JPS60174482A - Method of heating industrial furnace - Google Patents

Method of heating industrial furnace

Info

Publication number
JPS60174482A
JPS60174482A JP2984184A JP2984184A JPS60174482A JP S60174482 A JPS60174482 A JP S60174482A JP 2984184 A JP2984184 A JP 2984184A JP 2984184 A JP2984184 A JP 2984184A JP S60174482 A JPS60174482 A JP S60174482A
Authority
JP
Japan
Prior art keywords
furnace
temperature
heating
burner
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2984184A
Other languages
Japanese (ja)
Inventor
長谷 勇
富浜 宗信
健一 石橋
大石 収宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2984184A priority Critical patent/JPS60174482A/en
Publication of JPS60174482A publication Critical patent/JPS60174482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は−に築炉の加熱方法に関し、特に複雑な形状の
大型−1業炉の乾燥と予熱に用いられるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating method for a furnace, and is particularly used for drying and preheating a large-scale industrial furnace having a complicated shape.

一般に各種[築炉は建設あるいは修理された後、操業に
入る前に、内張耐火物の水分除去、構造強度の発現など
のための乾燥及び内張耐人物の熱1膨張の吸収、焼結な
どのための予熱が行なわれ、更に所定温度まで昇温され
て操業に入る。こうした乾燥・予熱作業の良否は炉体の
内張耐火物、炉殻なとへ与える影響が大きく、炉体の寿
命にも関係するため、この作業は操業前の重要な工程の
一つとなっている。
In general, after a furnace is constructed or repaired, and before it goes into operation, it is used to remove moisture from the refractory lining, dry it to develop structural strength, absorb thermal expansion of the refractory lining, and perform sintering. Preheating is performed for such purposes, and the temperature is further raised to a predetermined temperature before operation begins. The quality of this drying and preheating work has a great effect on the refractory lining of the furnace body and the furnace shell, and is also related to the lifespan of the furnace body, so this work is one of the important processes before operation. There is.

J−述した各種工業炉の乾燥・予熱は一般の輻射型バー
ナを用いる方法、炉体の操業用バーナを乾燥・予熱に兼
用する方法あるいは非輻射型のハイベロシティ−バーナ
を用い高速熱風を炉内に循環する方法などによって実施
されている。
J- For drying and preheating of the various industrial furnaces mentioned above, use a general radiation burner, use the operating burner of the furnace body for both drying and preheating, or use a non-radiation type high velocity burner to blow high-speed hot air into the furnace. This is done through methods such as internal circulation.

ところで、各種l二築炉のうちガラス溶解炉、製鉄用熱
風炉などの大型で炉構造が複雑な炉体の乾燥と予熱は均
一加熱が困難で、かつ作業に長時間を要する。この場合
、屯に加熱速度を速くすることは局部加熱による内張耐
火物その他の損傷につながる結果となる。
By the way, it is difficult to uniformly heat the drying and preheating of large furnace bodies such as glass melting furnaces and hot blast furnaces for steel manufacturing, which are large in size and have complicated furnace structures among various kinds of two-build furnaces, and it takes a long time to perform the work. In this case, increasing the heating rate will result in damage to the refractory lining and other parts due to localized heating.

このため、これら大型複雑炉の乾燥と予熱は従来、第1
図(a)及び(b)に示すようなハイベロシティ−バー
ナを用い、かつ特殊な加熱方法により行なわれている。
For this reason, drying and preheating of these large complex furnaces has traditionally been
This is carried out using a high velocity burner as shown in Figures (a) and (b) and by a special heating method.

