JP4448041B2 - Radiation thermometer optical axis positioning method - Google Patents

Radiation thermometer optical axis positioning method Download PDF

Info

Publication number
JP4448041B2
JP4448041B2 JP2005035662A JP2005035662A JP4448041B2 JP 4448041 B2 JP4448041 B2 JP 4448041B2 JP 2005035662 A JP2005035662 A JP 2005035662A JP 2005035662 A JP2005035662 A JP 2005035662A JP 4448041 B2 JP4448041 B2 JP 4448041B2
Authority
JP
Japan
Prior art keywords
radiation thermometer
optical axis
heating element
temperature
positioning method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005035662A
Other languages
Japanese (ja)
Other versions
JP2006220587A (en
Inventor
靖夫 櫛田
薫 穂垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005035662A priority Critical patent/JP4448041B2/en
Publication of JP2006220587A publication Critical patent/JP2006220587A/en
Application granted granted Critical
Publication of JP4448041B2 publication Critical patent/JP4448041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シーム溶接機で溶接された鋼板の溶接温度を測定するのに用いられる放射温度計の光軸を確認する放射温度計の光軸位置決め方法に関するものである。 The present invention relates to an optical axis positioning method of a radiation thermometer for confirming the optical axis of a radiation thermometer used for measuring the welding temperature of a steel plate welded by a seam welder.

薄鋼板の連続処理ラインにおいては、先行材と後行材を接続するためにシーム溶接機がよく用いられている。この溶接機は、連続ラインの運転を停止し、先行材の尾端部と後行材の先端部を溶接機機構部内で重ね合わせた状態とする。次に先行材と後行材をクランプ装置で固定しシャーで切断した後、再度先行材と後行材を2〜3mm程度重ね合わせる。次に先行材と後行材の板厚、材質などに基づいて溶接電流、溶接速度、電極押し付け圧力などを設定した後、円盤状の導体(これを電極輪と称する)によりストリップを上下より押し付け、ストリップの板幅方向に対して端部からもう一方の端部に向かって走行させ、この電極輪に所定の電流を通じることにより電気抵抗により加熱、圧接させるものである。この溶接機により溶接された溶接部の良否判定は、後工程における溶接部破断によるライン停止を防止する上できわめて重要である。   In a continuous processing line for thin steel sheets, a seam welder is often used to connect the preceding material and the following material. In this welding machine, the operation of the continuous line is stopped, and the tail end portion of the preceding material and the leading end portion of the following material are overlapped in the welding machine mechanism. Next, after fixing a preceding material and a succeeding material with a clamp device and cutting with a shear, the preceding material and the following material are again overlapped by about 2 to 3 mm. Next, after setting the welding current, welding speed, electrode pressing pressure, etc. based on the thickness and material of the preceding and succeeding materials, the strip is pressed from above and below by a disk-shaped conductor (this is called an electrode ring). The strip is run from one end to the other end in the width direction of the strip, and is heated and pressed by electric resistance by passing a predetermined current through the electrode wheel. The quality determination of the welded portion welded by this welder is extremely important for preventing line stoppage due to welded portion fracture in the subsequent process.

従来、オンラインでの溶接部良否判定は、溶接を行っている際の溶接部火色やスパッターの飛散状況を目視で観察し、オペレーターの感と経験により判断する方法や、溶接部をハンマーでたたいて溶接強度を確認するハンマーテストなどの官能的な手法が用いられてきた。しかしこれらの方法では溶接部の良否を定量的に評価することができないため溶接不良によるライントラブルを完全に回避することは困難であった。   Conventionally, on-line determination of weld quality is based on a method of visually observing the fire color and spatter scattering of the weld during welding, and judging with the operator's feeling and experience, and using a hammer for the weld. Sensual techniques such as hammer testing to confirm weld strength have been used. However, since these methods cannot quantitatively evaluate the quality of the welded part, it has been difficult to completely avoid line troubles due to poor welding.

この溶接良否を判定する方法としては、例えば特許文献1には、シーム溶接部において、あらかじめストリップの重ね厚みと溶接良好強度域の関係を制御器に記憶し、溶接時のストリップ接続溶接部の重ね厚みと溶接直後の溶接部温度を前記制御器に導入し、溶接良否を判定する方法などが開示されている。   As a method for determining the quality of this welding, for example, in Patent Document 1, in the seam welded portion, the relationship between the strip overlap thickness and the weld good strength region is stored in the controller in advance, and the overlap of the strip connection weld portion during welding is stored. A method is disclosed in which the thickness and the temperature of the welded part immediately after welding are introduced into the controller to determine whether or not welding is good.

