JPH02183793A - Drying control method and device for ladle - Google Patents

Drying control method and device for ladle

Info

Publication number
JPH02183793A
JPH02183793A JP127489A JP127489A JPH02183793A JP H02183793 A JPH02183793 A JP H02183793A JP 127489 A JP127489 A JP 127489A JP 127489 A JP127489 A JP 127489A JP H02183793 A JPH02183793 A JP H02183793A
Authority
JP
Japan
Prior art keywords
ladle
air ratio
drying
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP127489A
Other languages
Japanese (ja)
Other versions
JPH0752069B2 (en
Inventor
Teruo Fukui
福井 輝夫
Kazumi Mori
守 一視
Hiroshi Okada
岡田 広
Shuyu Yoshimura
吉村 秀勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1001274A priority Critical patent/JPH0752069B2/en
Publication of JPH02183793A publication Critical patent/JPH02183793A/en
Publication of JPH0752069B2 publication Critical patent/JPH0752069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To provide a substantial uniform drying so as to get a predetermined distribution of temperature at anywhere within a ladle positively within a time as short as possible by a method wherein a drying initial stage is applied at a combustion in a high air ratio and then gradually the air ratio is decreased and during and after the intermediate drying stage, the combustion is carried out with an air ratio of about 1. CONSTITUTION:Combustion air and fuel gas are injected into a ladle. When it is dried, a drying initial stage is applied with an air ratio of about 5 to 10, then the air is gradually decreased and then the intermediate and subsequent drying stage, the combustion is carried out with the air ratio being about 1. With this arrangement, at the initial drying stage, it is uniformly heated with a high air ratio, a dehydration effect and a ladle agitating effect can be improved. After that, the air ratio is gradually decreased and the combustion gas can be increased so as to be applied for a high temperature heating. In this way, the controlling is carried out to enable a temperature to be varied along a desired distribution curve and so the inner circumferential surface temperature within the ladle is made uniform in a depth direction of the ladle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば溶鉱炉等において溶鉱等の溶融金属を
運搬するのに用いられる取′a(溶銑鍋、溶鉱鋼、ある
いはタンデイツシュ等)の乾燥制御方法及び装置に関す
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to a conveyor belt (hot metal pot, molten steel, tundish, etc.) used for transporting molten metal such as molten ore in a blast furnace or the like. The present invention relates to a drying control method and apparatus.

〔従来の技術〕[Conventional technology]

一般に、取鍋は耐火煉瓦や不定形耐火物で内張すされて
いるが、長期の使用に渡ると内部の溶鉱等により浸食さ
れ摩耗あるいは損傷する。その結果、耐用限度を超える
と、中間補修や再築造が行われる。しかるにこれら耐火
物は一般に水分を含んでいるために補修後に脱水処理と
しての加熱乾燥処理が必要である(水分が残存している
と使用再開後に高温の溶融金属による急速加熱の為に鍋
自体が爆裂を起こす)。この乾燥処理は急激に行うとひ
び割れあるいは爆裂等を来すため、その温度を管理しな
がら慎重に行う必要がある。
Generally, ladle is lined with refractory bricks or monolithic refractories, but after long-term use, the ladle is eroded by the smelt ore inside, causing wear or damage. As a result, if the service life limit is exceeded, interim repairs or rebuilding will be carried out. However, since these refractories generally contain moisture, it is necessary to heat and dry them as a dehydration treatment after repair. cause an explosion). If this drying process is carried out too quickly, it may cause cracks or explosions, so it must be carried out carefully while controlling the temperature.

一方、取鍋の乾燥を時間をかけてゆっくりと行うと多量
の溶融金属を収容するためには多数の取鍋を用意しなけ
ればならず、また、溶融金属の運搬処理等の作業時間が
長くなり好ましくない。
On the other hand, if the ladles are dried slowly over time, many ladles must be prepared to accommodate a large amount of molten metal, and work such as transporting and processing the molten metal takes longer. I don't like it.

乾燥手段としては一般にガスバーナが用いられている。A gas burner is generally used as a drying means.

ガスバーナの燃料ガスとしては一般にコークスガスが用
いられ、これを燃焼空気と混合し取鍋内周面に吹きつけ
る。
Coke gas is generally used as the fuel gas for the gas burner, and is mixed with combustion air and blown onto the inner peripheral surface of the ladle.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来から、取鍋の乾燥に際しては鍋内温度が略均−分布
になるように制御している。
Conventionally, when drying a ladle, the temperature inside the ladle has been controlled to have a substantially uniform temperature distribution.

