In the method of cooling using a cooling module, there is an effect that high cooling efficiency can be obtained.

これにより、従来困難であった、原子炉格納容器内のカ
メラによる監視?通常運転時のみならず異常状態の高温
下においても行うことができ、工り優れた運転性、保全
性金確保する。そして、原子カプラントの稼働率の向上
あるいは安全性の向上に役立つものと期待される。
This allows for monitoring using cameras inside the reactor containment vessel, which has been difficult in the past. This process can be performed not only during normal operation but also under abnormal high temperatures, ensuring excellent machining performance and maintainability. It is expected that this will be useful in improving the operating rate and safety of nuclear couplants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温環境下で視覚点検ケ行うTVモニタの全体
構成図、第3図はベルチェ素子の簡単な動作原理図、第
2図は従来技術によるTV右カメラース構造図、第4図
はその熱輸送の概要?示す図、第5図は本発明によるカ
メラケース構造図、第6図はその熱輸送の概要紮示す図
、第7図、第8図はモデリングにおける変数及びパラメ
ータケ示す図、第9図は数値解析の結果?示す図である
。 l・・・TV左カメラ2・・・レンズ、3・・・TV右
カメラース、4・・・原子炉格納容器壁、5・・・画像
信号ケーブル、6・・・TV画面、7・・・内側カメラ
ケース、8・・・フィン付外側カメラケース、9・・・
冷却モジュール、lO・・・良断熱材、11・・・ケー
ス前面ガラス窓、12、・・・内側ケース断熱材、12
b・・・外側ケース断熱材、13・・・ファン、14・
・・ファン送風夕゛クト、15・・・N型半導体、16
・・・P型半導体、17・・・吸熱面、18・・・発熱
面、19・・・電気伝導体、20・・・放熱フィン、2
1・・・直流電源、22・・・ベルチェ素子吸熱量QI
、、、23・・・ペルチェ素子放熱量Q oat+24
、.24b・・・冷却モジ−ルー吸熱量、25.。 25b・・・冷却モジール放熱量、26.,26b・・
・外側ケース放熱量、27..27b 、27゜・・・
外O11ケースより内側ケースへの伝達熱量、28・・
・カメラ発熱量、29・−・前面ガラス窓からの侵入熱
、30・・・断熱材からの侵入熱、31・・・ケース前
面2蔦ガ之ス窓、32・・・前面2貞カンスからの侵入
熱、33・・・内側ケースアルミブロック、34・・・
外側ケースアルミフィン、35・・・空気、36・・・
1段目モー) ニー /し、37・・・2段目モジュー
ル、38・・・アルミブロック。 代理人 弁理士 高橋明夫 笛1図 YZ図 □□□−一」 第9図 ηメフ≠−ス内jpI支
Figure 1 is an overall configuration diagram of a TV monitor that is visually inspected in a high-temperature environment, Figure 3 is a simple diagram of the operation principle of the Beltier element, Figure 2 is a diagram of the structure of the TV right camera according to the prior art, and Figure 4 is its Overview of heat transport? Figure 5 is a structural diagram of the camera case according to the present invention, Figure 6 is a diagram showing an overview of its heat transport, Figures 7 and 8 are diagrams showing variables and parameters in modeling, and Figure 9 is a numerical diagram. Results of analysis? FIG. l... TV left camera 2... lens, 3... TV right camera, 4... reactor containment vessel wall, 5... image signal cable, 6... TV screen, 7... Inner camera case, 8... Outer camera case with fin, 9...
Cooling module, lO... Good insulation material, 11... Case front glass window, 12,... Inner case insulation material, 12
b... Outer case insulation material, 13... Fan, 14.
...Fan ventilation actuator, 15...N-type semiconductor, 16
... P-type semiconductor, 17 ... Heat absorption surface, 18 ... Heat generation surface, 19 ... Electric conductor, 20 ... Heat radiation fin, 2
1...DC power supply, 22...Beltier element heat absorption QI
,,,23... Peltier element heat radiation amount Q oat+24
,.. 24b...Cooling module endothermic amount, 25. . 25b... Cooling module heat radiation amount, 26. ,26b...
・Outer case heat radiation amount, 27. .. 27b, 27°...
Amount of heat transferred from the outer O11 case to the inner case, 28...
・Camera heat generation amount, 29...Heat intrusion from the front glass window, 30...Heat intrusion from the insulation material, 31...2 ivy glass windows on the front of the case, 32...2 heat intrusion from the front glass window. Intrusion heat of 33...Inner case aluminum block, 34...
Outer case aluminum fin, 35...air, 36...
1st stage mo) knee /shi, 37...2nd stage module, 38...aluminum block. Agent Patent Attorney Akio Takahashi Flute 1 Diagram YZ Diagram □□□-1" Figure 9

Claims (1)

