JPS60175313A - Method of annealing transparent conductive film - Google Patents

Method of annealing transparent conductive film

Info

Publication number
JPS60175313A
JPS60175313A JP3035884A JP3035884A JPS60175313A JP S60175313 A JPS60175313 A JP S60175313A JP 3035884 A JP3035884 A JP 3035884A JP 3035884 A JP3035884 A JP 3035884A JP S60175313 A JPS60175313 A JP S60175313A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
annealing
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3035884A
Other languages
Japanese (ja)
Inventor
健一郎 中尾
松原 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP3035884A priority Critical patent/JPS60175313A/en
Publication of JPS60175313A publication Critical patent/JPS60175313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は透明導電膜の製造方法に係り、特に、そのアニ
ール方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a transparent conductive film, and particularly to an annealing method thereof.

〔背景技術〕[Background technology]

透明導電膜を作成する場合、所定の導電率、透過率等の
膜特性f:得るため、アニールを必要とする事がある。
When creating a transparent conductive film, annealing may be required in order to obtain predetermined film characteristics such as conductivity and transmittance.

この場合、従来法では、真空中、02雰囲気中、或いは
大気中でヒーター或は電気炉等の外部機器を使用し、間
接的に加熱する事によってアニールしていた。
In this case, in the conventional method, annealing was performed by indirect heating using an external device such as a heater or an electric furnace in a vacuum, an 02 atmosphere, or the atmosphere.

この場合の欠点として、間接的に加熱するため、得られ
た膜質の再現性の面でバラツキが大きかった事、また膜
全体がアニールされてしまうため、局所的なアニールが
できなかった事及びヒーター等の外部機器を必要とし、
多量の電力を消費する事などが挙げられる。
The disadvantages of this case are that the reproducibility of the obtained film quality was highly variable because it was heated indirectly, that the entire film was annealed, so local annealing was not possible, and that Requires external equipment such as
For example, it consumes a large amount of electricity.

〔発明の目的〕[Purpose of the invention]

本発明はこの様な従来例の欠点に鑑みてなされたもので
あシ、導電率、透過率等膜特性に良好な結果を与えるア
ニール方法を提供することを目的とするものである。
The present invention has been made in view of the drawbacks of the conventional methods, and it is an object of the present invention to provide an annealing method that provides good results in film properties such as conductivity and transmittance.

〔発明の概要〕[Summary of the invention]

そのために本発明では透明導電膜に直接電流を流し、膜
自身から発生する熱によって膜自身をアニールする事に
よって目的を達成したものである。
Therefore, in the present invention, the object is achieved by passing a current directly through the transparent conductive film and annealing the film itself using the heat generated from the film itself.

〔実施例〕〔Example〕

以下本発明の一実施例を図面に従って説明する0図は透
明導電膜1 (膜厚:920人)を蒸着したガラス基板
2f:1対のクリップ状電極3で両端付近を挾んだ状態
を示す側面図である。
An embodiment of the present invention will be described below with reference to the drawings. Figure 0 shows a glass substrate 2f on which a transparent conductive film 1 (film thickness: 920 layers) is deposited: the vicinity of both ends are sandwiched between a pair of clip-shaped electrodes 3. FIG.

使用した透明導電膜1は黒色半透明で透過率が62% 
(波長550μm)と低く、シート抵抗は640Ω/口
 と高いものであった。
The transparent conductive film 1 used is black and semi-transparent with a transmittance of 62%.
(wavelength: 550 μm), and sheet resistance was as high as 640 Ω/hole.

この膜lに対して5 Xi O’torr の02雰囲
気中で、図に示した様に電極3間に電源4により電流計
5を介して電流を流した。また同時に赤外温度計で導電
膜1の表面の温度を監視した。
A current was passed through the ammeter 5 from the power supply 4 between the electrodes 3 as shown in the figure in a 02 atmosphere of 5 Xi O'torr to this film 1. At the same time, the temperature of the surface of the conductive film 1 was monitored using an infrared thermometer.