すなわち、図中1は本体筒であり、この本体筒lには一
端側から側面にスリットが設けられた内筒部2が挿入さ
れ、フランジ部3.3でボルト、ナツトにより取り付け
られてバーナ本体を構成している。前記内筒部2の内部
は燃焼室4となっており、内筒部2の一端側から燃焼室
4内へ燃料ノズル5が挿入されている。また、前記本体
筒lの燃焼室4側面に対応する位置には燃焼・稀釈空気
供給孔6が設けられている。更に、バーナ本体を構成す
る本体筒lの他端側には耐熱鋼製のコーン7がフランジ
14Bg、8でボルト、ナツトにより取り付けられ、そ
の先端が噴出孔9となっている。
That is, 1 in the figure is a main body cylinder, and an inner cylinder part 2 having a slit on the side surface is inserted into this main body cylinder l from one end side, and is attached with bolts and nuts at a flange part 3.3 to form the burner main body. It consists of The inside of the inner cylinder part 2 is a combustion chamber 4, and a fuel nozzle 5 is inserted into the combustion chamber 4 from one end side of the inner cylinder part 2. Further, a combustion/dilution air supply hole 6 is provided at a position corresponding to the side surface of the combustion chamber 4 of the main body cylinder 1. Furthermore, a cone 7 made of heat-resistant steel is attached to the other end side of the main body cylinder l constituting the burner main body through flanges 14Bg and 8 with bolts and nuts, and the tip thereof forms an ejection hole 9.

1−記ハイベロシティーパーナは供給孔6から供給され
る空気の一部を燃焼室4内での燃焼に用い、供給孔6か
ら供給される空気すなわち稀釈空気によっ°C燃焼カス
を所定の温度にコンI・ロールして80〜200m/s
ecの高速で噴出孔9から熱風を噴出し、この高速熱風
を炉内で循環させることにより加熱を行なう。
1- The high velocity burner uses a part of the air supplied from the supply hole 6 for combustion in the combustion chamber 4, and uses the air supplied from the supply hole 6, that is, the dilution air, to heat the combustion scum to a predetermined temperature. 80-200m/s by controlling temperature and rolling
Heating is performed by blowing out hot air from the blowing holes 9 at a high speed of ec and circulating this high speed hot air in the furnace.

上記ハイベロシティ−バーナを用い、大型複雑炉を乾燥
・予熱する場合には、高速熱風を炉内で循環させるとと
もに、炉内へ過剰の燃料を導入して炉内の空気を消費し
ながら燃焼yせて加熱し、局部加熱状態が生じるのを避
けることにより作業時間を短縮している。
When drying and preheating a large complex furnace using the high-velocity burner described above, high-velocity hot air is circulated within the furnace, and excess fuel is introduced into the furnace to burn while consuming the air inside the furnace. The work time is shortened by heating the parts at once and avoiding localized heating conditions.

L述したようにハイベロシティ−バーナが用いられるの
は以下のような理由による。すなわら、通常の輻射型バ
ーナによる加熱では被加熱物と熱風との境界面に存在す
るガスの薄いフィルムによって熱伝達が妨げられるが、
ハイベロシティ−バーナを用いた場合には高速熱風によ
り境界面のカスフィルムが除去されて熱風が被加熱物と
直接接触し、熱伝達が大きく向]−シて急速均・加熱が
■f能となるためである。したがって、[、記方法は幅
用型バーナを用いる一般的な方法と比較してはるかに均
一加熱が容易であり、作業時間を短縮することができる
As mentioned above, high velocity burners are used for the following reasons. In other words, when heating with a normal radiation burner, heat transfer is hindered by a thin film of gas that exists at the interface between the heated object and the hot air.
When using a high-velocity burner, the high-velocity hot air removes the scum film on the boundary surface and brings the hot air into direct contact with the object to be heated, greatly improving heat transfer. To become. Therefore, compared with the general method using a width type burner, the method described above allows for much easier uniform heating and can shorten the working time.

