JPS6017638B2 - Welding method - Google Patents

Welding method

Info

Publication number
JPS6017638B2
JPS6017638B2 JP5223476A JP5223476A JPS6017638B2 JP S6017638 B2 JPS6017638 B2 JP S6017638B2 JP 5223476 A JP5223476 A JP 5223476A JP 5223476 A JP5223476 A JP 5223476A JP S6017638 B2 JPS6017638 B2 JP S6017638B2
Authority
JP
Japan
Prior art keywords
welding
temperature
welded
heat
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5223476A
Other languages
Japanese (ja)
Other versions
JPS52135847A (en
Inventor
栄次 芦田
裕三 小園
元司 滝
慧 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5223476A priority Critical patent/JPS6017638B2/en
Publication of JPS52135847A publication Critical patent/JPS52135847A/en
Publication of JPS6017638B2 publication Critical patent/JPS6017638B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は温度測定しながら溶接する方法に関する。[Detailed description of the invention] The present invention relates to a method of welding while measuring temperature.

第1図に示す如く、溶接において、被溶接材1は溶接金
属部2の近傍に溶接時の熱願歴を受けて熱影響部3が形
成される。
As shown in FIG. 1, during welding, a heat-affected zone 3 is formed in the welded material 1 in the vicinity of the weld metal portion 2 due to heat application during welding.

被溶接材は、溶接によって、急速加熱、冷却の熱履歴を
受けるので、材質によっては熱影響部に炭化物の析出及
び硬化、腕化等を受けて、鋭敏化され、使用環境下にお
いて、割れ、破壊、腐食等の事故を発生する危険性があ
るので、溶接時に熱影響部の状態を十分把握しておき、
その状態に応じ適切な処理を講じなければならない。
The material to be welded undergoes a thermal history of rapid heating and cooling during welding, so depending on the material, carbides may precipitate in the heat affected zone, harden, and become sensitized, resulting in cracking or cracking in the usage environment. There is a risk of accidents such as destruction and corrosion, so be sure to fully understand the condition of the heat-affected zone when welding.
Appropriate measures must be taken depending on the situation.

オーステナィトステンレス鋼は500〜800qoに加
熱され、Cr炭化物が結晶粒界に析出して粒間腐食を起
こす原因となる。そこで溶接特にこの200〜800℃
に加熱される温度城がどのようになっているか擬む必要
がある。従来、溶接部の温度管理は接触式表面温度計を
用い、又は第2図に示すように被溶接材1の各点に熱電
対4を取りつけ、被溶接材の温度を測定して、予熱・パ
ス間温度等の管理が行われていた。
Austenitic stainless steel is heated to 500 to 800 qo, causing Cr carbide to precipitate at grain boundaries and cause intergranular corrosion. Therefore, welding especially at this temperature of 200 to 800℃
It is necessary to simulate how the temperature castle is heated to. Conventionally, the temperature of the welding zone has been controlled using a contact type surface thermometer, or by attaching thermocouples 4 to each point of the welded material 1 as shown in Fig. 2 to measure the temperature of the welded material and perform preheating and The temperature between passes was controlled.

しかし、これらの方法では溶接部近傍を一定温度以上に
上げないか、又は一定温度以下に下げないようにする管
理しかできなく、位置と温度を連続的に測定することが
できなかった。そのため注意すべき温度城の分布を把握
し、使用環境により温度域の幅を変化させる入熱制御や
温度域の分布を溶接部の検査、保守管理に利用すること
ができなかつた。本発明の目的は、溶接部の保守管理が
できる溶接方法を提供するにある。
However, these methods can only control the temperature in the vicinity of the weld to prevent it from rising above a certain temperature or falling below a certain temperature, and it is not possible to continuously measure the position and temperature. Therefore, it has not been possible to understand the distribution of temperature ranges that should be noted, and to use heat input control that changes the width of the temperature range depending on the usage environment and the distribution of the temperature range for inspection and maintenance management of welded parts. An object of the present invention is to provide a welding method that allows maintenance and management of welded parts.

本発明は「被溶接材表面の溶接熱影響部分の温度を測定
しながら溶接する方法において、温度測定器を溶接進行
方向と直角方向に走査させ溶接方向に直角方向の所定の
温度範囲を溶接方向に帯状に連続的に測定することを特
徴とする溶接方法にある。
The present invention is a method for welding while measuring the temperature of the welding heat-affected area on the surface of the workpiece, in which a temperature measuring device is scanned in a direction perpendicular to the welding direction, and a predetermined temperature range perpendicular to the welding direction is measured in the welding direction. The welding method is characterized by continuous measurement in the form of a strip.

本発明により、温度城の幅、変動状態を観察することが
できるので、溶接部の保守管理ができる効果が得られる
According to the present invention, it is possible to observe the width and fluctuation state of the temperature castle, so it is possible to maintain and manage the welded part.

以下図面により本発明方法を説明する。The method of the present invention will be explained below with reference to the drawings.

第3図は本発明を実施する袋魔の構成図である。パイプ
の被溶接材1に開先5を設けて、突合わせ、関先6内に
溶接トーチ6から突き出された非消耗電極7を挿入して
、被溶接材1と非消耗鰭滋7間にアークを発生させ、さ
らに状況によりアーク中にフィラーワィャ8を送給しな
がら被溶接材1の周囲を回転し溶接金属2を形成してゆ
くことにより溶接を行う。溶接の電流、電圧、溶接速度
、フイラーワィャ送給速度等の溶接条件の制御は溶接制
御装置9で行われる。温度の測定はアーク点よりすこし
離れた温度測定位置10で温度測定袋檀11によって行
い、記録計12に記録される。記録計12は温度測定菱
直11から得られた情報を利用し、温度測定位魔10に
おける一定温度範囲城の温度を連続して測定し、帯状の
温度域15を記録紙13上に記録する。また測定された
温度域15の幅は、あらかじめ最適入熱量の温度幅を設
定した入熱制御器14に入れうれる。入熱制御器14で
は設定値と記録計12からの出力とを比較し溶接制御装
置をコントロールすることにより入熱制御を行う。また
図示していないが検出器により関先中心位置、温度測定
位瞳10を測定し記録紙13上に関先中心線16、測定
位魔信号線17を記録するようになっている。前記した
溶接菱贋を用いてSUS304ステンレス鋼管を入熱制
御しながら溶接を行った。温度測定位置をアーク点より
溶接線後方2仇舷の地点とし、溶接線と直角方向に温度
測定装置を走査させながら溶接方向に500〜800℃
の温度域を連続的に帯状に記録した。第4図は温度測定
に用いた温度測定装贋を示す。対象物18から放射され
る赤外線を走査ミラー19、固定ミラー20を通してレ
ンズ21に築め集光して検出器22に導く。集光された
赤外線は検出器22によって電気信号に変換され増幅器
23で増幅され出力される。温度の校正は黒体24で行
う。対象物18上の温度測定走査はミラー19の回転と
チョッパ25により行われる。前記溶接方法により溶接
時、熱影響部の800〜500℃の炭化物析出城の幅が
溶接条件の変動等により広がるのを押えることができた
。溶接時記録した温度分布帯状曲線の幅、変動革の変動
状態を溶接検査時に利用し、溶接物が使用時、粒間腐食
により腐食割れを起こしやすいかどうかの判断に用いた
。ステンレス鋼管の溶接部は窓環境で用いる場合、定期
点検が必要である。そこで、前記記録したデータ一を用
いて定期点検時重′点点検個所を定め、溶接物の保守管
理に用いた。以上本発明は溶接部の溶接方向に直角方向
の温度分布を一定俺度域について連続的に帯状の温度分
布としてその幅を測定し、溶接部の保管理又は溶接制御
に利用するものでである。
FIG. 3 is a diagram showing the configuration of a baggage device that implements the present invention. A groove 5 is provided in the material to be welded 1 of the pipe, and the non-consumable electrode 7 protruded from the welding torch 6 is inserted into the joint 6 to form a groove 5 between the material to be welded 1 and the non-consumable fin 7. Welding is performed by generating an arc and rotating around the workpiece 1 to form weld metal 2 while feeding a filler wire 8 into the arc depending on the situation. Welding conditions such as welding current, voltage, welding speed, and filler wire feeding speed are controlled by a welding control device 9. The temperature is measured using a temperature measuring bag 11 at a temperature measuring position 10 slightly away from the arc point, and is recorded on a recorder 12. The recorder 12 uses the information obtained from the temperature measurement device 11 to continuously measure the temperature of the castle within a certain temperature range in the temperature measurement device 10, and records a band-shaped temperature region 15 on the recording paper 13. . Further, the measured width of the temperature range 15 is input to the heat input controller 14, which has previously set the temperature range of the optimum heat input amount. The heat input controller 14 performs heat input control by comparing the set value and the output from the recorder 12 and controlling the welding control device. Further, although not shown, a detector measures the center position of the test point and the temperature measurement position pupil 10, and records the test point center line 16 and the measurement position signal line 17 on the recording paper 13. SUS304 stainless steel pipes were welded using the above-described welding machine while controlling heat input. Set the temperature measurement position at a point two yards behind the welding line from the arc point, and measure the temperature at 500 to 800°C in the welding direction while scanning the temperature measuring device in a direction perpendicular to the welding line.
The temperature range was recorded continuously in a band. FIG. 4 shows the temperature measurement equipment used for temperature measurement. Infrared rays emitted from the object 18 pass through a scanning mirror 19 and a fixed mirror 20 to a lens 21 and are focused and guided to a detector 22. The collected infrared light is converted into an electrical signal by the detector 22, amplified by the amplifier 23, and output. Temperature calibration is performed using a black body 24. The temperature measurement scan on the object 18 is performed by the rotation of the mirror 19 and the chopper 25. By the above welding method, during welding, it was possible to suppress the width of the carbide precipitation castle at 800 to 500° C. in the heat-affected zone from widening due to fluctuations in welding conditions. The width of the temperature distribution zonal curve and the fluctuation state of the fluctuation band recorded during welding were used during welding inspection, and used to determine whether the welded product is susceptible to corrosion cracking due to intergranular corrosion during use. Welded parts of stainless steel pipes require periodic inspection when used in a window environment. Therefore, the recorded data was used to determine key points to be inspected during periodic inspections and used for maintenance management of welded objects. As described above, the present invention measures the width of the temperature distribution in a direction perpendicular to the welding direction of a welded part in a continuous band-like temperature distribution in a certain degree range, and utilizes it for maintenance management of the welded part or welding control. .

後者は、溶接に窓影響を与える温度域の幅を最低限度に
狭くする溶接方法が可能である。記録された分布曲線は
、溶接終了後溶接検査に利用し、正しい溶接が行われた
が、異常があったかどうかの判断に用いることができる
。さらに正しい溶接が行われた部分と、不適当な溶接が
行われた部分を分類することが可能であるとともに溶接
熱影響部健全性の判断に用いることができる。その他定
期点検、事故発生時の原因追究にも利用出釆、さらに不
良製品の防止、溶接部事故防止に効果的である。
The latter allows for a welding method that minimizes the width of the temperature range that has a window effect on welding. The recorded distribution curve can be used for a welding inspection after welding is completed, and can be used to determine whether or not welding was performed correctly or if there was an abnormality. Furthermore, it is possible to classify correctly welded parts and improperly welded parts, and it can be used to judge the health of the weld heat affected zone. It can also be used for periodic inspections, investigating the cause of accidents, and is effective in preventing defective products and welding accidents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接部の断面図、第2図は従来法の温度測定法
の一例を示す説明図、第3図は本発明実施例を説明する
装置の構成図、第4図は本発明実施例に用いた温度定装
置の原理図である。 1・・・被溶接材、11・・・温度測定装置、12・・
・温度記録計、15・・・帯状の温度城。 繁J図 第2図 第3図 第4図
Fig. 1 is a sectional view of a welded part, Fig. 2 is an explanatory diagram showing an example of a conventional temperature measurement method, Fig. 3 is a configuration diagram of an apparatus for explaining an embodiment of the present invention, and Fig. 4 is a diagram showing an embodiment of the present invention. It is a principle diagram of the thermostat used in the example. 1... Material to be welded, 11... Temperature measuring device, 12...
・Temperature recorder, 15... band-shaped temperature castle. Traditional J map Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 被溶接材表面の溶接熱影響部分の温度を測定しなが
ら溶接する方法において、温度測定器を溶接進行方向と
直角方向に走査させ溶接方向に直角方向の所定の温度範
囲を溶接方向に帯状に連続的に測定することを特徴とす
る溶接方法。
1 In a method of welding while measuring the temperature of the weld heat-affected area on the surface of the welded material, a temperature measuring device is scanned in a direction perpendicular to the welding direction and a predetermined temperature range in the direction perpendicular to the welding direction is measured in a band shape in the welding direction. A welding method characterized by continuous measurement.
JP5223476A 1976-05-10 1976-05-10 Welding method Expired JPS6017638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5223476A JPS6017638B2 (en) 1976-05-10 1976-05-10 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5223476A JPS6017638B2 (en) 1976-05-10 1976-05-10 Welding method