ストリップの溶接状態は、種々の要因により左右される。例えば、溶接電流、溶接速度(電極輪の走行速度)、電極輪の押し付け圧力、およびストリップの重ね合わせ代などの変化は、すべて溶接部の温度の変化として現れる。したがって、溶接部の温度を計測することは、溶接の良否を判定する上できわめて有効な方法である。ここで溶接が不良で有ると判断された場合は再度溶接を行うこととなるが、ラインが高速度で運転されている場合、溶接を2回行うだけの時間的な余裕がない場合も多い。しかし、溶接不良によりストリップがライン内で破断した場合の被害は甚大であり、破断防止のためにはあえてラインを停止しても再溶接を行った方が経済的な効果は大きい。このため、溶接状態判定装置には精度の高い良否判定結果が求められる。   The welding state of the strip depends on various factors. For example, changes such as welding current, welding speed (travel speed of the electrode wheel), electrode wheel pressing pressure, and strip overlap allowance all appear as changes in the temperature of the weld. Therefore, measuring the temperature of the welded portion is an extremely effective method for determining the quality of welding. Here, when it is determined that the welding is defective, the welding is performed again. However, when the line is operated at a high speed, there is often no time margin for performing the welding twice. However, the damage caused when the strip breaks in the line due to poor welding is enormous. To prevent breakage, it is more economical to perform re-welding even if the line is stopped. For this reason, the quality determination result with high precision is calculated | required by the welding condition determination apparatus.

しかし、溶接温度は、温度計の異常や、温度計の測定ヘッド部の汚れなどによって正常に計測できない場合があり、また温度計の視野位置のずれなどによっても測定結果には変化が生じる。このような状態が発生した場合、従来の溶接状態判定装置では温度計が異常なのか、温度計の視野位置がずれているのか、あるいは本当に溶接温度に変化か生じているのかが容易には判別できない。   However, there are cases where the welding temperature cannot be measured normally due to abnormalities in the thermometer, dirt on the measuring head of the thermometer, or the like, and the measurement result changes due to a shift in the visual field position of the thermometer. When such a situation occurs, it is easy to determine whether the thermometer is abnormal, whether the thermometer's visual field position has shifted, or whether the welding temperature has actually changed. Can not.

一般的に温度計自身の良否の判定は黒体炉をもちいて行われるが、この方法では温度計を取り外し、黒体炉を設置している試験場に持ち込んで試験を行う必要が有り、溶接直後の短期間の間に温度計が正常であったのかどうかを判断することは不可能である。   In general, the quality of the thermometer itself is judged using a black body furnace. However, this method requires that the thermometer be removed and brought to the test site where the black body furnace is installed. It is impossible to determine whether the thermometer was normal during a short period of time.

また、溶接部の温度を計測しようとする場合、以下のような問題が発生する。まずストリップの重ね合わせ代の幅はおおむね2〜3mm程度であり、また電極輪の幅は10〜20mm程度であるため、溶接部の加熱される幅はせいぜい5〜10mm程度である。しかるに溶接部の温度を計測する手段としては放射温度計のような非接触式温度計をもちいる必要があるが、この場合、温度計の視野径を大きくすると非加熱部分の温度を含めた平均温度となり正確な計測ができなくなる。したがって視野径は小さくする必要が有るが、小さくすると視野位置を精密に調整する必要が生じる。また、溶接直後の温度を計測する必要が有るため、温度計は電極輪に可能な限り近づけることが望ましい。   Moreover, when it is going to measure the temperature of a welding part, the following problems generate | occur | produce. First, the width of the overlap of the strips is about 2 to 3 mm, and the width of the electrode ring is about 10 to 20 mm. Therefore, the heated width of the welded portion is about 5 to 10 mm at most. However, it is necessary to use a non-contact type thermometer such as a radiation thermometer as a means of measuring the temperature of the welded part. In this case, if the field diameter of the thermometer is increased, the average including the temperature of the non-heated part is included. Temperature becomes impossible to measure accurately. Therefore, it is necessary to make the field diameter small, but if it is made small, it becomes necessary to precisely adjust the field position. Moreover, since it is necessary to measure the temperature immediately after welding, it is desirable that the thermometer be as close as possible to the electrode wheel.