しかしながら、ト述した方法には以下のような欠点があ
る。すなわち、例えばガラス溶解炉を加熱した場合、炉
内が約600℃以下の低温時において、低温熱風の不足
により天井部よりも炉床部で温瓜ト+1が遅れ、約10
0℃の温1■差を生じ炉内温度が不拘−となる。また、
蓄熱室においてはチェノカーれんがのド部まで熱風が到
達せず、排ガスファンの駆動により強制的に引込むこと
が必要となる。したがって、操炉条件の高精度化の要求
に対応できない。更に、炉内で過剰の燃料を燃焼させる
ため、燃F口11費早が大きく、また燃焼ガス成分によ
る臭気が発生する場合がある。
However, the method described above has the following drawbacks. For example, when heating a glass melting furnace, when the inside of the furnace is at a low temperature of about 600 degrees Celsius or less, the melting temperature is delayed by +1 at the hearth part than at the ceiling part due to the lack of low-temperature hot air, and the temperature rises by about 10 degrees.
A temperature difference of 0°C occurs, and the temperature inside the furnace becomes unrestricted. Also,
In the heat storage room, the hot air does not reach the edges of the chenokur bricks, so it is necessary to forcibly draw it in by driving the exhaust gas fan. Therefore, it is not possible to meet the demand for high accuracy of furnace operating conditions. Furthermore, since excess fuel is burned in the furnace, the fuel outlet 11 costs a lot, and odor may be generated due to combustion gas components.

本発明は1−記事情に鑑みてなされたものであり、操炉
条件の高精度化、省エネルギー及び作業環境の改善を達
成し得る1業炉の加熱方法を提供しようとするものであ
る。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a heating method for a single-industry furnace that can achieve high precision in furnace operation conditions, energy saving, and improvement in the working environment.

本発明の1−築炉の加熱方法は、熱風を噴出するコーン
と該コーンの外側に設けられ、稀釈空気を噴出する外部
コーンとを有するハイベロシティ−バーナを用い、炉内
が低温度領域においては前記外部コーンから大部の稀釈
空気を供給して低温度熱風を発生させるとともに炉内圧
力をプラスサイドで維持し、炉内温度が1−01するに
つれ前記外部コーンからの稀釈空気の供給早を減少させ
ることを特徴とするものである。
1-A method for heating a furnace according to the present invention uses a high-velocity burner having a cone that blows out hot air and an external cone that is installed outside the cone and blows out diluted air. supplies most of the dilution air from the external cone to generate low-temperature hot air and maintain the furnace pressure on the positive side, and as the furnace temperature decreases to 1-01, the dilution air is supplied from the external cone faster. It is characterized by reducing the

このような方法によれば、特に炉内が低温時には比較的
低温Cかつ温度がコントロールされた大l薯1の熱風を
供給することができるので、操炉条件を高精度化するこ
とができる。また、過剰の燃料を燃焼させないので、省
エネルギー及び作業環境の改善を達成することができる
According to such a method, especially when the inside of the furnace is at a low temperature, it is possible to supply hot air of relatively low temperature C and temperature control of 1 liter, so that the furnace operating conditions can be highly accurate. Furthermore, since excess fuel is not burned, energy savings and improvement of the working environment can be achieved.

以下、本発明の実施例を第2図〜第4図を参照して説明
する。なお、fj%2図において既述した第1図(a)
及び(b)と同一の部材には同一・番号を伺して説明を
省略する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 4. In addition, Fig. 1 (a) already mentioned in Fig. fj%2
Components that are the same as those in (b) and (b) are designated by the same numbers and their explanations will be omitted.

第2図は本発明の実施例において用いられるハイベロシ
ティ−バーナの断面図である。すなわち、本体筒lと内
筒部2とからなるバーナ本体に耐熱鋼製のコーン7を取
り伺けた従来のハイベロシティ−バーナのコーン7の外
部に耐熱#1製の外部コーン10が取り伺けられた構造
となっている。この外部コーン10には稀釈空気供給孔
11が設けられ、専用のブロアからの高速空気を供給す
るようになっている。
FIG. 2 is a cross-sectional view of a high velocity burner used in an embodiment of the invention. That is, in the conventional high-velocity burner, the cone 7 made of heat-resistant steel was attached to the burner body consisting of the main cylinder l and the inner cylinder part 2.The outer cone 10 made of heat-resistant #1 was attached to the outside of the cone 7 of the conventional high-velocity burner. It has a well-designed structure. This external cone 10 is provided with a dilution air supply hole 11 for supplying high speed air from a dedicated blower.