電流を流し始めると、透明導電膜1の表面温度が上昇し
、それにつれて抵抗が低下し始めたが(電圧側6により
開側される)が、3分後には安定した。その時の温度は
420°Cであった。そこで電流を切シアニールを停止
した。その後、一対の電極3で挾まれた領域のシート抵
抗と透過率の測定を行なった結果、シート抵抗は145
Ω/口と大幅に減少した0 つまり導電率が大幅に上昇した。また透過率は78%に
上昇し、目的の膜質のものが得られた。
When current began to flow, the surface temperature of the transparent conductive film 1 rose, and the resistance began to decrease accordingly (opened by the voltage side 6), but stabilized after 3 minutes. The temperature at that time was 420°C. The current was then turned off and cyanyl was stopped. After that, the sheet resistance and transmittance of the area sandwiched between the pair of electrodes 3 were measured, and the sheet resistance was 145.
Ω/mouth decreased significantly. In other words, the electrical conductivity increased significantly. Moreover, the transmittance increased to 78%, and the desired film quality was obtained.

ただし上記以外の領域では、特性の変化はほとあど見ら
れなかった。従って、同−成上において局所的なアニー
ルができた事になる。
However, in areas other than the above, almost no changes in characteristics were observed. Therefore, local annealing was achieved during the same process.

透明導電膜は、その名のとおり、導電性がある。As the name suggests, a transparent conductive film is electrically conductive.

従って電流を流せば、それに応じて発熱する。Therefore, when current flows through it, it generates heat accordingly.

温度が上がれば、化学変化を起こす。具体的には透明導
電膜はIn、Snなどの酸化物でできており、温度、と
回りの雰囲気に応じて02含有量が変り組成が変化する
(ストイチオメトリーが変化する)。
As the temperature rises, chemical changes occur. Specifically, the transparent conductive film is made of oxides such as In and Sn, and the O2 content changes depending on the temperature and surrounding atmosphere, and the composition changes (stoichiometry changes).

また、結晶性も、温度、雰四包等により非晶質=結晶と
変化する。この場合は、温度が上昇した事によシ、02
含有量が増加、結晶化度が上昇したのが原因と考えられ
る。
Further, crystallinity also changes from amorphous to crystalline depending on temperature, atmosphere, etc. In this case, due to the rise in temperature, 02
This is thought to be due to an increase in content and crystallinity.

この様な特性から前述の様に導電率及び透過率を変化さ
せることが出来るのである。
Due to these characteristics, the conductivity and transmittance can be changed as described above.

尚、本実施例では、クリップ状の電極を用いたが、必ず
しもこの様な形状に限定されることなく、要は透明導電
膜1上に固定できるものであれば良い。まだ電極の位置
、大きさを変える事により、任意の目的の領域だけをア
ニールする事ができるのは言う壕でもない。
Although a clip-shaped electrode is used in this embodiment, the shape is not necessarily limited to this, and any shape that can be fixed onto the transparent conductive film 1 may be used. However, by changing the position and size of the electrode, it is still possible to anneal only the desired area.

尚、電流を流すため、電極を使用するが、これを透明導
電膜にぴたりと面接触させねばならない。
Incidentally, an electrode is used in order to flow a current, but it must be brought into exact surface contact with the transparent conductive film.

