JPS5928317Y2 - heat storage brick - Google Patents
heat storage brickInfo
- Publication number
- JPS5928317Y2 JPS5928317Y2 JP1975127668U JP12766875U JPS5928317Y2 JP S5928317 Y2 JPS5928317 Y2 JP S5928317Y2 JP 1975127668 U JP1975127668 U JP 1975127668U JP 12766875 U JP12766875 U JP 12766875U JP S5928317 Y2 JPS5928317 Y2 JP S5928317Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- storage brick
- heat transfer
- hole
- brick
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
【考案の詳細な説明】
本考案は、高炉に熱風を供給する熱風炉の蓄熱レンガに
関するものである。[Detailed Description of the Invention] The present invention relates to a heat storage brick for a hot blast furnace that supplies hot air to a blast furnace.
近年高炉におけるコークス比の低減を目的として、高温
送風が要求され、操業面からの対処または熱風炉容量の
拡大により高温送風を行なっている。In recent years, high-temperature blasting has been required for the purpose of reducing the coke ratio in blast furnaces, and high-temperature blasting has been carried out as a countermeasure from an operational standpoint or by expanding the hot blast furnace capacity.
しかし操業面からの高温送風には制御面の困難さがあり
、また熱風炉容量の拡大は建設費が飛躍的に増大すると
いう問題点があった。However, from an operational point of view, high-temperature air blowing is difficult to control, and expanding the capacity of hot blast stoves has the problem of dramatically increasing construction costs.
本考案は上述問題点を解消せんとしてなされたものであ
り、蓄熱レンガに設けられた貫通孔の形状を改良するこ
とによって、現状の熱風炉容量で送風温度の上昇に対処
するとともに、熱エネルギの有効利用を、計り、高温送
風を行なうことができる蓄熱レンガを提供せんとするも
のである。The present invention was developed to solve the above-mentioned problems, and by improving the shape of the through holes provided in the heat storage bricks, it is possible to cope with the increase in air temperature with the current capacity of the hot air stove, and to reduce the amount of thermal energy. It is an object of the present invention to provide a heat storage brick that can be used effectively and can blow high-temperature air.
以下本考案の一実施例を示す添付図面に基づいて詳細に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
第1図は高炉1と、該高炉1に熱風を供給するための熱
風炉2を示したものであり、通常高炉−基に対して熱風
炉を約3基設け、順次−基づつ熱風を高炉1に送り込む
ようになされている。Figure 1 shows a blast furnace 1 and a hot blast furnace 2 for supplying hot air to the blast furnace 1. Normally, about three hot blast furnaces are provided per blast furnace group, and hot air is supplied to the blast furnace one by one. 1.
そして上記熱風炉2は燃焼室3と蓄熱室4の二車に分か
れており、燃焼室3で加熱したガスによって蓄熱室4内
に組込まれた蓄熱レンガ5を加熱し次にガスを遮断して
蓄熱されたレンガ積の中を上記ガスと逆方向に冷風を通
過させることによって、上記蓄熱された蓄熱レンガ5と
冷風との熱伝導により、冷風が予熱され熱風となって高
炉1に供給される。The hot air stove 2 is divided into two parts: a combustion chamber 3 and a heat storage chamber 4. The gas heated in the combustion chamber 3 heats a heat storage brick 5 built into the heat storage chamber 4, and then the gas is cut off. By passing cold air through the heat-stored brickwork in the opposite direction to the gas, the cold air is preheated by heat conduction between the heat-storing bricks 5 and the cold air, and is supplied to the blast furnace 1 as hot air. .
上記蓄熱室4に組込まれる本考案蓄熱レンガ5は第2図
に示す如く、例えば上下に貫通円孔6を有する六角形状
に形成して多数を平面的および上下に密となるように組
込む。As shown in FIG. 2, the heat storage bricks 5 of the present invention to be incorporated into the heat storage chamber 4 are formed, for example, in a hexagonal shape with through-holes 6 at the top and bottom, and a large number of bricks are assembled in a planar manner and densely arranged in the top and bottom.
また上記貫通円孔6は第3図に示す如く、その内周部に
螺旋状の凹凸面7が形成されている。Further, as shown in FIG. 3, the through hole 6 has a spiral uneven surface 7 formed on its inner circumference.