また、時間経過に対する鍋内の最適温度分布パターン(
特性曲線)は耐火物の種類、厚さ、鍋の大きさ等に応じ
て計算により一義的に求められるものであり、従って、
対象としている鍋を時間の経過に対してどのような温度
変化で制御すればよいかは自助的に決定される。当然の
ことながら、その所定の温度分布パターンに沿って鍋内
温度を制御するのが理想である。
In addition, the optimal temperature distribution pattern in the pot over time (
Characteristic curve) is uniquely determined by calculation according to the type, thickness, size of the pot, etc. of the refractory, and therefore,
How to control the temperature change of the target pot over time is determined on a self-help basis. Naturally, it is ideal to control the temperature inside the pot according to the predetermined temperature distribution pattern.

しかしながら従来の方法ではいずれも、鍋内温度の均一
分布が十分満足出来るものではなく、鍋の、例えば上部
では所定の温度分布パターンが実現されても鍋の下部の
温度分布は所定曲線から大きく逸れてしまう。また、そ
の逆の場合もあり得る。そのため、従来から効率良く鍋
の内面全体を略均−に加熱できるようにガスバーナの構
造の改良が試みられているが未だ十分満足すべきものに
は至っていない(例、特開昭60−247464号公報
、特開昭60−111887号公報)。
However, none of the conventional methods can fully satisfy the uniform distribution of temperature inside the pot; for example, even if a predetermined temperature distribution pattern is achieved at the top of the pot, the temperature distribution at the bottom of the pot deviates greatly from the predetermined curve. It ends up. Moreover, the opposite case is also possible. For this reason, attempts have been made to improve the structure of the gas burner so that the entire inner surface of the pot can be heated more or less uniformly in an efficient manner, but this has not yet been achieved (for example, Japanese Patent Laid-Open No. 60-247464). , Japanese Unexamined Patent Publication No. 111887/1987).

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的はできるだけ短い時間で確実に取鍋内のど
の部分においても所定の温度分布を描くように略均−乾
燥させることの出来る制御方法及び装置を提供すること
にある。
It is an object of the present invention to provide a control method and apparatus that can reliably perform substantially uniform drying in any part of the ladle so as to draw a predetermined temperature distribution in the shortest possible time.

この目的を達成するために本発明によれば、燃焼空気と
燃料ガスとを取鍋内に噴出してこれを乾燥するに際し、
乾燥初期段階は高空気比5〜10で燃焼させ且つその後
徐々に空気比を下げて乾燥中期以降は空気比を略1で燃
焼させることを構成上の特徴とする。
To achieve this objective, the present invention provides that when blowing combustion air and fuel gas into a ladle and drying it,
The structure is characterized in that combustion is performed at a high air ratio of 5 to 10 in the initial stage of drying, and then the air ratio is gradually lowered, and combustion is performed at an air ratio of approximately 1 from the middle stage of drying onwards.

また、この方法を実施するための本発明装置は燃焼空気
と燃料ガスとを取鍋内に噴出するバーナ燃焼装置と、乾
燥初期段階は高空気比5〜10で燃焼させ且つその後徐
々に空気比を下げで乾燥中期以降は空気比を略1で燃焼
させる空気比制御手段とを有することを構成上の特徴と
する。
The apparatus of the present invention for carrying out this method includes a burner combustion apparatus that injects combustion air and fuel gas into a ladle, and burns at a high air ratio of 5 to 10 in the initial stage of drying, and then gradually increases the air ratio. The present invention is characterized in that it has an air ratio control means that lowers the air ratio and performs combustion at an air ratio of approximately 1 after the middle of the drying period.

好ましくは、上記バーナ燃焼装置は燃焼空気を噴出する
外管と、燃料ガスを噴出する内管とを同軸上に配設した
同軸流ガスバーナを有し、内管の先端部近傍には連続的
に拡大する拡径部が形成され、該拡径部の円周方向に沿
って略等間隔に複数の開口部が設けられる。
Preferably, the burner combustion device has a coaxial flow gas burner in which an outer pipe for ejecting combustion air and an inner pipe for ejecting fuel gas are disposed coaxially, and a continuous gas burner is provided near the tip of the inner pipe. An expanding diameter portion is formed, and a plurality of openings are provided at approximately equal intervals along the circumferential direction of the diameter expansion portion.

〔作 用〕[For production]

乾燥初期段階は空気が過剰に供給され高空気比5〜10
で燃焼が起き、その後は徐々に供給空気量を低下して空
気比を略1にする。
At the initial stage of drying, excessive air is supplied, resulting in a high air ratio of 5 to 10.
Combustion occurs at , and then the amount of supplied air is gradually reduced to bring the air ratio to approximately 1.