従って電極と膜の間に11箔をはさんだシすることが望
ましい。さらに本実施例では、局所的に膜特性の異なる
領域全形成させる方法について示したが、局所的に限ら
ず層全体の特性を本発明を用いて、所定の膜特性に改善
させる事も可能である。
Therefore, it is desirable to sandwich a No. 11 foil between the electrode and the membrane. Furthermore, in this example, a method of forming all regions with locally different film properties was shown, but it is also possible to improve the properties of the entire layer to predetermined film properties using the present invention, not just locally. be.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明では透明導電膜に直接電流を
流すため、電流及び電圧を直接監視する事ができ、その
ため、膜質の再現性を向上させる事ができる。また同一
の股上に連続的、或は段階的に導電率や透過率@、の膜
特性の異なる領域を形成でき、さらに局所的にも形成が
可能である。さらに一般的には、本発8Aヲ用いれば、
ヒーターや電気炉等の外部機器を必要とせず、また直接
加熱するため、装置が簡単になシ、消費電力も少なくな
るというrt++次的力効呆も得られる0また透明導電
膜は透明電極として使用される一方において収脱の形成
条件によっては、半透明な膜にもなる。この場合は、収
脱は色フィルターとしての可能性があシ、本発明はフィ
ルターの膜特性の選定にも効果的である。
As explained above, in the present invention, since a current is passed directly through the transparent conductive film, the current and voltage can be directly monitored, and therefore, the reproducibility of the film quality can be improved. In addition, regions with different film characteristics such as conductivity and transmittance can be formed continuously or stepwise on the same crotch, and can also be formed locally. More generally, if you use this 8A,
Since no external equipment such as a heater or electric furnace is required, and direct heating is performed, the device can be simplified and power consumption can be reduced. Depending on the formation conditions of absorption and extraction, it can also become a translucent film. In this case, there is a possibility that the absorption/desorption is performed as a color filter, and the present invention is also effective in selecting the membrane characteristics of the filter.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る透明導電膜のアニール方法を実施す
る上での装置全体を示す側面図である。 1・・・・・・透明導電膜、3・・・・・・電極。
The drawing is a side view showing the entire apparatus for carrying out the method of annealing a transparent conductive film according to the present invention. 1... Transparent conductive film, 3... Electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)透明導電膜の製造方法において、透明導電膜に電
極を接続して直接電流を流し、この透明導電膜自身から
発生する熱によって、所定の膜特性を得る事を特徴とす
る透明導電膜のアニール方法。 (2、特許請求の範囲第(1)項において、電流を局所
的に流し、同一の透明導電膜上に少なくとも1ケ所異な
った膜特性を有する領域を形成した事を特徴とする透明
導電膜のアニール方法。
(1) A method for producing a transparent conductive film, which is characterized in that an electrode is connected to the transparent conductive film and a current is applied directly to it, and predetermined film characteristics are obtained by the heat generated from the transparent conductive film itself. annealing method. (2. In claim (1), the transparent conductive film is characterized in that a current is locally applied to form at least one region having different film characteristics on the same transparent conductive film. Annealing method.
JP3035884A 1984-02-22 1984-02-22 Method of annealing transparent conductive film Pending JPS60175313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035884A JPS60175313A (en) 1984-02-22 1984-02-22 Method of annealing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035884A JPS60175313A (en) 1984-02-22 1984-02-22 Method of annealing transparent conductive film

Publications (1)

Publication Number Publication Date
JPS60175313A true JPS60175313A (en) 1985-09-09

Family

ID=12301633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035884A Pending JPS60175313A (en) 1984-02-22 1984-02-22 Method of annealing transparent conductive film

Country Status (1)

Country Link
JP (1) JPS60175313A (en)

Similar Documents

Publication Publication Date Title
US5677240A (en) Method for forming a semiconductor device
US5808315A (en) Thin film transistor having transparent conductive film
JPS62128556A (en) Semiconductor device
JP3855019B2 (en) Laminated structure made of metal, oxide film and silicon carbide semiconductor
JPS60175313A (en) Method of annealing transparent conductive film
JP2000022105A5 (en)
JPS6247170A (en) Highly reverse resistance type diode device
Yamaguchi et al. Effect of the surface condition on the conductance of hydrogenated amorphous silicon
JPH0664935B2 (en) Transparent conductive film and method for forming the same
KR20130031142A (en) Manufacturing method of heating plate
JPS6298774A (en) Manufacture of thin-film transistor
JPS60175314A (en) Method of annealing transparent conductive film
JPS59114853A (en) Laminated integrated circuit element
JPS6261376A (en) Solar battery
JPS58225648A (en) Semiconductor device
JPH0223654A (en) Semiconductor device
JP3136764B2 (en) Method for producing chalcopyrite thin film
JPH0878707A (en) Manufacture of solar battery
JPH0716033B2 (en) Non-linear resistance element manufacturing method
JPH02159756A (en) Thin film resistance element of tantalum
JPH05175528A (en) Manufacture of amorphous silicon solar cell
JPH01120051A (en) Semiconductor device
JPH10101378A (en) Electrically conductive hot plate and its manufacture
JPH05175530A (en) Photovoltaic device
JPS62165811A (en) Manufacture of platinum family oxide semiconductor