このような構成のハイベロシティ−バーナ412を用い
た1業炉の乾燥・]′−熱は以下のようにして′41な
われる。ずなわち、ト記ハイベロシティーハーナ封を炉
体の適当な位置に必要基数配置し、このバーナ上ヱより
の高速熱風を炉内で循環さぜながらrめ定められた加熱
スケジュールに従ってII温する。ここで、この加熱ス
ケジュールを加熱温度により2分し、乾燥期(帛温〜約
3o。
Drying/heating in a one-day furnace using the high velocity burner 412 having such a configuration is carried out as follows. In other words, the required number of high-velocity burner seals mentioned above are placed at appropriate positions in the furnace body, and the high velocity hot air from above the burner is circulated in the furnace to heat the II temperature according to the predetermined heating schedule. do. Here, this heating schedule is divided into two parts depending on the heating temperature, and the drying period (from the film temperature to about 3°C).

°C)、予熱前期(約り00℃〜約600°C)、予熱
中期(約り00℃〜約1100″C)、予熱後期(約1
100°C〜操業温度)に大別する。まず、乾燥期にお
いては燃料ノスル5からの燃料を燃焼室において完全燃
焼さけながら外部コー、ンlOより稀釈空気を大中に供
給し、炉内圧力をプラスリーイドの(大気圧より高い)
所定の圧力に維持しなからA温し、予熱前期へと移行す
る。次に、予熱中期においては加熱温度のり、 J’l
とともにバーナ上ヱの燃焼ガス早が増大し、炉内圧力も
次第にL−’ilするため、外部コーン10よりの稀釈
空気早を次第に減少させ、所定の炉内圧力を維持しなが
ら約1100 ’Cまで予熱し、ハイベロシティ−バー
ナ1λによる予熱を終rするとともに炉体に設置されて
いる操業用バーナに点火して予熱後期に移り、操業温度
までA温して操業に入る。
°C), early preheating (approx. 00°C to approx. 600°C), middle preheating (approximately 00°C to approx. 1100"C), late preheating (approximately 1
100°C to operating temperature). First, during the dry period, while avoiding complete combustion of the fuel from the fuel nostle 5 in the combustion chamber, diluted air is supplied from an external cone to the combustion chamber to maintain the pressure inside the furnace at a positive lead (higher than atmospheric pressure).
While maintaining the predetermined pressure, the temperature is increased to A, and the process moves to the first stage of preheating. Next, in the middle of preheating, the heating temperature is J'l
At the same time, the combustion gas velocity above the burner increases, and the furnace pressure gradually decreases to L-'il. Therefore, the dilution air velocity from the external cone 10 is gradually reduced to about 1100'C while maintaining the predetermined furnace pressure. At the same time, the preheating by the high-velocity burner 1λ is completed, and the operation burner installed in the furnace body is ignited to move to the latter half of preheating, and the temperature is increased to the operating temperature A, and operation begins.

このように)−記ハイベロシティー/し−ナ11は加熱
スケジュールの乾燥期、予熱前期及び予熱後期で用いら
れ、この間常に完全燃焼状態で運転される。特に、乾燥
期、予熱前期の低温時における炉内圧力の維持が容易で
あり、炉内の温度分布を均一に維持することができる。
In this manner, the high velocity burner 11 is used during the drying period, early preheating period, and late preheating period of the heating schedule, and is always operated in a complete combustion state during these periods. In particular, it is easy to maintain the pressure inside the furnace at low temperatures during the drying period and early preheating period, and the temperature distribution inside the furnace can be maintained uniformly.