ところが、電極輪はストリップに強く押し付けられた状態で溶接の度に加熱、冷却を繰り返すとともに、スパッターの飛散などがあるため、その表面が荒れてくる。電極輪の表面が荒れた状態では正常な溶接ができないため、定期的に電極輪表面を研削しなければならない。そして、研削の度に電極輪の径は徐々に小さくなるので、所定の周期で電極輪の交換を行わなければならない。この交換の際に、電極輪の機械的な位置がずれたり、またこれらの作業を行う際に温度計に触れ、温度計の位置がずれる場合がある。この場合視野径が小さいほどこのずれの影響が大きく出てしまい、正常に溶接部の温度が計測できなくなってしまうことになる。   However, the electrode ring is repeatedly pressed and heated each time it is welded while being strongly pressed against the strip, and the surface of the electrode ring becomes rough because of spatter scattering. Since normal welding cannot be performed when the surface of the electrode ring is rough, the surface of the electrode ring must be periodically ground. Since the diameter of the electrode wheel gradually decreases every time grinding is performed, the electrode wheel must be replaced at a predetermined cycle. During this replacement, the mechanical position of the electrode wheel may be displaced, or the thermometer may be displaced due to touching the thermometer when performing these operations. In this case, the smaller the field of view, the greater the effect of this deviation, and the temperature of the welded part cannot be measured normally.

したがって、放射温度計の測定位置を合わせるため、放射温度計の光軸位置を調節する必要がある。特許文献2および特許文献3には、放射温度計にレーザー光発生器を取付、このレーザー光により光軸位置決めを行う技術が開示されている。   Therefore, in order to match the measurement position of the radiation thermometer, it is necessary to adjust the optical axis position of the radiation thermometer. Patent Documents 2 and 3 disclose a technique in which a laser light generator is attached to a radiation thermometer, and optical axis positioning is performed using the laser light.

さらに、特許文献4には、放射温度計の光軸上にヒーターを取り付け、温度計の異常判定、光軸確認を行う技術が開示されている。
特開昭63−203285号公報 特開平8−327460号公報 特開平10−197466号公報 特開平10−185848号公報
Furthermore, Patent Document 4 discloses a technique for attaching a heater on the optical axis of a radiation thermometer, performing abnormality determination of the thermometer, and confirming the optical axis.
JP-A-63-203285 JP-A-8-327460 JP-A-10-197466 Japanese Patent Laid-Open No. 10-185848

しかしながら、特許文献2および特許文献3に開示されたレーザー光を用いる方法では、レーザーを投射してもターゲット位置ではぼやけて光軸位置を正確に読むことは極めて困難であるという問題がある。この理由は、放射温度計の集光レンズを、レーザー投射時に共用しているためである。通常、溶接時の入熱幅は数mm〜10数mmであり、放射温度計の視野スポット径を小さくするとスパッターなどの影響で温度変化が大きくなりすぎるので例えばスポット径5〜8mmになるように集光系を調節している。この集光系を利用して、レーザーを投射しているので、ターゲット位置では上記スポット径にレーザー光が拡散することとなり、目視等では正確に定量的な読みとりが難しくなる。   However, the methods using laser light disclosed in Patent Document 2 and Patent Document 3 have a problem that even if a laser is projected, it is very difficult to read the optical axis position accurately because the target position is blurred. This is because the condenser lens of the radiation thermometer is shared during laser projection. Usually, the heat input width at the time of welding is several mm to several tens mm, and if the field spot diameter of the radiation thermometer is reduced, the temperature change becomes too large due to the influence of sputtering or the like. The condensing system is adjusted. Since the laser is projected using this condensing system, the laser light diffuses to the spot diameter at the target position, and accurate quantitative reading becomes difficult by visual observation or the like.

さらに、特許文献4のヒーターを用いる方法では、(1)装置が複雑かつ大がかりとなり設置費用が大きい、(2)溶接機キャリッジが待機位置にてヒーターを移動させ温度計チェックおよび光軸確認を行うが、キャリッジの停止位置は一般的にリミットSWによる制御であるため高精度の位置決め困難であり、光軸を高精度に確認することができない(3)ヒーター位置を確認するための構造、方法について記述されていない、といった問題がある。   Further, in the method using the heater of Patent Document 4, (1) the apparatus is complicated and large, and installation cost is high. (2) The welding machine carriage moves the heater at the standby position to perform thermometer check and optical axis confirmation. However, since the carriage stop position is generally controlled by the limit SW, it is difficult to position with high accuracy and the optical axis cannot be confirmed with high accuracy. (3) Structure and method for confirming the heater position There is a problem that it is not described.