このように乾燥の初期段階と中期以降とで燃料ガスに対
する空気の比(空気比)を変化させることにより、乾燥
初期は脱水効果並びに鍋内攪拌効果を企図して比較的低
温で均一加熱し、その後は空気比を略1にまで下げて、
燃料ガスの量を増大可能ならしめ、高温加熱に支障を来
さないようにする。このような制御を行うことにより、
所望の分布曲線に沿った温度変化をさせることが出来、
従って取鍋内の内周面温度が鍋深さ方向に略均−となる
ことが本願発明者等により実験的に確認された。
In this way, by changing the ratio of air to fuel gas (air ratio) between the initial stage and the middle stage of drying, uniform heating is carried out at a relatively low temperature in the early stage of drying, with the aim of dehydration effect and stirring effect in the pot. After that, lower the air ratio to approximately 1,
To make it possible to increase the amount of fuel gas so as not to interfere with high-temperature heating. By performing such control,
It is possible to change the temperature along the desired distribution curve,
Therefore, the inventors of the present invention have experimentally confirmed that the temperature of the inner peripheral surface of the ladle is approximately uniform in the depth direction of the ladle.

空気比制御は空気比制御手段により実行され、ガスバー
ナの空気供給量並びに必要に応じて燃料ガス供給量を制
御する。
Air ratio control is performed by an air ratio control means, which controls the amount of air supplied to the gas burner and, if necessary, the amount of fuel gas supplied.

ガスバーナは燃焼空気を噴出する管と燃料ガスを噴出す
る管とを同心円上に独立して有し、従って、夫々の噴出
量は簡単に制御出来る。
A gas burner has a tube for ejecting combustion air and a tube for ejecting fuel gas independently on a concentric circle, and therefore, the amount of each ejected can be easily controlled.

一般に、空気比を5〜IOという過剰空気量にすると火
炎が吹き消えてしまう。これは、このような高空気比に
すると、火炎がバーナタイル基部から遠く離れて形成さ
れる所謂吹上かり現象が起こり易く、その結果火炎が吹
き消されるためである。従って、仮に攪拌効果の向上を
企図して空気比を増加しようとしても、従来のバーナ構
造ではこのような高空気比を作り出すことは出来なかっ
たく一般に、空気比3が限度とされていた)。
Generally, if the air ratio is set to an excess air amount of 5 to IO, the flame will be blown out. This is because such a high air ratio tends to cause a so-called blow-up phenomenon in which the flame is formed far from the base of the burner tile, and as a result, the flame is blown out. Therefore, even if an attempt was made to increase the air ratio in order to improve the stirring effect, it would not be possible to create such a high air ratio with conventional burner structures, and the air ratio was generally limited to 3).

そこで、本願出願人は先に実願昭63−23066号明
細書において空気比10までに高めても燃焼ガスの吹上
かり現象を起こすことなくしかも火炎を安定した状態に
保持し得るガスバーナを提案した。
Therefore, the applicant of the present application previously proposed a gas burner in Utility Application No. 63-23066 that could maintain the flame in a stable state without causing the combustion gas blow-up phenomenon even when the air ratio was increased to 10. .

本発明装置では例えば、このガスバーナ(後に詳述)を
用いることにより空気比5〜10を実現することが出来
る。
In the apparatus of the present invention, for example, an air ratio of 5 to 10 can be achieved by using this gas burner (described in detail later).

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の基本構想を概略的に示すものである。FIG. 1 schematically shows the basic concept of the present invention.

尚、以下の実施例にふいて、添え字c、 aは夫々コー
クスガス及び空気に関するものであることを示す。
In addition, in the following examples, subscripts c and a indicate that they relate to coke gas and air, respectively.

取鍋lOはその上部に後述のガスバーナ11を具え、そ
こから所望の空気比の燃料ガス(コークスガス)Gcと
燃焼空気Gaとが供給される。
The ladle IO is equipped with a gas burner 11, which will be described later, on its upper part, from which fuel gas (coke gas) Gc and combustion air Ga at a desired air ratio are supplied.

取鍋lOの温度を検出するために鍋10内には1個また
は複数個の温度計(熱電対)15が設けられる。温度計
15からの温度信号S、は制御装置20に人力される。
One or more thermometers (thermocouples) 15 are provided within the ladle 10 to detect the temperature of the ladle IO. A temperature signal S from the thermometer 15 is input manually to the control device 20 .

制御装置20はこの温度信号Stに基づき鍋内温度を常
に監視し、所望の設定温度になるようにGc流量を制御
弁Vcにより制御し、それに基づき所定の空気比とすべ
くGaを制御弁Vaにより制御する。その制御フローは
後述する(第3図)。
The control device 20 constantly monitors the temperature inside the pot based on this temperature signal St, controls the Gc flow rate by the control valve Vc so that the desired set temperature is reached, and based on this controls the Ga by the control valve Va to maintain the predetermined air ratio. Controlled by The control flow will be described later (FIG. 3).

本発明の最終目的は鍋内温度を如何にして所望の加熱曲
線(加熱時間−加熱温度特性)に近似させるかと言うこ
とにある。鍋内温度の均一条件を与える理想加熱曲線自
体は周知であり、その−例を第2図に示す。第2図の理
想加熱曲線は乾燥すべきなべの大きさや材料あるいは溶
融金属の種類等に応じて異なったカーブを呈するが、そ
の特性カーブの傾向は路間−である。即ち、乾燥初期段
階(加熱開始から16〜17時間程度)で約200℃ま
で上昇させ、次いでこれを300℃程度まで加熱しく乾
燥開始後30時間程度経過)、最後に例えば1000℃
まで一気に上昇させる(45時間程度で乾燥完了)。こ
のカーブに沿って加熱温度を時間制御すれば、鍋内の大
体どの部分で測定してもその温度は略均−になる。
The ultimate objective of the present invention is how to approximate the temperature inside the pot to a desired heating curve (heating time-heating temperature characteristics). The ideal heating curve itself that provides a uniform temperature condition within the pot is well known, and an example thereof is shown in FIG. The ideal heating curve shown in FIG. 2 shows different curves depending on the size of the pan to be dried, the material, the type of molten metal, etc., but the tendency of the characteristic curve is -. That is, the temperature is raised to about 200°C in the initial stage of drying (about 16 to 17 hours from the start of heating), then heated to about 300°C (about 30 hours after the start of drying), and finally to 1000°C.
(drying completes in about 45 hours). If the heating temperature is time-controlled along this curve, the temperature will be approximately uniform no matter where you measure it in the pot.

この曲線に近似させるべく、従来から色々な方法が試み
られているが、いずれも充分満足する結果を得るに至っ
ていない。つまり、理想曲線から部分的に逸脱し、鋼内
の温度分布にむらが生じていた。
Various methods have been tried in the past to approximate this curve, but none of them have yielded sufficiently satisfactory results. In other words, there was a partial deviation from the ideal curve, resulting in uneven temperature distribution within the steel.

本発明によれば、燃焼空気と燃料ガスとを取鍋内に噴出
してこれを乾燥するに際し、乾燥初期段階は高空気比5
〜IOで燃焼させ且つその後徐々に空気比を下げて乾燥
中期以降は空気比を略lで燃焼させるようにした。これ
により、乾燥初期は高空気で均一加熱され脱水効果並び
鍋内攪拌効果が向上し、その後は空気比を徐々に下げて
高温加熱に供すべく燃料ガスの増大を可能ならしめる。
According to the present invention, when the combustion air and fuel gas are spouted into the ladle and dried, the initial stage of drying is performed at a high air ratio of 5.
- IO, and then the air ratio was gradually lowered so that the air ratio was approximately 1 from the middle of the drying period onwards. As a result, at the initial stage of drying, high-temperature air is used to uniformly heat the product, improving the dehydration effect and the stirring effect in the pot, and after that, the air ratio is gradually lowered to make it possible to increase the amount of fuel gas for high-temperature heating.

このような制御を行うことにより、所望の分布曲線に沿
った温度変化をさせることが出来、従って取鍋内の内周
面温度が鍋深さ方向に略均−となることを実験的に確認
した。その実験結果を第2図に示す。同図に示す如く、
鍋の3箇所■、■、■(第2図)の異なる高さ位置で測
定した鍋内温度はいずれも理想特性線図(設定温度)に
略一致していることが判る。
By performing such control, it is possible to change the temperature along the desired distribution curve, and it has been experimentally confirmed that the temperature on the inner circumferential surface of the ladle is approximately uniform in the depth direction of the ladle. did. The experimental results are shown in Figure 2. As shown in the figure,
It can be seen that the temperatures inside the pot measured at three different height positions of the pot (Fig. 2), ■, ■, and ■ (Fig. 2), all approximately correspond to the ideal characteristic diagram (set temperature).

第2図にはこのような特性と空気比及びGc流量との関
係も併せて示しである。
FIG. 2 also shows the relationship between such characteristics and the air ratio and Gc flow rate.

尚、本願発明において言及した「乾燥初期」とは第2図
に示す実施例の場合、加熱開始後約17時間に相当して
いる。この間に鍋内温度は約180°C程度に達してい
る。「乾燥初期」は一般には加熱終了時間の約1/′3
程度に相当する。
In the case of the example shown in FIG. 2, the "early stage of drying" referred to in the present invention corresponds to about 17 hours after the start of heating. During this time, the temperature inside the pot reached approximately 180°C. "Drying stage" is generally about 1/3 of the heating end time.
It corresponds to the degree.

第3図に本発明の制御フローチャートの一例を示す。FIG. 3 shows an example of a control flowchart of the present invention.

第3図に示すタイマルーチンは例えば5分毎に実行(カ
ウントアツプ)するものとする(ステップ301)。ま
た、カウンタCは初期作動時にその都度クリアしておく
The timer routine shown in FIG. 3 is assumed to be executed (counted up) every five minutes, for example (step 301). Further, the counter C is cleared each time during initial operation.

加熱が開始されると、予めメモリに記憶しておいた設定
温度Tのマツプを読み取り(ステップ303)、温度計
15で検出した測定温度を設定温度と比較する(ステッ
プ305)。設定温度と同一の場合はそのままのGcを
維持する。ステップ305において、検出温度が設定温
度より高い場合にはGcを減少しくステップ309)、
低い場合には逆にGcを増大する(ステップ307)。
When heating is started, a map of the set temperature T previously stored in the memory is read (step 303), and the measured temperature detected by the thermometer 15 is compared with the set temperature (step 305). If the temperature is the same as the set temperature, the same Gc is maintained. In step 305, if the detected temperature is higher than the set temperature, reduce Gc (step 309),
If it is low, conversely, Gc is increased (step 307).

次いで、ステップ311に進み、予めメモリに記憶した
空気比への特性マツプを読み取り、その時の空気11G
aを算出しくステップ313)、当該空気比になるよう
にGa流量を制御する(ステップ315)。尚、Gcが
定まれば空気比に応じてGaは一義的に計算により決ま
る。
Next, the process proceeds to step 311, where the characteristic map for the air ratio stored in advance in the memory is read, and the air 11G at that time is read.
a is calculated (step 313), and the Ga flow rate is controlled to achieve the air ratio (step 315). Note that once Gc is determined, Ga is uniquely determined by calculation according to the air ratio.

以上の動作を所定乾燥時間(例えば45時間)になるま
で所定時間間隔(例えば5分毎)で繰り返す。ステップ
317において、Cが45時間より大きくなると、すべ
ての加熱動作(バーナ等)を停止する。
The above operation is repeated at predetermined time intervals (for example, every 5 minutes) until a predetermined drying time (for example, 45 hours) is reached. In step 317, if C becomes greater than 45 hours, all heating operations (burners, etc.) are stopped.

第2図に示す実施例では乾燥初期(加熱開始後約17時
間)における空気比は略8に設定し、その後乾燥中期(
加熱開始後約30時間)に3を維持し、その後最終的に
約1.1まで低下させている。
In the example shown in Fig. 2, the air ratio in the early stage of drying (approximately 17 hours after the start of heating) was set to approximately 8, and then in the middle stage of drying (approximately 17 hours after the start of heating).
It was maintained at 3 for about 30 hours after the start of heating, and then finally lowered to about 1.1.

第4.5図に本発明において用いる高空気比用ガスバー
ナの構造の一例を示す。
Fig. 4.5 shows an example of the structure of a high air ratio gas burner used in the present invention.

このガスバーナは上述の如く、本願出願人の先願(実願
昭63−23066号)において開示したものであるが
、以下に簡単にその構成を説明する。
As mentioned above, this gas burner was disclosed in the applicant's earlier application (Utility Application No. 63-23066), and its construction will be briefly explained below.

第4.5図に示すガスバーナは基本的には燃焼空気を噴
出する外管1と燃料ガス(例、コークスガス)を噴出す
る内管2とを有し、これらを同軸上に配置した同軸流ガ
スバーナである。外管1には矢印3で示す如く燃焼空気
Gaが流れ、他方、内管2には矢印4で示す如く燃料ガ
スGcが流れる。燃料ガスの流れ方向4に沿って内管2
はその先端部近傍に連続的に拡大する拡径部5を有し、
その先端は助走区間部6として終端する。7は拡径部5
の円周方向に沿って略等間隔に穿けられた複数個の開口
を示す。燃焼空気はこの開ロアを通して外管lから内管
2内に流れ込む(矢印8で示す)。
The gas burner shown in Figure 4.5 basically has an outer tube 1 that blows out combustion air and an inner tube 2 that blows out fuel gas (e.g. coke gas), and these are arranged coaxially to form a coaxial flow. It's a gas burner. Combustion air Ga flows through the outer tube 1 as shown by arrow 3, while fuel gas Gc flows through the inner tube 2 as shown by arrow 4. Inner pipe 2 along fuel gas flow direction 4
has an enlarged diameter portion 5 that continuously expands near its tip,
Its tip ends as a run-up section 6. 7 is the enlarged diameter part 5
It shows a plurality of openings formed at approximately equal intervals along the circumferential direction. Combustion air flows from the outer tube 1 into the inner tube 2 through this open lower (indicated by arrow 8).

上述の如き構成によれば、燃焼空気は外管1内の拡径部
5に於いて、その先端吐出部に比較し流速は低く、圧力
は高くなる。一方、燃料ガスは逆に吐出部に比較して内
管2内の拡径部5において流速は高く圧力は低くなる。
According to the above-described configuration, the flow velocity of the combustion air is lower in the enlarged diameter portion 5 in the outer tube 1 than in the discharging portion at the tip thereof, and the pressure thereof is higher. On the other hand, the fuel gas has a higher flow rate and a lower pressure in the enlarged diameter section 5 in the inner tube 2 than in the discharge section.

即ち、拡径部5を設けることにより外管1の燃焼空気は
内管2の燃料ガスより高圧となる。その結果、拡径部5
に形成した開ロアを介して圧力差により充分な燃焼空気
の噴出効果が得られる。
That is, by providing the enlarged diameter portion 5, the combustion air in the outer tube 1 has a higher pressure than the fuel gas in the inner tube 2. As a result, the enlarged diameter portion 5
A sufficient blowout effect of combustion air can be obtained due to the pressure difference through the open lower part formed in the lower part.

内管2の内径b1 と助走区間部6の内径b2との比(
即ち、拡径部5の開始部最小径と終了部最大径との差)
は好ましくは1.1〜2.0である。この内径比(b2
 /bl )が1.1未満の場合、外管lと内管2との
間に拡径部5で充分な圧力差が生じないため、燃焼空気
ガスの混合効果が不充分となる。又、逆に内径比(b2
/b+)が2.0を越えても燃焼空気ガスの混合効果は
内径比=2.0の場合と略同じであるが、空気吐出部所
面積が燃焼するので流速が増加し、火炎の吹き上がり現
象が起き易く、又、圧損が大きくなるため空気の送風設
備の容量が大きくなり、設備費増という問題を生じる。
The ratio of the inner diameter b1 of the inner tube 2 to the inner diameter b2 of the run-up section 6 (
In other words, the difference between the minimum diameter at the start part and the maximum diameter at the end part of the enlarged diameter part 5)
is preferably 1.1 to 2.0. This inner diameter ratio (b2
/bl) is less than 1.1, a sufficient pressure difference will not be generated between the outer tube 1 and the inner tube 2 at the enlarged diameter portion 5, resulting in insufficient combustion air gas mixing effect. Also, conversely, the inner diameter ratio (b2
Even if /b+) exceeds 2.0, the mixing effect of combustion air gas is almost the same as when the inner diameter ratio = 2.0, but since the area of the air discharge part is combusted, the flow velocity increases, and the flame blowout increases. This phenomenon is likely to occur, and the pressure drop increases, which increases the capacity of the air blowing equipment, resulting in the problem of increased equipment costs.

次に、外管lの内径aと内管の内径す。Next, find the inner diameter a of the outer tube l and the inner diameter of the inner tube.

との比(a、/bl>は空気比3〜10で上記の混合効
果が得られ、且つ未燃焼部分の発生及び吹き消えが生じ
ないように2.0〜3.0が望ましい。
The ratio (a, /bl>) is preferably 2.0 to 3.0 so that the above-mentioned mixing effect can be obtained at an air ratio of 3 to 10, and at the same time, the generation of unburned parts and blowout do not occur.

助走区間部6の軸長さβ2と拡径部5の軸長さL との
比(12/βl)は0.2〜1.0がもっとも好ましい
。この比未満になると拡径部5の影響を受け、燃料ガス
を混合した燃焼空気はバーナ吐出口の外方に向かうため
内管からの燃料ガスとの混合がうまくいかず、吹き消え
が生じる。また、lx/itが1.0以上になると、助
走区間部6内部に着火点が来るためバーナ吐出口の温度
が高温となり、著しく耐久性が悪化する。
The ratio (12/βl) between the axial length β2 of the run-up section 6 and the axial length L of the enlarged diameter portion 5 is most preferably 0.2 to 1.0. If the ratio is less than this, the combustion air mixed with the fuel gas will be directed outward from the burner discharge port under the influence of the enlarged diameter portion 5, so that the combustion air mixed with the fuel gas from the inner pipe will not be well mixed, and blowout will occur. Moreover, when lx/it becomes 1.0 or more, the ignition point comes inside the run-up section 6, so the temperature at the burner outlet becomes high, and the durability deteriorates significantly.