事実、第3図に示すようにガラス溶解炉13の炉体の4
隅にハイベロシティ−バーナ上!、m焼・稀釈空気用ブ
ロア14、稀釈空気専用ブロア15、燃ネ′1供給装置
16、熱電対17.17.制御装置18などを各1組づ
つ合、414組配置し、燃料としてLPGを用い、炉内
温度、炉内圧力及び稀釈空気甲が第4図に示すような関
係となるような加熱スケジュールで築炉−1−゛・バを
完rした炉体の乾燥及び予熱を行なった。その結果、炉
内温度及び炉内圧力の調節が容易となり、天井部と炉床
部との温度差を30℃以内とすることがOf能となった
。また、υ1カスファンを使用せずに蓄熱室F部及び煙
道までスケジュールに合せた加熱をすることかできた。
In fact, as shown in FIG.
High velocity in the corner - on the burner! , blower 14 for diluted air, blower 15 for diluted air, fuel supply device 16, thermocouple 17.17. A total of 414 sets of control devices 18, etc. were arranged, one set each, LPG was used as the fuel, and the heating schedule was such that the temperature inside the furnace, the pressure inside the furnace, and the diluted air inlet had the relationships shown in Figure 4. Furnace-1 - The completed furnace body was dried and preheated. As a result, it became easy to adjust the temperature and pressure inside the furnace, and it became possible to keep the temperature difference between the ceiling and the hearth within 30°C. In addition, it was possible to heat the F section of the heat storage chamber and the flue according to the schedule without using the υ1 cast fan.

このように、炉内の隅々まで均一な加熱を行なうことが
でき、乾燥・予熱作業の高精度化を達成することができ
た。更に、従来の方法と比較して燃料を約20%11i
j約するとともに燃焼ガス臭気の発生も防11−するこ
とができた。
In this way, it was possible to uniformly heat every corner of the furnace, making it possible to achieve high precision in drying and preheating operations. Additionally, fuel consumption is reduced by approximately 20% compared to conventional methods.
In addition to reducing fuel consumption, the generation of combustion gas odor could also be prevented.

なお、上記実施例では第2図に示すハイベロシティ−バ
ーナー展のコーン7及び外部コーン10を1耐熱川製コ
ーンとしているが、コーンの肉厚を厚くしたセラミンク
ス製コーンを使用すれば、1100°C以1.の予熱後
期まで続けてyj温することかできる。この場合、操業
温度が低ければ、炉体に操業用の輻躬型へ−ナを取付け
ることなく、ハイベロシティ−八−すのみで操業するこ
とができる。
In the above embodiment, the high velocity burner cone 7 and external cone 10 shown in FIG. C or more 1. It is possible to continue heating until the late preheating stage. In this case, if the operating temperature is low, the furnace can be operated with only a high velocity eight without having to attach a rotary type bender for operation to the furnace body.

また、1−記実施例では大型のカラス溶解炉について説
明したが、その他高炉用熱風炉についても本発明方法を
採用することにより高能率の乾燥とP熱を行なうことが
できる。
Furthermore, although a large glass melting furnace was described in Example 1-1, highly efficient drying and P heating can be performed in other hot blast furnaces by employing the method of the present invention.

更に、本発明方法はれんがの焼成時の乾燥、大型溶接構
造物の歪取り、鋳造品の焼鈍、不定型耐火物製品の乾燥
、ベッセル内面塗装の乾燥などにも有効に応用すること
ができる。例えば、本発明方法をれんがの焼成時の乾燥
に用いる場合、炉内温1■を均一化できることかられん
が成形体を従来よりも密に装填することが可能となり、
炉内の有効利用を図ることができるという効果も得られ
る。
Furthermore, the method of the present invention can be effectively applied to drying during firing of bricks, removing distortion from large welded structures, annealing cast products, drying monolithic refractories, drying the interior coating of vessels, etc. For example, when the method of the present invention is used to dry bricks during firing, the temperature inside the furnace can be made uniform, making it possible to pack brick molded bodies more densely than before.
Another effect is that the inside of the furnace can be used effectively.