本発明は上記事情に鑑みてなされたもので、容易に溶接部の温度を検出する温度計の良否を判定し、また容易に温度計の視野位置を確認できる放射温度計の光軸位置決め方法を提供することにある。 The present invention has been made in view of the above circumstances. An optical axis positioning method for a radiation thermometer that can easily determine the quality of a thermometer that easily detects the temperature of a welded portion and that can easily confirm the visual field position of the thermometer. It is to provide.

本発明の請求項1に係る発明は、上下一対の円盤電極を備えたシーム溶接機で溶接された直後の鋼板の溶接部の温度を測定する際に用いられる放射温度計の光軸位置決め方法であって、前記放射温度計のターゲット位置近傍に、前記放射温度計の視野径よりも小さい径の線状の発熱体を設置するとともに、前記発熱体を溶接線に対して垂直方向に移動させ、かつその位置を計測可能として、前記放射温度計による前記発熱体の温度計測と、前記発熱体の位置計測により、前記放射温度計の光軸を定量的に確認およびまたは調整することを特徴とする放射温度計の光軸位置決め方法である。 The invention according to claim 1 of the present invention is an optical axis positioning method for a radiation thermometer used when measuring the temperature of a welded portion of a steel plate immediately after being welded by a seam welder having a pair of upper and lower disk electrodes. In the vicinity of the target position of the radiation thermometer, a linear heating element having a diameter smaller than the field diameter of the radiation thermometer is installed, and the heating element is moved in a direction perpendicular to the welding line, And the position can be measured, and the optical axis of the radiation thermometer is quantitatively confirmed and adjusted by measuring the temperature of the heating element by the radiation thermometer and measuring the position of the heating element. This is a method for positioning an optical axis of a radiation thermometer.

また本発明の請求項2に係る発明は、上下一対の円盤電極を備えたシーム溶接機で溶接された直後の鋼板の溶接部の温度を測定する際に用いられる放射温度計の光軸位置決め方法であって、前記放射温度計のターゲット位置近傍に、前記放射温度計の視野径よりも小さい径のニクロム線からなる発熱体を設置するとともに、前記発熱体を溶接線に対して垂直方向に移動させ、かつその位置を計測可能として、前記放射温度計による前記発熱体の温度計測と、前記発熱体の位置計測により、前記放射温度計の光軸を定量的に確認およびまたは調整することを特徴とする放射温度計の光軸位置決め方法である。 Further, the invention according to claim 2 of the present invention is an optical axis positioning method for a radiation thermometer used when measuring the temperature of a welded portion of a steel plate immediately after being welded by a seam welding machine having a pair of upper and lower disk electrodes. A heating element made of nichrome wire having a diameter smaller than the field diameter of the radiation thermometer is installed near the target position of the radiation thermometer, and the heating element is moved in a direction perpendicular to the welding line. And measuring the position of the heating element with the radiation thermometer and measuring the position of the heating element to quantitatively confirm and / or adjust the optical axis of the radiation thermometer. The optical axis positioning method of the radiation thermometer .

また本発明の請求項3に係る発明は、請求項1または2に記載の放射温度計の光軸位置決め方法において、前記放射温度計の光軸を定量的に確認およびまたは調整するにあたっては、前記放射温度計の指示値がピークを示す位置が光軸位置であると判断することを特徴とする放射温度計の光軸位置決め方法である。 The invention according to claim 3 of the present invention is the optical axis positioning method for a radiation thermometer according to claim 1 or 2, wherein the optical axis of the radiation thermometer is quantitatively confirmed and adjusted. An optical axis positioning method for a radiation thermometer, characterized in that it is determined that a position where the indicated value of the radiation thermometer shows a peak is an optical axis position.

本発明によれば、放射温度計の光軸を極めて容易にかつ高精度に確認することが可能となり、これによって溶接温度測定精度の向上に大いに寄与する。   According to the present invention, the optical axis of the radiation thermometer can be checked very easily and with high accuracy, which greatly contributes to the improvement of the welding temperature measurement accuracy.

本発明を実施するための最良の形態を、図面を参照しながら以下説明する。図1は、本発明を実施するための構成の一例を示す図である。シーム溶接機における先行ストリップ1と後行ストリップ2の溶接を行っている状態を模式的に表しており、車輪4により移動可能なキャリッジ3には上下に電極輪5、スエージングロール6が設置されている。また、下部電極輪とスエージングロールの間に集光レンズ7が設置され、光ファイバー8を介し、温度検出器9と接続されている。温度検出器9は、溶接状態判定装置10に溶接部の測温結果を出力する。溶接状態判定装置10は、あらかじめ上位計算機11から先行ストリップ1および後行ストリップ2の板厚および鋼種と、シーム溶接機制御装置12から溶接条件を設定されており、これにより溶接温度の良好範囲をあらかじめ決定しておく。つぎに、シーム溶接機制御装置12からの計測開始指令により計測を行い、溶接温度が良好範囲から外れたとき溶接異常と判定する。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an example of a configuration for carrying out the present invention. A state in which the preceding strip 1 and the following strip 2 are welded in a seam welding machine is schematically shown. An electrode wheel 5 and a swaging roll 6 are installed on a carriage 3 movable by a wheel 4 in the vertical direction. ing. A condenser lens 7 is installed between the lower electrode wheel and the swaging roll, and is connected to the temperature detector 9 via the optical fiber 8. The temperature detector 9 outputs the temperature measurement result of the welded portion to the welding state determination device 10. The welding state determination device 10 is set in advance with the plate thickness and steel type of the preceding strip 1 and the succeeding strip 2 from the host computer 11 and the welding conditions from the seam welding machine control device 12, thereby reducing the good range of welding temperature. Determine in advance. Next, measurement is performed in accordance with a measurement start command from the seam welder control device 12, and it is determined that the welding is abnormal when the welding temperature is out of the good range.

図2および図3は、本発明に係る光軸位置決め装置の一例を模式的に説明したものであり、図2は上面から見た図、図3は側面から見た図である。図2において、20は放射温度計の光軸を確認するための発熱体、21は発熱体20を所定の位置に移動させる発熱体移動機構部である。この発熱体移動機構部21は、発熱体20を所定の位置に移動させるだけでなく、マイクロメータのような高精度にその位置または移動量を計測できる構成とするが、最低限、溶接線と垂直方向または水平方向に移動および計測可能とすることが必要である。22は、発熱体20および発熱体移動機構部21を固定するとともに、測定時に所定の位置に設置するためのベースである。また23は、ベース22に固定され、本装置が正常に設置できているか確認するための水準器である。24は発熱体に電流を流すための電源装置であり、電線25により発熱体20と接続されている。   2 and 3 schematically illustrate an example of the optical axis positioning device according to the present invention. FIG. 2 is a view from the top, and FIG. 3 is a view from the side. In FIG. 2, 20 is a heating element for confirming the optical axis of the radiation thermometer, and 21 is a heating element moving mechanism for moving the heating element 20 to a predetermined position. The heating element moving mechanism unit 21 is configured not only to move the heating element 20 to a predetermined position but also to measure the position or the movement amount with high accuracy such as a micrometer. It is necessary to be able to move and measure vertically or horizontally. Reference numeral 22 denotes a base for fixing the heating element 20 and the heating element moving mechanism 21 and installing it at a predetermined position during measurement. Reference numeral 23 denotes a level that is fixed to the base 22 and is used to confirm whether or not the present apparatus can be normally installed. Reference numeral 24 denotes a power supply device for causing a current to flow through the heating element, and is connected to the heating element 20 by an electric wire 25.

発熱体20としては、放射温度計の視野径よりも小さい面積の発熱体であり、その材質はニクロム線が入手および加工が容易であるため、これを用いるのが好適であるが、発熱できるものであればこれに限るものでない。また、発熱体20としてニクロム線を用いた場合、ニクロム線の径はあまり細いと発熱時に断線しやすいので、2〜3mm程度のものを使用するのがよい。また、ニクロム線は何度も発熱を繰り返しているといずれ断線してしまうので、容易に交換できるようビス止めとしておくのが望ましい。また、ニクロム線が熱変形により容易に曲がらないようにするため、ニクロム線にバネ等により張力を与える構造にするとよい。さらに、ニクロム線自身の熱容量は小さいので、風などの周囲環境の影響を受けやすいため、例えばカバーなどして直接風が当たらないようするなどの環境対策を施すようにするとよい。   The heating element 20 is a heating element having an area smaller than the field diameter of the radiation thermometer, and since it is easy to obtain and process the nichrome wire, it is preferable to use this heating element. If so, it is not limited to this. Further, when a nichrome wire is used as the heating element 20, if the diameter of the nichrome wire is too thin, it is easy to break during heat generation, so it is preferable to use a wire of about 2 to 3 mm. Moreover, since the nichrome wire will eventually break if it repeatedly generates heat, it is desirable to fix it with screws so that it can be easily replaced. Further, in order to prevent the nichrome wire from being easily bent due to thermal deformation, it is preferable to have a structure in which tension is applied to the nichrome wire by a spring or the like. Furthermore, since the heat capacity of the nichrome wire itself is small, it is easy to be affected by the surrounding environment such as wind, so it is advisable to take environmental measures such as covering the wind directly.