【特許請求の範囲】 1、映像?とらえるカメラとカメラ?レンズの部分ケ除
き可能な限り包み込み接触する良熱伝導体Aで覆う手段
とこの良熱伝導体Ak包む断熱体で覆う手段とこの断熱
材?良熱伝導体Bで可能な限り全体ケつつみ込む手段と
良熱伝導体Aと良熱伝導体B’にベルチェ素子の低温部
と高温部で接続させ熱を伝導する手段を有することを特
徴とするテレビカメラのケース。 2、特許請求の範囲第1項において、レンズの前?2重
カラスとし熱の流出入全制限する手段を設けたこと全特
徴とするテレビカメラのケースウ3、特許請求の範囲第
1項において、良熱伝導体13にヒダ紫つけ表面積を多
くするとともに強制的に冷却材ケ吹きつける手段ケ有す
るテレビカメラのケース。
[Claims] 1. Video? A camera and a camera to capture it? A means of covering the lens with a good heat conductor A that wraps and contacts as much as possible except for parts of the lens, a means of covering with a heat insulator that wraps this good heat conductor Ak, and this heat insulator? It is characterized by having a means for enclosing as much as possible with the good heat conductor B, and a means for connecting the good heat conductor A and the good heat conductor B' at the low temperature part and the high temperature part of the Vertier element to conduct heat. TV camera case. 2. In claim 1, in front of the lens? Case 3 of a television camera characterized in that it is double-glazed and provided with a means for completely restricting the inflow and outflow of heat. A television camera case that has a means for spraying coolant.
JP59032432A 1984-02-24 1984-02-24 Case of television camera Pending JPS60177772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032432A JPS60177772A (en) 1984-02-24 1984-02-24 Case of television camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032432A JPS60177772A (en) 1984-02-24 1984-02-24 Case of television camera

Publications (1)

Publication Number Publication Date
JPS60177772A true JPS60177772A (en) 1985-09-11

Family

ID=12358788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032432A Pending JPS60177772A (en) 1984-02-24 1984-02-24 Case of television camera

Country Status (1)

Country Link
JP (1) JPS60177772A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115686A (en) * 2001-10-05 2003-04-18 Nuclear Fuel Ind Ltd Overheating controller for operated heat generating component in equipment
GB2444399A (en) * 2006-12-01 2008-06-04 Accu Sort Systems Inc Modular camera having chassis, illumination and communication modules
JP2010175835A (en) * 2009-01-29 2010-08-12 Hitachi Kokusai Electric Inc Camera apparatus
CN103293831A (en) * 2013-06-04 2013-09-11 四川艾普视达数码科技有限公司 Camera with double convection fans
JPWO2022054412A1 (en) * 2020-09-08 2022-03-17

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115686A (en) * 2001-10-05 2003-04-18 Nuclear Fuel Ind Ltd Overheating controller for operated heat generating component in equipment
GB2444399A (en) * 2006-12-01 2008-06-04 Accu Sort Systems Inc Modular camera having chassis, illumination and communication modules
GB2444399B (en) * 2006-12-01 2011-12-14 Accu Sort Systems Inc Modular camera
US8233040B2 (en) 2006-12-01 2012-07-31 Accu-Sort Systems, Inc. Modular camera and camera system
JP2010175835A (en) * 2009-01-29 2010-08-12 Hitachi Kokusai Electric Inc Camera apparatus
CN103293831A (en) * 2013-06-04 2013-09-11 四川艾普视达数码科技有限公司 Camera with double convection fans
JPWO2022054412A1 (en) * 2020-09-08 2022-03-17
WO2022054412A1 (en) * 2020-09-08 2022-03-17 Jfeスチール株式会社 Structure observation device and observation method

Similar Documents

Publication Publication Date Title
US3018631A (en) Thermoelectric cooling devices
CN103872271B (en) Whole aluminum water-cooling battery box for active thermal management of electric car
WO2022205790A1 (en) Heat dissipation device, battery pack, and electrical device
Remeli et al. Experimental study of a mini cooler by using Peltier thermoelectric cell
CN106714518A (en) Wide-temperature heat control device
CN206332745U (en) Video camera and cover body
Baheta et al. Thermoelectric air-conditioning system: building applications and enhancement techniques
CN108885033A (en) Mangneto thermal
JPS60177772A (en) Case of television camera
CN106292788B (en) A kind of thermal control structure of space application servo controller
CN110062565A (en) Soaking plate based on thermoelectric cooling technology reinforces server efficient radiating apparatus and method
WO2014104747A1 (en) Heat storage tank for use in solar heat power generating system, solar heat power generator for use in same, and solar heat power generating system comprising same
CN109461992A (en) A kind of Intelligent Mobile Robot battery temperature control and control method
CN104753008A (en) Smart cooling refractory bus duct
CN212781636U (en) Camera with water cooling and semiconductor refrigeration combined refrigeration
KR200149095Y1 (en) The refrigerating housing using a thermoelectric refrigerating apparatus
JP3175038B2 (en) Thermoelectric conversion module for power generation
CN209964481U (en) Electrical apparatus box heat radiation structure reaches electrical apparatus product including this electrical apparatus box heat radiation structure
CN206332972U (en) A kind of wide warm thermal controls apparatus
CN207991020U (en) A kind of refrigerating plant based on manufacture single-photon detector low temperature environment
CN207185050U (en) The inside and outside cooling processing unit of a kind of electronic equipment
CN206433310U (en) A kind of Multi-axial differential absorption spectrometer incubator
CN215222807U (en) Novel no fan industry switch heat radiation structure
CN215374236U (en) Whole radiating infrared thermal imager
CN214428723U (en) Radiator, battery package and consumer