開ロアの形状は特に制限されず、一般的には円形又は矩
形が採用される。開ロア (燃料ガス噴出口)の個数は
拡径部50円周に対して30%から80%を占有し、同
軸流に対して対称的に配列されるのが好ましい。30%
未満の占有では混合効果が不充分となり、他方、80%
以上では拡径部5の構造上の強度が不充分となる。
The shape of the opening lower is not particularly limited, and generally a circular or rectangular shape is adopted. The number of open lowers (fuel gas jet ports) occupies 30% to 80% of the circumference of the expanded diameter portion 50, and is preferably arranged symmetrically with respect to the coaxial flow. 30%
If the occupancy is less than 80%, the mixing effect will be insufficient;
In this case, the structural strength of the enlarged diameter portion 5 becomes insufficient.

上述の如く、同軸流ガスバーナを用いることにより従来
3が限度であった空気比をlOまで高めることが可能と
なる。この場合、燃焼ガスの吹き上がり現象は生じず火
炎は安定した状態にあることを実験的に確認済である。
As mentioned above, by using a coaxial flow gas burner, it becomes possible to increase the air ratio, which was conventionally limited to 3, to 10. In this case, it has been experimentally confirmed that the combustion gas does not blow up and the flame remains stable.

〔発明の効果〕〔Effect of the invention〕

以上に述べた如く、本発明によれば、乾燥初期段階は高
空気比5〜lOで燃焼させ且つその後徐々に空気比を下
げて乾燥中期以降は空気比を略1で燃焼させることによ
り、所望の分布曲線に沿った温度変化をさせることが出
来、従って取錫内の内周面温度が錫深さ方向に略均−と
なることが実験的に確認された。
As described above, according to the present invention, combustion is performed at a high air ratio of 5 to 1 O in the initial stage of drying, and then the air ratio is gradually lowered, and combustion is performed at an air ratio of approximately 1 from the middle stage of drying onwards, thereby achieving the desired It has been experimentally confirmed that the temperature can be changed along the distribution curve of tin, and that the temperature of the inner peripheral surface in the tin is approximately uniform in the depth direction of the tin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る取鍋の乾燥制御方法を実施する装
置の一実施例を示す図、第2図は本発明の実験結果を示
す線図、第3図は本発明の制御フローチャートの一例を
示す図、第4図は本発明において用いられるガスバーナ
の一例を示す長手断面図、第5図は第4図のV−ν線断
面図。 l・・・外管、      2・・・内管、5・・・拡
径部、     7・・・開口、10・・・L    
  11・・・ガスバーナ、15・・・温度計、   
2o・・・制御装置。 第 図 第4図 」
FIG. 1 is a diagram showing an embodiment of an apparatus for implementing the ladle drying control method according to the present invention, FIG. 2 is a diagram showing experimental results of the present invention, and FIG. 3 is a control flowchart of the present invention. FIG. 4 is a longitudinal sectional view showing an example of a gas burner used in the present invention, and FIG. 5 is a sectional view taken along the line V-ν in FIG. 4. l...Outer tube, 2...Inner tube, 5...Enlarged diameter part, 7...Opening, 10...L
11... Gas burner, 15... Thermometer,
2o...control device. Figure 4

Claims (1)

【特許請求の範囲】 1、燃焼空気と燃料ガスとを取鍋内に噴出してこれを乾
燥するに際し、乾燥初期段階は高空気比5〜10で燃焼
させ且つその後徐々に空気比を下げて乾燥中期以降は空
気比を略1で燃焼させることを特徴とする取鍋の乾燥制
御方法。 2、燃焼空気と燃料ガスとを取鍋内に噴出してその温度
を制御しながら該取鍋を乾燥する取鍋の乾燥制御装置で
あって、燃焼空気と燃料ガスとを取鍋内に噴出するバー
ナ燃焼装置と、乾燥初期段階は高空気比5〜10で燃焼
させ且つその後徐々に空気比を下げて乾燥中期以降は空
気比を略1で燃焼させる空気比制御手段とを有すること
を特徴とする取鍋の乾燥制御装置。 3、上記バーナ燃焼装置は燃焼空気を噴出する外管と、
燃料ガスを噴出する内管とを同軸上に配設した同軸流ガ
スバーナを有し、内管の先端部近傍に連続的に拡大する
拡径部を形成し、該拡径部の円周方向に沿って略等間隔
に複数個の開口部を設けたことを特徴とする請求項2に
記載の取鍋の乾燥制御装置。
[Claims] 1. When blowing combustion air and fuel gas into a ladle and drying them, combustion is performed at a high air ratio of 5 to 10 in the initial stage of drying, and then the air ratio is gradually lowered. A ladle drying control method characterized by burning at an air ratio of approximately 1 from the middle of the drying period onwards. 2. A ladle drying control device that blows out combustion air and fuel gas into the ladle and dries the ladle while controlling its temperature, the device blowing out combustion air and fuel gas into the ladle. and an air ratio control means that performs combustion at a high air ratio of 5 to 10 during the initial stage of drying, and then gradually lowers the air ratio to perform combustion at an air ratio of approximately 1 from the middle stage of drying onwards. Ladle drying control device. 3. The burner combustion device has an outer tube that blows out combustion air;
It has a coaxial flow gas burner coaxially disposed with an inner tube that spouts fuel gas, and has an enlarged diameter section that continuously expands near the tip of the inner tube, and a gas burner that extends in the circumferential direction of the enlarged diameter section. 3. The ladle drying control device according to claim 2, further comprising a plurality of openings provided at substantially equal intervals along the ladle.
JP1001274A 1989-01-09 1989-01-09 Ladle drying control method and device Expired - Lifetime JPH0752069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001274A JPH0752069B2 (en) 1989-01-09 1989-01-09 Ladle drying control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001274A JPH0752069B2 (en) 1989-01-09 1989-01-09 Ladle drying control method and device

Publications (2)

Publication Number Publication Date
JPH02183793A true JPH02183793A (en) 1990-07-18
JPH0752069B2 JPH0752069B2 (en) 1995-06-05

Family

ID=11496883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001274A Expired - Lifetime JPH0752069B2 (en) 1989-01-09 1989-01-09 Ladle drying control method and device

Country Status (1)

Country Link
JP (1) JPH0752069B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219121A (en) * 1975-08-07 1977-02-14 Sumitomo Metal Ind Control device for drying * heating * and keeping warm of ladle
JPS5260468A (en) * 1975-11-14 1977-05-18 Toshiba Ceramics Co Drying and preheating of long duct or container having fire resistant liner
JPS60174482A (en) * 1984-02-20 1985-09-07 東セラエンジニアリング株式会社 Method of heating industrial furnace
JPS61291890A (en) * 1985-06-18 1986-12-22 川崎製鉄株式会社 Drying temperature-elevation method of vessel for molten metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219121A (en) * 1975-08-07 1977-02-14 Sumitomo Metal Ind Control device for drying * heating * and keeping warm of ladle
JPS5260468A (en) * 1975-11-14 1977-05-18 Toshiba Ceramics Co Drying and preheating of long duct or container having fire resistant liner
JPS60174482A (en) * 1984-02-20 1985-09-07 東セラエンジニアリング株式会社 Method of heating industrial furnace
JPS61291890A (en) * 1985-06-18 1986-12-22 川崎製鉄株式会社 Drying temperature-elevation method of vessel for molten metal

Also Published As

Publication number Publication date
JPH0752069B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JP6592025B2 (en) Method and apparatus for heating object to be heated
CN107419052A (en) The furnace drying method after fire proof material of furnace lining is changed in 120t converters
RU2004127233A (en) METHOD AND DEVICE FOR CONTINUOUS PRODUCTION OF STEEL USING METALLIC STARTING MATERIAL
KR101839097B1 (en) Assembly of firewood kiln
JPH02183793A (en) Drying control method and device for ladle
CN108817365B (en) Channel type tundish and heating and preheating method thereof
CN103725866A (en) Heat supply system and heat supply method for soaking pit furnace
JP3396922B2 (en) Continuous heating furnace and combustion method thereof
US4362293A (en) Cupola
JPH085255A (en) Continuous kiln
JP2006064206A (en) Lime baking furnace and its operation method
KR100333065B1 (en) Nozzle attached device for drying and heating ladle
JPH02197530A (en) Combustion method in iron ore pellet process
CN115418433B (en) High-temperature furnace drying method for opening new converter
JP3602245B2 (en) Burner tile crack prevention method
KR20030018823A (en) Device for heating ladle uniformly
JP2001004110A (en) Slit type burner for drying and heating and method of combustion control thereof
US4411617A (en) Burners for soaking pit furnaces
JPH0442565B2 (en)
US4428728A (en) Burners for soaking pit furnaces
US3427010A (en) Heating apparatus and process
RU2101635C1 (en) Shaft lime-burning kiln
GB2093574A (en) Cupola
RU2132390C1 (en) Method for blowing-in blast furnace
CN104833213A (en) Furnace baking system for sintering ignition furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14