図3において、7〜9は図1と同じく、それぞれ放射温度計の集光レンズ、光ファイバー、および温度検出器であり、発熱体20を固定したベース22は、電極輪5とスエージングロール6上に被さるかたちで設置される(このためベース22はコの字断面であり、一方の側面には、設置後ずれないようにする固定治具を有する)。そして、発熱体20が放射温度計の光軸上近傍に位置するように、ベース22を電極輪5またはスエージングロール6方向に移動させる。   In FIG. 3, 7 to 9 are the condensing lens, optical fiber, and temperature detector of the radiation thermometer, respectively, as in FIG. 1, and the base 22 to which the heating element 20 is fixed is on the electrode ring 5 and the swaging roll 6. (For this reason, the base 22 has a U-shaped cross section, and a fixing jig is provided on one side surface so as not to be displaced after installation). Then, the base 22 is moved in the direction of the electrode wheel 5 or the swaging roll 6 so that the heating element 20 is positioned in the vicinity of the optical axis of the radiation thermometer.

本発明における放射温度計の光軸確認、調整を行う具体的な手順について、以下に説明する(図2および3参照)。
(1)溶接機((図示せず)を待機位置にし、電極輪5とスエージングロール6のレベルがあっていることを確認する。
(2)電極輪5とスエージングロール6の上に、発熱体20および発熱体移動機構部21を固定したベース22を被いかぶせるように設置する。この時、発熱体20と電極輪5の相対的な位置関係があっていることを確認する。また、水準器23により水平に取り付けられていることを確認する。なお、過去の実験により、溶接方向(電極輪5とスエージングロール6とを結ぶ方向)に10mm程度光軸がズレても温度変化は無視できる程度であるため、溶接方向については厳密にあわせる必要はなく、たとえば前述した放射温度計のスポット径の10%以内にするようにすればよい。以上の取付位置確認を行った後、ベース22を固定治具により電極輪5とスエージングロール6に固定する。
(3)次に発熱体20の端子に電源装置24からの電線25を接続する。
(4)発熱体20に電流を流し、発熱させる。電源は発熱量を安定させるため、電流一定制御付きの電源とするのがよい。

(5)発熱体20が赤熱し温度が十分上昇したところで、発熱体移動機構部21によって発熱体20を溶接線に対して垂直方向に動かし、この時の温度検出器9の指示値を確認する。放射温度計の指示値がピークを示す位置が光軸位置である。なお、発熱体の移動機構はマイクロメータの寸法読みとり機構と同じ構造としておき、精度は少なくとも0.1mmまで読みとりまたは自動計測可能なものとしておく。なお、前述のように温度計の健全性は黒体炉などで厳密に確認しなければならないが、ここでの温度指示値の再現性から少なくとも故障していないかどうかといった程度の健全性を確認することが可能です。(6)光軸位置を確認後、過去に確認した正常時の光軸位置と比較し、その差が許容値内であれば、光軸の調整は行わない。しかし、許容値から外れていれば、正常時の光軸位置まで発熱体移動機構部21によって発熱体20を移動させる。
(7)次に、正常時の光軸位置に移動した発熱体の温度を計測しながら、その指示値がピークを示すまで、放射温度計自身の設置位置および角度を調節する。これにより、放射温度計の光軸調整が終了する。
A specific procedure for confirming and adjusting the optical axis of the radiation thermometer in the present invention will be described below (see FIGS. 2 and 3).
(1) Place the welding machine (not shown) in the standby position and confirm that the levels of the electrode wheel 5 and the swaging roll 6 are in place.
(2) A base 22 to which the heating element 20 and the heating element moving mechanism 21 are fixed is placed on the electrode wheel 5 and the swaging roll 6 so as to cover it. At this time, it is confirmed that there is a relative positional relationship between the heating element 20 and the electrode ring 5. Moreover, it confirms that it is attached horizontally by the level 23. In addition, according to past experiments, since the temperature change is negligible even if the optical axis is displaced by about 10 mm in the welding direction (direction in which the electrode wheel 5 and the swaging roll 6 are connected), it is necessary to strictly match the welding direction. For example, it may be within 10% of the spot diameter of the radiation thermometer described above. After performing the above attachment position confirmation, the base 22 is fixed to the electrode wheel 5 and the swaging roll 6 with a fixing jig.
(3) Next, the electric wire 25 from the power supply device 24 is connected to the terminal of the heating element 20.
(4) A current is passed through the heating element 20 to generate heat. In order to stabilize the heat generation amount, the power source should be a power source with constant current control.

(5) When the heating element 20 becomes red hot and the temperature rises sufficiently, the heating element moving mechanism 21 moves the heating element 20 in the direction perpendicular to the welding line, and confirms the indicated value of the temperature detector 9 at this time. . The position where the indicated value of the radiation thermometer shows a peak is the optical axis position. The heating element moving mechanism has the same structure as the dimension reading mechanism of the micrometer, and the accuracy can be read to at least 0.1 mm or automatically measured. As mentioned above, the soundness of the thermometer must be strictly checked with a blackbody furnace, etc., but the soundness of the degree of whether there is at least a failure is confirmed from the reproducibility of the temperature indication value here. It is possible to. (6) After confirming the optical axis position, the optical axis position is compared with the normal optical axis position confirmed in the past, and if the difference is within an allowable value, the optical axis is not adjusted. However, if it deviates from the allowable value, the heating element moving mechanism 21 moves the heating element 20 to the normal optical axis position.
(7) Next, while measuring the temperature of the heating element moved to the normal optical axis position, the installation position and angle of the radiation thermometer itself are adjusted until the indicated value shows a peak. Thereby, the optical axis adjustment of the radiation thermometer is completed.

以上説明したように、本発明は、放射温度計で発熱体の温度を計測し、この温度がピーク値を示すポイントが放射温度計の光軸であると判断すること、および発熱体の移動量を定量的に計測することによって、放射温度計の光軸を極めて容易にかつ高精度に確認することが可能である。   As described above, the present invention measures the temperature of the heating element with a radiation thermometer, determines that the point at which this temperature exhibits a peak value is the optical axis of the radiation thermometer, and the amount of movement of the heating element. It is possible to check the optical axis of the radiation thermometer very easily and with high accuracy by measuring the quantity quantitatively.

本発明を実施するための構成の一例を示す図である。It is a figure which shows an example of the structure for implementing this invention. 本発明に係る光軸位置決め装置の一例を模式的に示す図(上面)である。It is a figure (upper surface) which shows typically an example of the optical axis positioning device which concerns on this invention. 本発明に係る光軸位置決め装置の一例を模式的に示す図(側面)である。It is a figure (side) which shows typically an example of the optical axis positioning device concerning the present invention.

符号の説明Explanation of symbols


1 先行ストリップ
2 後行ストリップ
3 キャリッジ
4 車輪
5 電極輪
6 スエージングロール
7 集光レンズ
8 光ファイバー
9 温度検出器
10 溶接状態判定装置
11 上位計算機
12 シーム溶接機制御装置
20 発熱体
21 発熱体移動機構部
22 ベース
23 水準器
24 電源装置
25 電線

DESCRIPTION OF SYMBOLS 1 Leading strip 2 Subsequent strip 3 Carriage 4 Wheel 5 Electrode wheel 6 Swaging roll 7 Condensing lens 8 Optical fiber 9 Temperature detector 10 Welding state determination apparatus 11 Host computer 12 Seam welding machine control apparatus 20 Heating element 21 Heating element moving mechanism Part 22 Base 23 Level 24 Power supply 25 Electric wire

Claims (3)

上下一対の円盤電極を備えたシーム溶接機で溶接された直後の鋼板の溶接部の温度を測定する際に用いられる放射温度計の光軸位置決め方法であって、
前記放射温度計のターゲット位置近傍に、前記放射温度計の視野よりも小さい径の線状の発熱体を設置するとともに、
前記発熱体を溶接線に対して垂直方向に移動させ、かつその位置を計測可能として、
前記放射温度計による前記発熱体の温度計測と、前記発熱体の位置計測により、前記放射温度計の光軸を定量的に確認およびまたは調整することを特徴とする放射温度計の光軸位置決め方法。
An optical axis positioning method of a radiation thermometer used when measuring the temperature of a welded portion of a steel plate immediately after being welded by a seam welder having a pair of upper and lower disk electrodes,
In the vicinity of the target position of the radiation thermometer, a linear heating element having a diameter smaller than the field diameter of the radiation thermometer is installed,
The heating element is moved in the direction perpendicular to the welding line , and its position can be measured,
An optical axis positioning method for a radiation thermometer characterized in that the optical axis of the radiation thermometer is quantitatively confirmed and adjusted by measuring the temperature of the heating element with the radiation thermometer and measuring the position of the heating element. .
上下一対の円盤電極を備えたシーム溶接機で溶接された直後の鋼板の溶接部の温度を測定する際に用いられる放射温度計の光軸位置決め方法であって、An optical axis positioning method of a radiation thermometer used when measuring the temperature of a welded portion of a steel plate immediately after being welded by a seam welder having a pair of upper and lower disk electrodes,
前記放射温度計のターゲット位置近傍に、前記放射温度計の視野径よりも小さい径のニクロム線からなる発熱体を設置するとともに、In the vicinity of the target position of the radiation thermometer, a heating element made of a nichrome wire having a diameter smaller than the field diameter of the radiation thermometer is installed,
前記発熱体を溶接線に対して垂直方向に移動させ、かつその位置を計測可能として、The heating element is moved in the direction perpendicular to the welding line, and its position can be measured,
前記放射温度計による前記発熱体の温度計測と、前記発熱体の位置計測により、前記放射温度計の光軸を定量的に確認およびまたは調整することを特徴とする放射温度計の光軸位置決め方法。An optical axis positioning method for a radiation thermometer characterized in that the optical axis of the radiation thermometer is quantitatively confirmed and adjusted by measuring the temperature of the heating element with the radiation thermometer and measuring the position of the heating element. .
請求項1または2に記載の放射温度計の光軸位置決め方法において、
前記放射温度計の光軸を定量的に確認およびまたは調整するにあたっては、前記放射温度計の指示値がピークを示す位置が光軸位置であると判断することを特徴とする放射温度計の光軸位置決め方法。
In the optical axis positioning method of the radiation thermometer according to claim 1 or 2 ,
In confirming and / or adjusting the optical axis of the radiation thermometer quantitatively, it is determined that the position where the indicated value of the radiation thermometer shows a peak is the optical axis position. Axis positioning method.
JP2005035662A 2005-02-14 2005-02-14 Radiation thermometer optical axis positioning method Expired - Fee Related JP4448041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035662A JP4448041B2 (en) 2005-02-14 2005-02-14 Radiation thermometer optical axis positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035662A JP4448041B2 (en) 2005-02-14 2005-02-14 Radiation thermometer optical axis positioning method

Publications (2)

Publication Number Publication Date
JP2006220587A JP2006220587A (en) 2006-08-24
JP4448041B2 true JP4448041B2 (en) 2010-04-07

Family

ID=36983006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035662A Expired - Fee Related JP4448041B2 (en) 2005-02-14 2005-02-14 Radiation thermometer optical axis positioning method

Country Status (1)

Country Link
JP (1) JP4448041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243182A1 (en) * 2007-08-14 2011-10-06 Testo Ag Infrared temperature measuring device

Also Published As

Publication number Publication date
JP2006220587A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
KR100333820B1 (en) Simultaneous temperature measurement during laser welding using at least two pyrometers for process parameter monitoring and welding quality control
JP5424303B2 (en) Equipment for evaluating the condition of welding caps
JP3186721B2 (en) Welding quality judging device and welding machine equipped with the same
KR20120071413A (en) Method and control device for monitoring the quality of spot welds of a resistance welding gun comprising the outputting of a warning message
US20070175869A1 (en) Method for monitoring a resistance welding process and device therefor
US9266187B2 (en) Method of monitoring thermal response, force and current during resistance welding
JP2008254069A (en) Method for verifying wear of electrode tip for spot welding
JPH1158028A (en) Estimation method for nugget diameter in spot welding
JP2000288743A (en) Controller for resistance welding equipment
JP4448041B2 (en) Radiation thermometer optical axis positioning method
SK363792A3 (en) Method of quality following of weld by a fusion welding
JP5461070B2 (en) Abnormality detection method for laser welding system
EP2015888B1 (en) Method for laser machining
JP3271861B2 (en) Nugget measurement method for spot welds
JP4717969B2 (en) Stud welding gun moving method and apparatus
KR20200058397A (en) Welding system and its operation method
JP2013063447A (en) Welding device and welding method
KR20190073874A (en) Welding material thickness measuring device and welding method using the same
KR100270098B1 (en) Apparatus and method for quality judge of welding
JP3938055B2 (en) Seam welding quality determination method and apparatus
JP2006021226A (en) Lower electrode unit having function for detecting abnormal setting of nut and bolt
KR100237153B1 (en) Method of welding quality
JP3765861B2 (en) Electrode non-consumable welding robot and arc welding method using the same
KR102110678B1 (en) Welding table
JP2013022597A (en) Welding quality determination method and welding quality determination device of lap seam welding part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4448041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees