JP3802864B2 - Hot-blast furnace iron skin structure - Google Patents

Hot-blast furnace iron skin structure Download PDF

Info

Publication number
JP3802864B2
JP3802864B2 JP2002295940A JP2002295940A JP3802864B2 JP 3802864 B2 JP3802864 B2 JP 3802864B2 JP 2002295940 A JP2002295940 A JP 2002295940A JP 2002295940 A JP2002295940 A JP 2002295940A JP 3802864 B2 JP3802864 B2 JP 3802864B2
Authority
JP
Japan
Prior art keywords
hot
iron skin
temperature
blast furnace
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002295940A
Other languages
Japanese (ja)
Other versions
JP2004131773A (en
Inventor
幸信 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002295940A priority Critical patent/JP3802864B2/en
Publication of JP2004131773A publication Critical patent/JP2004131773A/en
Application granted granted Critical
Publication of JP3802864B2 publication Critical patent/JP3802864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、熱風炉炉体鉄皮の応力腐食割れを防止するための熱風炉炉体の二重構造に関するものである。
【0002】
【従来の技術】
熱風炉は、蓄熱期に燃焼排ガスで蓄熱装置を構成するチェッカーレンガが加熱され、送風期には蓄熱したチェッカーレンガを通って予熱され、蓄熱期と送風期の間に充風期を設け、複数の熱風炉を交互に切り替えて連続的に高温の熱風を高炉に吹き込むものである。
【0003】
NOxは通常1250℃以上の燃焼焔中に含まれているが、燃焼ガスは耐火物の目地部を通って鉄皮内面に浸透し、外気により露点以下に冷却されてドレン化する。この様にNOx分はNO3 - を含む水溶液となり、これが鉄皮に接触するとFe+ と反応し、応力腐食割れを発生させる場合がある。
【0004】
このような割れを防止する手段として最も望ましい方法は、NOxを含んだガスに露出する鉄皮内面が、ガスの露点温度以上に保温することとされている。
この構造として、下記特許文献1が開示されている。
【0005】
【特許文献1】
特開昭57−200508号公報
【0006】
この構造は、熱風炉鉄皮を二重構造とし、内側の鉄皮と外側の鉄皮で構成される空間に熱風炉を加熱した排ガスを流通して、内側の鉄皮を保温するようにしたものである。
ドーム部はこの二重構造で150℃以上に保つことが可能であるが、蓄熱室の下端では150℃に保つことが出来ない。このため蓄熱室の中部から下部にかけて在来の鉄皮の外側に10mm〜30mm程度の空間を設けて断熱材を内張りした外皮を気密的に設け、その空間に熱風炉の燃焼期に煙道に排出される350℃程度のガスをこの空間内に流通して、鉄皮温度が150℃以上になるように加熱し、NO3 - による腐食割れを予防しようとするものである。
【0007】
また、他の方法として下記特許文献2が開示されている。この方法は、熱風炉の炉頂ドーム部を多数の径方向リブで区画し、かつ強化した内外二重の鉄皮からなり、この内部に熱媒体を充填し、区画に沿うように強制循環流動させ、この熱媒体の循環流動を鉄皮の内側温度の検出結果に従い、鉄皮温度分布がガスの露点温度以上で鉄皮強度温度以下に制御し、温度保持に必要限度を超えた循環流動熱媒体の保有熱を回収する方法である。
【0008】
【特許文献2】
特開昭57−108210号公報
【0009】
また下記特許文献3には、熱風炉の鉄皮と15〜40mmの間隔をあけて外皮で包囲し、この空間にSiC黒鉛を基材とした流動可能な乾燥材料を充填した熱風炉が開示されている。
【0010】
【特許文献3】
特公平02−45683号公報
【0011】
【発明が解決しようとする課題】
前記特許文献1に開示されているドーム部は、10mm程度の空間をあけた二重構造内にガスを循環させるだけで150℃以上を保持できるとあるが、熱風炉の内、ドーム部の内部温度が熱風炉内のガス温度分布では最も高く、ガスを循環するだけでは150℃以上に保持することは可能であるが、鉄皮の強度以上になってしまい、応力腐食割れ以前に耐熱性の問題が発生する。
【0012】
また前記特許文献2のように、ドーム部を径方向リブで区画して補強した二重構造の空間に熱媒体を区画に沿うように強制循環させ、鉄皮内側に設置した温度計により、循環流動する熱媒体の温度がガスの露点温度を超え鉄皮の強度が維持できる温度以下に制御するものでは、強制循環用のポンプや熱交換機および温度制御に必要な制御弁等が必要となり、設備コストが大幅にアップする。
【0013】
また前記特許文献3では、充填材を充填する作業が必要になり、また8mm程度の充填材を15〜40mmの空間に充填することは、空間が狭いため充填のための器具が必要となり、作業時間も長くなる。また、充填密度については一応開示されているが、施工密度管理が非常に難しく、管理次第では断熱効果が期待できなくなる可能性もでてくる。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決すべく本発明者が誠意検討した結果、完成されたものであり、その要旨とするところは以下の通りである。
1)熱風炉を形成する炉体鉄皮の外側に仕切り板によって水平方向に複数段に分割された空気層を設けて該炉体鉄皮で包囲して二重構造とする熱風炉の鉄皮構造において内側鉄皮温度が自然対流伝熱および輻射伝熱により該内側鉄皮の内面に接するガスの露点温度以上で鉄皮強度温度以下となるように、前記分割される空気層の容量を上に行くにしたがい大きく構成したことを特徴とする熱風炉の鉄皮構造。
2)上記複数に分割した空気層の各々を熱風炉本体と連通する均圧管で連結したことを特徴とする前記1)に記載の熱風炉の鉄皮構造
【0015】
【発明の実施の形態】
以下に、本発明を図に示す実施例に基づいて詳細に説明する。
図1は本発明の構造を適用する内燃式熱風炉の概略図、図2は図1のA−A矢視図、図3は本発明の実施例を示す熱風炉の側部断面図、図4は本発明の他の実施例を示す熱風炉の側部断面図、図5は本発明の概念図、図6は空気層厚み(B)と内側鉄皮温度の関係を示す図、図7は仕切り板間距離(H)と内側鉄皮温度の関係を示す図である。
【0016】
図1は内燃式熱風炉の概念図であって、図1および図2において、熱風炉9の蓄熱期においては、熱風炉9本体に燃料ガス14と燃焼用空気15を燃焼装置17で燃焼して燃焼排ガスを発生させ、熱風炉9内の蓄熱装置内で燃焼排ガスの顕熱を蓄熱させ、排ガス出口11より排出して煙突より排気される。
送風期には、空気を送風用空気供給口12より送風して蓄熱装置18で熱交換させて熱風とし、送風管16を介して高炉へ送風する。
【0017】
蓄熱期において、燃焼装置により燃焼された空気は、1400℃程度の燃焼ガスとして熱風炉9のドーム部を通って蓄熱装置へ送られ、蓄熱装置18で燃焼ガスの顕熱を蓄熱して低下した排ガスを煙突より排気する。送風期には蓄熱装置側から空気を送風し、蓄熱装置18内で空気は1000℃〜1200℃に予熱され、熱風炉9のドーム部を通って送風管16を介して高炉に送風される。したがって内燃式熱風炉9ではドーム部および燃焼装置側の直胴部の排ガス温度が最も高い。
【0018】
図3には、本発明を熱風炉ドーム部に適用した二重構造を示す。熱風炉9本体には耐火物4が施工され、その外側を鉄皮2で包囲されている。この耐火物4の外方には、鉄皮2と間隔をあけて外皮1を設け、空気層3を形成して、熱風炉9のドーム部を二重構造としている。この二重構造の空気層3部には、ドームの水平方向に仕切り板6を配設して複数に仕切っている。
また各仕切り板6で仕切られた空気層3には、送風用空気供給管12より取り出した均圧管5を連結している。この均圧管5で、前記仕切られた空気層3は熱風炉9と同じ圧力を保持している。この空気層3を熱風炉9と同圧にすることで、熱風炉9本体の切り替え等により炉圧が変動しても熱風炉9に追従するので、炉圧変動による空気層3の流れは発生しない。