すなわち、蓄熱レンガ5に上述した様な螺旋状の凹凸面
7を有する貫通円孔6を設ける理由は、ガスとレンガと
の伝熱量QGC(Kcal/hr)が、QGC=hA(
Tc TB)
ただし、h:伝熱係数(Kcal/m2hr’C)A:
伝熱面積(m2)
T6:ガス温度(’C)
T8:レンガ温度(’C)
で表わされ、従って同一容量の熱風炉2においてガスと
蓄熱レンガ5間の伝熱量を増大させるためには、伝熱係
数と伝熱面積を大きくすることが必要である。That is, the reason why the through hole 6 having the spiral uneven surface 7 as described above is provided in the heat storage brick 5 is that the heat transfer amount QGC (Kcal/hr) between the gas and the brick is QGC = hA (
Tc TB) However, h: heat transfer coefficient (Kcal/m2hr'C) A:
Heat transfer area (m2) T6: Gas temperature ('C) T8: Brick temperature ('C) Therefore, in order to increase the amount of heat transfer between the gas and heat storage bricks 5 in the hot air stove 2 of the same capacity, , it is necessary to increase the heat transfer coefficient and heat transfer area.
そしてその手段として、例えば貫通円孔6の径を大きく
することにより伝熱面積を増大させると、蓄熱レンガ5
の強度が低下して耐久性に劣ることになる。As a means for this, for example, by increasing the diameter of the through hole 6 to increase the heat transfer area, the heat storage brick 5
This results in a decrease in strength and poor durability.
また、孔径を小さくしてガス流速を増すことで伝熱係数
を大きくしても伝熱面積の減少が支配的で伝熱量の増加
にはならない。Further, even if the heat transfer coefficient is increased by decreasing the pore diameter and increasing the gas flow rate, the reduction in the heat transfer area is dominant and the amount of heat transfer does not increase.
しかしながら、第3図に示す如く貫通円孔6の内周部を
螺旋状溝と螺旋状鍔からなる凹凸面7に形成することに
より、上述した問題点を取り除き伝熱量を増大させるこ
とができる。However, as shown in FIG. 3, by forming the inner periphery of the through hole 6 into an uneven surface 7 consisting of a spiral groove and a spiral collar, the above-mentioned problems can be eliminated and the amount of heat transfer can be increased.
すなわち従来使用されている蓄熱レンガの貫通円孔直径
dと、平均直径が同一となる螺旋孔でピッチPの区間を
考えれば、従来円孔と螺旋孔の伝達面積はそれぞれ
となって、蓄熱レンガ5の強度を低下させることなく伝
熱面積の増加ができて伝熱量の増加が期待できるのみな
らず蓄熱レンガ5の貫通円孔6内周部に形成された螺旋
状凹凸面7のためにガス境膜が薄くなり、伝熱係数を増
大せしめることができる。In other words, if we consider the diameter d of the penetrating circular hole of the conventional heat storage brick and the section of the pitch P of the spiral hole with the same average diameter, the transmission area of the conventional circular hole and the spiral hole will be respectively, and the heat storage brick Not only can the heat transfer area be increased without reducing the strength of the heat storage brick 5, and an increase in the amount of heat transfer can be expected, but also the helical uneven surface 7 formed on the inner periphery of the through hole 6 of the heat storage brick 5 allows the gas to The film becomes thinner and the heat transfer coefficient can be increased.
すなわち、熱風炉2に送られるガス流自体は乱流である
が、このガスは粘性を有しているために従来の如く貫通
孔が円孔のみであればこの円孔内周部に層流(境膜)が
でき、これが厚くなると伝熱係数が小さくなる。In other words, the gas flow itself sent to the hot air stove 2 is a turbulent flow, but since this gas has viscosity, if the through hole is only a circular hole as in the past, there will be a laminar flow around the inner circumference of the circular hole. (layer) is formed, and as this thickens, the heat transfer coefficient decreases.
従って本考案蓄熱レンガ5は貫通円孔6内周部に形成さ
れた螺旋状凹凸面7のピッチPを小さくしてこの凹凸面
7によって貫通円孔6内周部を流動するガス流を乱流と
せしめ、よって境膜をごく薄くして伝熱係数を大きくす
るものである。Therefore, the heat storage brick 5 of the present invention reduces the pitch P of the spiral uneven surface 7 formed on the inner periphery of the through hole 6, and the uneven surface 7 makes the gas flow flowing on the inner periphery of the through hole 6 turbulent. Therefore, the film is extremely thin and the heat transfer coefficient is increased.
以上述べた様に、同一温度、流速でガスと蓄熱レンガの
熱交換を行なう場合、伝熱係数はガス境膜の厚さに支配
され、従って貫通円孔6内周部に形成された螺旋形状の
各寸法に伝熱係数が依存することが明らかで゛ある。As mentioned above, when heat exchange is performed between gas and heat storage brick at the same temperature and flow rate, the heat transfer coefficient is controlled by the thickness of the gas film, and therefore the spiral shape formed on the inner circumference of the through hole 6 It is clear that the heat transfer coefficient depends on each dimension.
こうして貫通円孔6内周部に形成された螺旋状凹凸面7
の第3図に示す各寸法割合は本考案者が種々実験の結果
、以下に示す近辺が最も伝熱係数を増大させえることを
確認した。In this way, a spiral uneven surface 7 is formed on the inner circumference of the through hole 6.
As a result of various experiments, the inventor of the present invention has confirmed that the heat transfer coefficient can be increased most in the vicinity of the ratios shown in FIG. 3 shown below.
P/dホ1
h/d−=:0.08
上記した寸法割合を有する螺旋状凹凸面7の一例として
、
d=40mm
Pl−42215mm
h=X=3mm
P=40mm
の螺旋状凹凸面7を有する貫通円孔6と従来円孔の場合
とのガス温度と伝熱係数の比較図を第4図に示す。P/d Ho1 h/d-=:0.08 As an example of the spiral uneven surface 7 having the above-mentioned dimension ratio, the spiral uneven surface 7 with d=40 mm Pl-42215 mm h=X=3 mm P=40 mm is used. FIG. 4 shows a comparison diagram of the gas temperature and heat transfer coefficient between the through-hole 6 and the conventional circular hole.
第4図中、実線は本考案蓄熱レンガ5を示したものであ
り、破線は従来の蓄熱レンガを示したものである。In FIG. 4, the solid line shows the heat storage brick 5 of the present invention, and the broken line shows the conventional heat storage brick.
第4図より明らかな如く本考案蓄熱レンガ5は従来の蓄
熱レンガと比較した場合略2倍の伝熱係数を有している
のがわかる。As is clear from FIG. 4, the heat storage brick 5 of the present invention has a heat transfer coefficient approximately twice as large as that of the conventional heat storage brick.
このように伝熱係数が増加すれば、ガスと蓄熱レンガ間
の熱交換効率が上昇し、燃焼時に高温部での蓄熱量が増
加するために送風温度が著しく上昇する。If the heat transfer coefficient increases in this way, the heat exchange efficiency between the gas and the heat storage brick will increase, and the amount of heat stored in the high temperature section during combustion will increase, so the blowing temperature will rise significantly.
すなわち、従来の蓄熱レンガで1200℃の送風温度を
維持できる操業条件で本考案蓄熱レンガ5を使用すれば
、第5図に示す如く伝熱係数が大きくなるに従い送風温
度も上昇する為に、伝熱係数が2倍になると送風温度も
1200℃から1238℃に上昇し、よって従来と同一
容量の熱風炉2に本考案蓄熱レンガ5を使用するだけで
、送風温度を従来と比較して38℃も上昇せしめること
ができる。That is, if the heat storage brick 5 of the present invention is used under operating conditions in which a conventional heat storage brick can maintain a blowing temperature of 1200°C, as the heat transfer coefficient increases, the blowing temperature also increases as shown in FIG. When the thermal coefficient doubles, the air temperature also increases from 1200°C to 1238°C. Therefore, by simply using the heat storage brick 5 of the present invention in a hot air stove 2 with the same capacity as a conventional one, the air temperature can be increased by 38°C compared to the conventional one. can also be raised.
以上述べた如く、本考案蓄熱レンガは貫通円孔の内周部
に、
P/d−=1
h/d字0.08
なる条件を満足する螺旋状の凹凸部を形成したためにガ
スとの接触面積が増大するのみならず、該凹凸部によっ
て貫通円孔内のガス流れが乱流となり、境膜が薄くなっ
て伝熱係数が大きくなるために、同一容量の熱風炉で同
一操業を行う場合においても、従来より送風温度を上昇
せしめることができる優れた効果を有する考案である。As mentioned above, the heat storage brick of the present invention has a spiral concavo-convex portion that satisfies the conditions of P/d-=1 h/d-character 0.08 on the inner periphery of the circular through-hole, which prevents contact with gas. Not only does the area increase, but the unevenness causes turbulence in the gas flow inside the circular through hole, which thins the boundary film and increases the heat transfer coefficient. This is a device that has an excellent effect of being able to raise the air temperature higher than before.
第1図は本考案に係る蓄熱レンガを使用する熱風炉と高
炉との関係を示す正面図、第2図は本考案蓄熱レンガの
一実施例を示す平面図、第3図は同上レンガの要部を示
す拡大断面図、第4図は本考案レンガと従来レンガのガ
ス温度と伝熱係数との関係図、第5図は伝熱係数比と送
風温度との関係図である。
5は蓄熱レンガ、6は貫通円孔、7は凹凸面。Fig. 1 is a front view showing the relationship between a hot blast furnace and a blast furnace using the heat storage brick according to the present invention, Fig. 2 is a plan view showing an embodiment of the heat storage brick according to the present invention, and Fig. 3 is an outline of the same brick. FIG. 4 is a diagram showing the relationship between the gas temperature and heat transfer coefficient of the brick of the present invention and the conventional brick, and FIG. 5 is a diagram showing the relationship between the heat transfer coefficient ratio and the blowing temperature. 5 is a heat storage brick, 6 is a through hole, and 7 is an uneven surface.
Claims (1)
凸面を備えていることを特徴とする蓄熱レンガ。 P/d−=:1 h/d−=:0.08 ただし、P:螺旋状凹凸面のピッチ d:貫通円孔の平均直径 h:凹部の深さ[Claims for Utility Model Registration] A heat storage brick characterized by having a spiral uneven surface that satisfies the following conditions on the inner periphery of a circular through hole. P/d-=:1 h/d-=:0.08 However, P: Pitch of spiral uneven surface d: Average diameter of through hole h: Depth of recess
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1975127668U JPS5928317Y2 (en) | 1975-09-16 | 1975-09-16 | heat storage brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1975127668U JPS5928317Y2 (en) | 1975-09-16 | 1975-09-16 | heat storage brick |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5241306U JPS5241306U (en) | 1977-03-24 |
JPS5928317Y2 true JPS5928317Y2 (en) | 1984-08-15 |
Family
ID=28608062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1975127668U Expired JPS5928317Y2 (en) | 1975-09-16 | 1975-09-16 | heat storage brick |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5928317Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS603377Y2 (en) * | 1979-07-13 | 1985-01-30 | 日本ドライブイツト株式会社 | expansion anchor |
JPS5622639A (en) * | 1979-07-31 | 1981-03-03 | Asahi Glass Co Ltd | Regenerator |
-
1975
- 1975-09-16 JP JP1975127668U patent/JPS5928317Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5241306U (en) | 1977-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4467780A (en) | High efficiency clamshell heat exchanger | |
US20160230991A1 (en) | Alternate-switching regenerative combustion apparatus and control method therefor | |
CN201731623U (en) | Hot air furnace | |
JPS5928317Y2 (en) | heat storage brick | |
WO2017177894A1 (en) | Heat transfer enhancement mesh-honeycombed bulge and kiln | |
CN211367621U (en) | Top combustion hot blast stove with tapered regenerative chamber | |
CN2121668U (en) | Double room negative (or low) pressure high flow rate vacuum air quench oven | |
CN207797709U (en) | Energy-saving electrical furnace system | |
JPS5926237Y2 (en) | Furnace wall structure | |
CN2338698Y (en) | Tube-less air heater | |
JP3802864B2 (en) | Hot-blast furnace iron skin structure | |
CN216815068U (en) | Heat treatment furnace with recyclable energy | |
CN210196747U (en) | Energy-saving expansion joint for carbon black production | |
CN209588403U (en) | A kind of atmospheric type combustion module of module furnace | |
CN211695840U (en) | Gas preheating structure of roller furnace | |
KR20000008536U (en) | Heat exchanger with heat transfer fin | |
JPS6135557Y2 (en) | ||
WO2005028989A1 (en) | Strengthening heat eschanger device | |
CN208998537U (en) | A kind of double-chamber structure applied on smelting furnace | |
CN207035113U (en) | Vacuum heat-insulation central flame flame combustion head | |
JPS6260191B2 (en) | ||
US2434491A (en) | Method of firing metallurgical furnaces | |
CN206330424U (en) | Crucible type magnesium alloy melting and heat preservation stove | |
CN2527950Y (en) | Fin tube heat exchanger for cage type annealing furnace | |
CN206724753U (en) | Fume exchanger based on VF M flame retardant type glass flake corrosion-proof linings |