以I−ay述した如く本発明の工業炉の加熱力法によれ
ば、操炉条件の高精度化、省エネルギー及び1′1業環
境の改善を達成できる等顕著な効果を奏するものである
As described above, the industrial furnace heating power method of the present invention has remarkable effects such as increasing the precision of furnace operation conditions, saving energy, and improving the industrial environment.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 熱風を噴出するコーンと該コーンの外側に設けられ、稀
釈空気を噴出する外部コーンとを有するハイベロシティ
−バーナを用い、炉内が低温度領域においては前記外部
コーンから火星の稀釈空気を供給して低温度熱風を発生
させるとともに炉内圧力をプラスサイドで維持し、炉内
温度がb itするにつれ前記外部コーンからの稀釈空
気の供給用を減少させることを特徴とする工業炉の加熱
方法。
A high-velocity burner has a cone that spouts hot air and an external cone installed outside the cone that spouts diluted air, and when the temperature inside the furnace is low, Martian diluted air is supplied from the external cone. 1. A method for heating an industrial furnace, comprising generating low-temperature hot air and maintaining the pressure inside the furnace on the positive side, and reducing the supply of dilution air from the external cone as the temperature inside the furnace increases.
JP2984184A 1984-02-20 1984-02-20 Method of heating industrial furnace Pending JPS60174482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2984184A JPS60174482A (en) 1984-02-20 1984-02-20 Method of heating industrial furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2984184A JPS60174482A (en) 1984-02-20 1984-02-20 Method of heating industrial furnace

Publications (1)

Publication Number Publication Date
JPS60174482A true JPS60174482A (en) 1985-09-07

Family

ID=12287231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2984184A Pending JPS60174482A (en) 1984-02-20 1984-02-20 Method of heating industrial furnace

Country Status (1)

Country Link
JP (1) JPS60174482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194757U (en) * 1987-12-14 1989-06-22
JPH02183793A (en) * 1989-01-09 1990-07-18 Nippon Steel Corp Drying control method and device for ladle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108385A (en) * 1981-12-15 1983-06-28 ル・エ−ル・リクイツド・ソシエテ・アノニム・プ−ル・ル・エチユド・エ・ル・エクスプルワテシヨン・デ・プロ・セデ・ジエオルジエ・クロ−ド Manufacture of lining of refractory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108385A (en) * 1981-12-15 1983-06-28 ル・エ−ル・リクイツド・ソシエテ・アノニム・プ−ル・ル・エチユド・エ・ル・エクスプルワテシヨン・デ・プロ・セデ・ジエオルジエ・クロ−ド Manufacture of lining of refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194757U (en) * 1987-12-14 1989-06-22
JPH02183793A (en) * 1989-01-09 1990-07-18 Nippon Steel Corp Drying control method and device for ladle

Similar Documents

Publication Publication Date Title
CN204187975U (en) The compound tunnel cave of a kind of circulation
US3315950A (en) Heating chamber walls, particularly the backwalls of furnaces, such as siemens-martin furnaces
WO2017163624A1 (en) Industrial furnace and method of utilizing heat therefrom
US3920382A (en) Method and apparatus for heat treating articles in a recirculating type furnace
JPS60174482A (en) Method of heating industrial furnace
US3861859A (en) Cooling of rotary furnace shell burner pipes and method
JP3396922B2 (en) Continuous heating furnace and combustion method thereof
JPH06228632A (en) Heating equipment and heating method using same
JPH0828830A (en) High temperature air burner
RU2111933C1 (en) Method of firing of clayware and device for its embodiment
CN206817966U (en) A kind of new energy saving and environment friendly car type furnace
CN215113907U (en) Intelligent drying and sintering device for conical quartz ceramic products
JP2933868B2 (en) Combustion equipment
JP3375310B2 (en) Regenerative burner
CN218026185U (en) Novel low-carbon blast furnace smelting energy-saving device for u
JP2001058877A (en) Firing of ceramic material
JP3180044B2 (en) Combustion equipment
SU827931A1 (en) Furnace for heating metals
JP4839921B2 (en) Cooling method for hot stove
JPS5928317Y2 (en) heat storage brick
ES2254661T3 (en) METHOD FOR COGENERATION OF HEAT AND ELECTRICITY WITH REGARD TO HIGH TEMPERATURE HEAT NEEDS.
JPH057235Y2 (en)
JP2001248974A (en) High temperature atmospheric gas generator
Hellander How high emissivity ceramic coatings function advantageously in furnace applications
JPH0630648U (en) Combustion device