Publications (2)

Publication Number Publication Date
JPS52135847A JPS52135847A (en) 1977-11-14
JPS6017638B2 true JPS6017638B2 (en) 1985-05-04

Family

ID=12909027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5223476A Expired JPS6017638B2 (en) 1976-05-10 1976-05-10 Welding method

Country Status (1)

Country Link
JP (1) JPS6017638B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102259A (en) * 1978-01-31 1979-08-11 Toshiba Corp Automatic welder
BE1004964A6 (en) * 1991-05-06 1993-03-09 Centre Rech Metallurgique Control method for butt weld end metal bands.
JP2576326B2 (en) * 1991-10-25 1997-01-29 住友金属工業株式会社 Pass / fail judgment device for strip welds

Also Published As

Publication number Publication date
JPS52135847A (en) 1977-11-14

Similar Documents

Publication Publication Date Title
JP2685725B2 (en) Method for process control and / or quality control during laser butt welding of plates, and laser welding apparatus for implementing the method
Wikle Iii et al. Infrared sensing techniques for penetration depth control of the submerged arc welding process
CA1205872A (en) Real time control system and process for controlling predetermined operating characteristics of a welding mechanism
Sreedhar et al. Automatic defect identification using thermal image analysis for online weld quality monitoring
US4375026A (en) Weld quality monitor
Sun et al. Sensor systems for real-time monitoring of laser weld quality
JPS58212873A (en) Infrared sensor for arc welding
Vasudevan et al. Real-time monitoring of weld pool during GTAW using infra-red thermography and analysis of infra-red thermal images
CA2674342C (en) Method and device for quality control of a weld bead
JPS6239077B2 (en)
Hamzeh et al. A sensor based monitoring system for real-time quality control: semi-automatic arc welding case study
JPS6017638B2 (en) Welding method
CN115768580A (en) Method for determining welding parameters for a welding process carried out on a workpiece and welding device for carrying out a welding process on a workpiece using the determined welding parameters
Kah et al. Real-time weld process monitoring
Venkatraman et al. Thermography for online detection of incomplete penetration and penetration depth estimation
Rodriguez-Cobo et al. Fiber Bragg grating sensors for on-line welding diagnostics
Al-Karawi et al. Application of infrared thermography to the analysis of welding processes
Nagarajan et al. Infrared Techniques for Real-Time Weld Quality Control
JP4448041B2 (en) Radiation thermometer optical axis positioning method
JPS6023908B2 (en) automatic welding machine
SU396606A1 (en) THERMAL METHOD FOR MONITORING THE QUALITY OF WELDING JOINTS
JP2002066782A (en) Detecting method for welding temperature
KR100237153B1 (en) Method of welding quality
JPH0360882A (en) Method for deciding quality of welding state
JP2023546637A (en) Method for inspection of welds, especially spot welds