【0019】
図4は本発明の二重構造炉体をドーム部および直胴部に配設したもので、二重構造の空気層3は仕切り板6によって熱風炉9本体を輪切りする方向で仕切っている。輪切りの間隔は、空気層3が自然対流によって上昇し、上昇した気体が150℃〜250℃となるところで仕切り板に衝突するように設定する。また、仕切り板6で仕切られた空気層3の各々には、送風用空気供給管12から取り出した均圧管5が連結されている。
【0020】
図5は、本発明の空気層を形成するための基本概念図で、熱風炉9内側鉄皮2と外側鉄皮1との間に形成する空気層3は、内側鉄皮2側に接する空気層が、内側鉄皮2の表面温度により熱せられて温度が上昇する。温度が上昇することで内側鉄皮2表面で自然対流が発生し、内側鉄皮2表面に接している空気層は内側鉄皮2に沿って温度が上がりながら上昇する。上昇した空気は、仕切り板6に衝突して外側鉄皮1側に方向が変更される。方向が変更されると、外側鉄皮1により冷却されて今度は下降し、下側仕切り板6に衝突して内側鉄皮2側に方向が変更される。
【0021】
本発明はこのように、温度の上昇に伴い、発生する自然対流による内側鉄皮2に沿って上昇する気流を仕切り板6によって上昇方向を外側鉄皮1側に変更することで、この空気層3の温度を150〜250℃に設定しようとするものである。
ここで、自然対流による伝熱で説明したが、当然輻射伝熱も考慮して仕切板の間隔を設定することは言うまでもない。
【0022】
図6は、空気層の厚みと内側鉄皮温度の関係を示すグラフで、この空気層の厚みを内側鉄皮層の温度が150〜250℃となるように設定する。この算出方法は、一般的に採用されている自然対流および輻射伝熱による伝熱計算を行なう。
【0023】
図7は、仕切り板の間隔と内側鉄皮温度の関係を示すグラフで、仕切り板の間隔が広くなれば空気層の温度は低下し、仕切り板の間隔が狭ければ内側鉄皮温度は上昇する。従って、仕切り板の間隔を内側鉄皮温度が150〜250℃になるように設定する。仕切り板は自然対流による温度上昇を防止するために設置するものであり、熱風炉のドーム部および直胴部に水平方向に設置する。
【0024】
【発明の効果】
このように、熱風炉炉体鉄皮を形成する二重構造の空気層を内側鉄皮温度を自然対流伝熱および輻射伝熱により150〜250℃になるように水平方向に仕切り板を設置することで、鉄皮の応力腐食割れが防止でき、従来から使用されている強制循環装置や断熱材を封入する必要がなく、設備費を大幅に低減することができ、作業工程も簡素化することが可能なる。
【図面の簡単な説明】
【図1】本発明の構造を適用する内燃式熱風炉の概略図。
【図2】図1のA−A矢視図を示す。
【図3】本発明の実施例を示す熱風炉の側部断面図。
【図4】本発明の他の実施例を示す熱風炉の側部断面図。
【図5】本発明の概念図を示す。
【図6】部空気層厚み(B)と内側鉄皮温度の関係を示す図。
【図7】仕切り板間距離(H)と内側鉄皮温度の関係を示す図。
【符号の説明】
1:外側鉄皮 2:内側鉄皮
3:空気層 4:耐火物
5:均圧管 6:仕切り板
7:空気層の上昇流 8:空気層の下降流
9:熱風炉 10:排ガス切り替え遮断弁
11:排ガス排出管 12:送風用空気供給口
13:送風空気切り替え遮断弁
14:燃料供給管 15:燃焼用空気供給管
16:送風管 17:燃焼装置
18:蓄熱器
[0001]
[Technical field to which the invention belongs]
The present invention relates to a double structure of a hot stove furnace body for preventing stress corrosion cracking of the hot stove furnace core.
[0002]
[Prior art]
In the hot stove, the checker bricks that make up the heat storage device with the combustion exhaust gas are heated in the heat storage period, preheated through the stored checker bricks in the air blowing period, and the air charging period is provided between the heat storage period and the air blowing period. These hot air furnaces are alternately switched to continuously blow hot hot air into the blast furnace.
[0003]
NOx is usually contained in the combustion soot at 1250 ° C. or higher, but the combustion gas penetrates the inner surface of the iron shell through the joint portion of the refractory, and is cooled to below the dew point by the outside air and drained. In this way, the NOx content becomes an aqueous solution containing NO 3 , and when this comes into contact with the iron skin, it reacts with Fe + and may cause stress corrosion cracking.
[0004]
The most desirable method for preventing such cracks is to keep the inner surface of the iron skin exposed to the gas containing NOx at a temperature equal to or higher than the dew point temperature of the gas.
The following Patent Document 1 is disclosed as this structure.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 57-200508 [0006]
In this structure, the hot-blast furnace iron skin is made into a double structure, and the exhaust gas heated by the hot-blast furnace is circulated in the space composed of the inner iron skin and the outer iron skin to keep the inner iron skin warm. Is.
The dome part can be kept at 150 ° C. or higher with this double structure, but cannot be kept at 150 ° C. at the lower end of the heat storage chamber. For this reason, a space of about 10 mm to 30 mm is provided outside the conventional iron skin from the middle to the lower part of the heat storage chamber, and an outer skin lined with a heat insulating material is provided in an airtight manner. The discharged gas of about 350 ° C. is circulated in this space and heated so that the iron skin temperature becomes 150 ° C. or more, thereby preventing corrosion cracking due to NO 3 .
[0007]
Moreover, the following patent document 2 is disclosed as another method. In this method, the top dome of the hot stove is partitioned by a large number of radial ribs, and consists of a reinforced inner and outer double iron skin. The inside is filled with a heat medium and forced circulation flow along the section. The circulation flow of this heat medium is controlled according to the detection result of the inner temperature of the iron skin, and the iron skin temperature distribution is controlled to be higher than the dew point temperature of the gas and lower than the iron skin strength temperature. This is a method for recovering the retained heat of the medium.
[0008]
[Patent Document 2]
Japanese Patent Laid-Open No. 57-108210
Patent Document 3 listed below discloses a hot stove that is surrounded by an outer skin with a space of 15 to 40 mm from the iron shell of the hot stove, and in which this space is filled with a flowable dry material based on SiC graphite. ing.
[0010]
[Patent Document 3]
Japanese Examined Patent Publication No. 02-45683
[Problems to be solved by the invention]
The dome portion disclosed in Patent Document 1 is said to be able to maintain a temperature of 150 ° C. or higher by simply circulating gas in a double structure with a space of about 10 mm. The temperature is the highest in the gas temperature distribution in the hot stove, and it is possible to keep it at 150 ° C or higher by simply circulating the gas. A problem occurs.
[0012]
Also, as in Patent Document 2, the heat medium is forcedly circulated along the compartment in a double-structured space reinforced by dividing the dome portion with radial ribs, and circulated by a thermometer installed inside the iron skin. If the temperature of the flowing heat medium exceeds the dew point temperature of the gas and is controlled below the temperature at which the strength of the iron skin can be maintained, a forced circulation pump, heat exchanger, control valve necessary for temperature control, etc. are required. Costs are greatly increased.
[0013]
Further, in Patent Document 3, an operation of filling a filler is required, and filling an approximately 8 mm filler into a space of 15 to 40 mm requires a filling device because the space is small. The time also becomes longer. Further, although the packing density has been disclosed, the construction density management is very difficult, and depending on the management, there is a possibility that the heat insulation effect cannot be expected.
[0014]
[Means for Solving the Problems]
The present invention has been completed as a result of sincerity studies by the inventor in order to solve the above-described problems , and the gist thereof is as follows.
1) A hot-blast furnace iron skin which is provided with an air layer divided into a plurality of stages in a horizontal direction by a partition plate on the outer side of the furnace body iron skin forming the hot-blast furnace and is surrounded by the furnace body iron skin to form a double structure in the structure, such that the inner steel shell temperature is steel shell strength temperature below the natural convection heat and radiant heat transfer by the inner surface in contact with gas having a dew point temperature or more of the inner furnace shell, a capacity of the divided the air layer A hot-blast furnace iron-skin structure , characterized by the fact that the structure increases as you go up .
2) furnace shell structure of a hot-air furnace according to above 1), characterized in that each of said plurality of divided air layer connected in a hot air furnace body and communicating with pressure equalizing pipe.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
1 is a schematic view of an internal combustion type hot stove to which the structure of the present invention is applied, FIG. 2 is a view taken along the line AA of FIG. 1, and FIG. 3 is a side sectional view of the hot stove showing an embodiment of the present invention. 4 is a side sectional view of a hot stove showing another embodiment of the present invention, FIG. 5 is a conceptual diagram of the present invention, FIG. 6 is a diagram showing the relationship between the air layer thickness (B) and the inner iron core temperature, FIG. These are figures which show the relationship between the distance (H) between partition plates, and an inner side iron shell temperature.
[0016]
FIG. 1 is a conceptual diagram of an internal combustion type hot stove. In FIGS. 1 and 2, during the heat storage period of the hot stove 9, fuel gas 14 and combustion air 15 are burned in the hot stove 9 body by a combustion device 17. Combustion exhaust gas is generated, sensible heat of the combustion exhaust gas is stored in the heat storage device in the hot stove 9, and is discharged from the exhaust gas outlet 11 and exhausted from the chimney.
During the blowing period, air is blown from the blowing air supply port 12 and heat is exchanged by the heat storage device 18 to form hot air, which is blown to the blast furnace through the blowing pipe 16.
[0017]
In the heat storage period, the air combusted by the combustion device is sent as a combustion gas of about 1400 ° C. through the dome portion of the hot stove 9 to the heat storage device, and the sensible heat of the combustion gas is stored in the heat storage device 18 and lowered. Exhaust the exhaust gas from the chimney. During the blowing period, air is blown from the heat storage device side, the air is preheated to 1000 ° C. to 1200 ° C. in the heat storage device 18, passes through the dome portion of the hot stove 9, and is blown to the blast furnace through the blower pipe 16. Therefore, in the internal combustion hot stove 9, the exhaust gas temperature at the dome portion and the straight body portion on the combustion device side is the highest.
[0018]
FIG. 3 shows a double structure in which the present invention is applied to a hot stove dome. A refractory 4 is applied to the main body of the hot stove 9, and the outer side thereof is surrounded by the iron skin 2. On the outside of the refractory 4, the outer skin 1 is provided at a distance from the iron shell 2, the air layer 3 is formed, and the dome portion of the hot stove 9 has a double structure. A partition plate 6 is arranged in the air layer 3 part of the double structure in the horizontal direction of the dome and partitioned into a plurality of parts.
Further, a pressure equalizing pipe 5 taken out from a blower air supply pipe 12 is connected to the air layer 3 partitioned by each partition plate 6. With this pressure equalizing tube 5, the partitioned air layer 3 maintains the same pressure as the hot stove 9. By making this air layer 3 the same pressure as the hot stove 9, even if the furnace pressure fluctuates due to switching of the main body of the hot stove 9 or the like, it follows the hot stove 9. do not do.
[0019]
FIG. 4 shows a double structure furnace body according to the present invention arranged in the dome part and the straight body part. The double structure air layer 3 is partitioned by a partition plate 6 in the direction of cutting the main body of the hot stove 9. The interval between the circular cuts is set so that the air layer 3 rises by natural convection and the raised gas collides with the partition plate at a temperature of 150 ° C to 250 ° C. Further, a pressure equalizing pipe 5 taken out from the air supply pipe 12 for blowing is connected to each of the air layers 3 partitioned by the partition plate 6.
[0020]
FIG. 5 is a basic conceptual diagram for forming the air layer of the present invention. The air layer 3 formed between the hot iron 9 inner iron skin 2 and the outer iron skin 1 is air in contact with the inner iron skin 2 side. The layer is heated by the surface temperature of the inner iron skin 2, and the temperature rises. As the temperature rises, natural convection occurs on the inner iron skin 2 surface, and the air layer in contact with the inner iron skin 2 surface rises while the temperature rises along the inner iron skin 2. The rising air collides with the partition plate 6 and the direction is changed to the outer iron shell 1 side. When the direction is changed, it is cooled by the outer iron shell 1 and then lowered, and collides with the lower partition 6 to change the direction to the inner iron shell 2 side.
[0021]
As described above, the present invention changes the air flow rising along the inner iron skin 2 due to the natural convection generated by the temperature rise by changing the rising direction to the outer iron skin 1 side by the partition plate 6. The temperature of No. 3 is to be set to 150 to 250 ° C.
Here, the heat transfer by natural convection has been described, but it goes without saying that the interval between the partition plates is set in consideration of radiant heat transfer.
[0022]
FIG. 6 is a graph showing the relationship between the thickness of the air layer and the inner skin temperature, and the thickness of the air layer is set so that the temperature of the inner skin layer is 150 to 250 ° C. This calculation method performs heat transfer calculation by natural convection and radiant heat transfer that are generally adopted.
[0023]
FIG. 7 is a graph showing the relationship between the distance between the partition plates and the inner iron skin temperature. As the distance between the partition plates increases, the temperature of the air layer decreases, and as the distance between the partition plates decreases, the inner core temperature increases. To do. Therefore, the interval between the partition plates is set so that the inner iron skin temperature is 150 to 250 ° C. The partition plate is installed to prevent a temperature rise due to natural convection, and is installed in the horizontal direction on the dome portion and the straight body portion of the hot stove.
[0024]
【The invention's effect】
In this way, the partition plate is horizontally installed in the double-layered air layer forming the hot stove furnace body core so that the inner core temperature becomes 150 to 250 ° C. by natural convection heat transfer and radiation heat transfer. Therefore, stress corrosion cracking of the iron skin can be prevented, there is no need to enclose the forced circulation device and heat insulating material that have been used in the past, equipment costs can be greatly reduced, and the work process can be simplified. Is possible.
[Brief description of the drawings]
FIG. 1 is a schematic view of an internal combustion type hot stove to which the structure of the present invention is applied.
FIG. 2 is a view taken in the direction of arrows AA in FIG.
FIG. 3 is a side sectional view of a hot stove showing an embodiment of the present invention.
FIG. 4 is a sectional side view of a hot stove showing another embodiment of the present invention.
FIG. 5 shows a conceptual diagram of the present invention.
FIG. 6 is a diagram showing a relationship between partial air layer thickness (B) and inner iron core temperature.
FIG. 7 is a diagram showing a relationship between a distance between partition plates (H) and an inner iron core temperature.
[Explanation of symbols]
1: Outer iron shell 2: Inner iron shell 3: Air layer 4: Refractory 5: Pressure equalizing pipe 6: Partition plate 7: Upflow of air layer 8: Downflow of air layer 9: Hot stove 10: Exhaust gas switching cutoff valve 11: Exhaust gas discharge pipe 12: Blowing air supply port 13: Blowing air switching shutoff valve 14: Fuel supply pipe 15: Combustion air supply pipe 16: Blower pipe 17: Combustion device 18: Regenerator

Claims (2)

熱風炉を形成する炉体鉄皮の外側に仕切り板によって水平方向に複数段に分割された空気層を設けて該炉体鉄皮で包囲して二重構造とする熱風炉の鉄皮構造において内側鉄皮温度が自然対流伝熱および輻射伝熱により該内側鉄皮の内面に接するガスの露点温度以上で鉄皮強度温度以下となるように、前記分割される空気層の容量を上に行くにしたがい大きく構成したことを特徴とする熱風炉の鉄皮構造In a hot-blast furnace core structure in which a double layer structure is provided by providing an air layer divided into a plurality of stages in the horizontal direction by a partition plate on the outside of the furnace body iron shell forming the hot-blast furnace. The volume of the divided air layer is increased so that the inner iron skin temperature is higher than the dew point temperature of the gas in contact with the inner surface of the inner iron skin by natural convection heat transfer and radiation heat transfer and lower than the iron skin strength temperature. The iron-skin structure of a hot stove , characterized by the fact that it has become larger as it goes . 上記複数に分割した空気層の各々を熱風炉本体と連通する均圧管で連結したことを特徴とする請求項1に記載の熱風炉の鉄皮構造2. The hot-blast furnace iron skin structure according to claim 1, wherein each of the plurality of divided air layers is connected by a pressure equalizing pipe communicating with the hot-blast furnace main body.
JP2002295940A 2002-10-09 2002-10-09 Hot-blast furnace iron skin structure Expired - Fee Related JP3802864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295940A JP3802864B2 (en) 2002-10-09 2002-10-09 Hot-blast furnace iron skin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295940A JP3802864B2 (en) 2002-10-09 2002-10-09 Hot-blast furnace iron skin structure

Publications (2)

Publication Number Publication Date
JP2004131773A JP2004131773A (en) 2004-04-30
JP3802864B2 true JP3802864B2 (en) 2006-07-26

Family

ID=32286049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295940A Expired - Fee Related JP3802864B2 (en) 2002-10-09 2002-10-09 Hot-blast furnace iron skin structure

Country Status (1)

Country Link
JP (1) JP3802864B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352011B1 (en) 2012-11-09 2014-01-22 주식회사 포스코건설 Composite structured hot blast furnace using internal combustion
CN106927466B (en) * 2017-04-05 2017-12-29 亚洲硅业(青海)有限公司 A kind of 48 pairs of rod reducing furnace body structures
JP7006448B2 (en) * 2018-03-29 2022-01-24 日本製鉄株式会社 Iron skin heat insulation structure of hot air furnace

Also Published As

Publication number Publication date
JP2004131773A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
EP0071073B1 (en) Radiant tube
CN101963449A (en) Double-layer ring-shaped rotary hearth furnace
CN205980750U (en) Four pushing plate furnace's of atmosphere protection furnace body
CN200993379Y (en) Membrane type smoke cover structure
JP3802864B2 (en) Hot-blast furnace iron skin structure
CN207280208U (en) A kind of belt type roasting machine partition wall base machinery girder construction
CN103951162A (en) Device for cooling erodible part of flat glass melting furnace tank wall
CN102676849A (en) Reduction tank and magnesium reduction furnace
CN210569930U (en) Energy-saving electric furnace for smelting scrap iron
CN108330272A (en) A kind of single Regeneratiue billet reheating furnace using blast furnace gas
US20020026997A1 (en) Heat recovery type heat storage apparatus
JPS63259385A (en) Heat regenerator
US2532322A (en) Phosphorus combustion furnace
Nicholson Recuperative and regenerative techniques at high temperature
US4334861A (en) Method and apparatus for generating a hot air blast
CN210088813U (en) Circulating fluidized bed boiler
CN104154513A (en) Waste heat boiler of can-type calcinator
US1448162A (en) Furnace
US1824434A (en) Valve structure
CN112629275A (en) Double-box heat accumulating type heat exchanger
CN206398706U (en) A kind of Natural Circulation water-cooling system of circulating fluidized bed boiler sullage pipe
US3220713A (en) Refractory heat exchanger
CN220303887U (en) Heat exchanger of hot blast stove
CN214582553U (en) Double-box heat accumulating type heat exchanger
CN204005899U (en) The waste heat boiler of can-type calcine furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees