JPS60173486A - Survey device for underground buried body - Google Patents

Survey device for underground buried body

Info

Publication number
JPS60173486A
JPS60173486A JP59016608A JP1660884A JPS60173486A JP S60173486 A JPS60173486 A JP S60173486A JP 59016608 A JP59016608 A JP 59016608A JP 1660884 A JP1660884 A JP 1660884A JP S60173486 A JPS60173486 A JP S60173486A
Authority
JP
Japan
Prior art keywords
pulse
underground
correlator
underground buried
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59016608A
Other languages
Japanese (ja)
Inventor
Noriyoshi Osumi
規由 大隅
Keiichi Ueno
圭一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59016608A priority Critical patent/JPS60173486A/en
Publication of JPS60173486A publication Critical patent/JPS60173486A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To perform good inspection of S/N with low peak transmitting electric power by performing correlation processing by using encoded pulses when detecting the depth of the underground buried body on the basis of the time delay of a receive reflected pulse. CONSTITUTION:A pulse generator 2 generates a pulse train with constant length which has clear autocorrelation in response to an encoded sequence generator 1, and sends out electromagnetic pulses to a transducer 4. Then, a reflected wave from the underground buried body is received by a transducer 4 and a receiver 5 and the received pulse train is supplied to a correlator 6 for autocorrelation processing, so that the depth of the underground buried body is detected from the time delay of receive reflected pulses. Then, N pulses in the pulse sequence with constant length are compressed in a constant-length code section by N-pulse autocorrelation to increase its amplitude N time, and noises in the receive signals are added at random to decrease the output of the correlator 6. Consequently, the underground buried body is surveyed at an excellent S/N with low peak transmitted electric power.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は、パルス信号を地中に放射し、地下埋設物から
の反射パルスによって埋設物を探査する地下埋設物探査
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an underground object exploration device that radiates a pulse signal into the ground and searches for a buried object using reflected pulses from the underground object.

従来技術 従来のこの種装置は、1つの送信波およびこれによって
得られる1つの受信波のみに着目して地下埋設物からの
反射波を検出することによって埋設物の探査を行なうよ
うにしている。従って、埋設物の探知距離を増大するた
めには、送信ピーク電力を大きくすることが必要である
。また、埋設物の距離分解能を高くするためにはパルス
幅の狭いパルスを用いる必要がある。しかし、送信ピー
ク電力を大きくすることは、送信器や受信器の回路部品
等の物理的制約条件によって制約がある。
BACKGROUND OF THE INVENTION Conventional devices of this type detect buried objects by focusing only on one transmitted wave and one received wave obtained thereby, and detect reflected waves from the underground objects. Therefore, in order to increase the detection distance of buried objects, it is necessary to increase the transmission peak power. Furthermore, in order to improve the distance resolution of buried objects, it is necessary to use pulses with a narrow pulse width. However, increasing the transmission peak power is limited by physical constraints such as circuit components of the transmitter and receiver.

このため、従来の地下埋設物探査装置は、信号対雑音比
が悪いという欠点がある。しかも、土の高減衰特性のた
め埋設物からの反射波は著しく減衰して受信されるから
上述の欠点はより顕著となる。
For this reason, conventional underground buried object exploration devices have the disadvantage of a poor signal-to-noise ratio. Moreover, because of the high attenuation characteristics of soil, reflected waves from buried objects are received with significant attenuation, making the above-mentioned drawbacks even more pronounced.

発明の目的 本発明の目的は、上述の従来の欠点を解決し、低い送信
ピーク電力によって良好な信号対雑音比を得ることが可
能な地下埋設物探査装置を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional drawbacks and to provide an underground buried object exploration device capable of obtaining a good signal-to-noise ratio with low transmission peak power.

発明の構成 本発明の地下埋設物探査装置は、パルス発生器の出力を
地中に放射し地下埋設物で反射されたパルAを受信し、
受信パルスの時間遅れによって地下埋設物の深さを検出
する地下埋設物探査装置において、一定の符号間隔で符
号化された一定長の符号系列によって前記パルス発生器
を駆動する符号化系列発生器と、受信信号の相関処理を
行なう相関器とを備えて、該相関器の処理結果によって
地下埋設物を探査することを特徴とする。
Structure of the Invention The underground buried object exploration device of the present invention radiates the output of a pulse generator into the ground and receives the pulse A reflected by the underground buried object,
In an underground buried object exploration device that detects the depth of underground buried objects by a time delay of a received pulse, a coded sequence generator that drives the pulse generator with a code sequence of a certain length encoded at a certain code interval; , and a correlator that performs correlation processing on received signals, and underground objects are searched based on the processing results of the correlator.

なお、送信パルスを符号化しないで、受信信号を符号化
する符号化器を備えて、該符号化器の出力(8号の相関
を取るようにしても同様な効果を得ることができる。
Note that the same effect can be obtained by providing an encoder that encodes the received signal without encoding the transmitted pulse, and by calculating the correlation of the output of the encoder (No. 8).

また、受信信号を前記一定周期よりやや長い時間間隔で
サンプルする受信器を設ければ、該受信器の出力によっ
て前記一定周期内の受信信号を前記一定周期の整数倍の
時間に拡大した信号を得ることかできるから、等測的に
周波数変換を行なうことかできる。
Furthermore, if a receiver is provided that samples the received signal at a time interval slightly longer than the fixed period, the output of the receiver can generate a signal obtained by expanding the received signal within the fixed period to a time that is an integral multiple of the fixed period. Since it can be obtained, it is possible to perform frequency conversion isometrically.

発明の実施例 次に、本発明について、図面を参興して詳細に説明する
Embodiments of the Invention Next, the present invention will be described in detail with reference to the drawings.

i′51図は、本発明の第1の実施例を示すブロック図
である。?3す化系列発生器lは、例えば、M系列また
はバー力符″−)等の符号系列(系列長N。
Figure i'51 is a block diagram showing a first embodiment of the present invention. ? The ternary sequence generator 1 generates a code sequence (sequence length N), such as an M sequence or a bar code "-", for example.

彷t)間隔Tc 、繰返し周期Tとする)を発生し、該
符号系列の各符号に応した極性のトリ力パルス列をパル
ス発生器2に供給する。上記91号系列は、自己相関が
明確に現われ、パルス圧縮率の高い符号系列である。パ
ルス発生器2は、符号化系列発生器1から入力されたト
リガパルス列によって駆動され、トリガパルスの極性に
応した極性の所定形状のパルスを発生して方向性結合回
路3およびI・ランスデューサ4を介して励起パルスの
形に応じた電磁パルスとして地中に放射する。トランス
デユーサ4は、 ’dj:ωパルスの送出に対してはア
ンテナを使用するか、パルス発生器2の出力パルスを超
音波等の波動に変換して」、中に放射するものであって
も良い。
t) interval Tc and repetition period T), and supplies the pulse generator 2 with a tri-force pulse train having a polarity corresponding to each code of the code sequence. The No. 91 sequence is a code sequence in which autocorrelation clearly appears and has a high pulse compression rate. The pulse generator 2 is driven by a trigger pulse train inputted from the encoded sequence generator 1, generates a pulse having a predetermined shape and a polarity corresponding to the polarity of the trigger pulse, and generates a pulse having a predetermined shape and a polarity corresponding to the polarity of the trigger pulse, and generates a pulse having a predetermined shape and transmitting the pulse to the directional coupling circuit 3 and the I/transducer 4. radiates into the ground as an electromagnetic pulse according to the shape of the excitation pulse. The transducer 4 uses an antenna to send out the dj:ω pulse, or converts the output pulse of the pulse generator 2 into a wave such as an ultrasonic wave and radiates it into the interior. Also good.

地中の目標物で反射された電磁波等の一部が再ひトラン
スデユーサ4に戻り、方向性結合回路3を介して受信器
5に人力される。受信器5の出力信壮か相関器6に人力
され、相関器6は、受信器5の出力イJ3号を、待−じ
化系列発生器lから供給される符号化系列の始まりを示
す、1−リガー信号と、各ネ、1号の始まりを小すトリ
カー信号(周期Tc)を用いて相関処理を行なう。
A portion of the electromagnetic waves reflected by the underground target returns to the transducer 4 and is input to the receiver 5 via the directional coupling circuit 3. The output accuracy of the receiver 5 is inputted to a correlator 6, which uses the output IJ3 of the receiver 5 to indicate the beginning of the encoded sequence supplied from the waiting sequence generator l. Correlation processing is performed using the 1-rigger signal and a trigger signal (period Tc) that reduces the start of each number 1.

例えば、−周期T分の受信信号を蓄積しておき、第1符
号の符号化の極性に応じて−1−記受信信号を極性反転
した信号と、第2符号の符号化の極性に応じてに記受信
信号を極性反転しl符号間隔Tc分だけずらせた信号と
、それぞれ上記同様に第3.・・・、第N符号の極性に
応じて極性反転処理しさらにl符号間隔Tc分ずつずら
せた信号とを対応する時間点で順次加算して得られた信
号のピ−ク位置を検出すれば、このピーク位置は反射波
の遅れ時間に相当する。また、このピークは後述するよ
うに個々の受信パルスのピーク値のN倍である。
For example, by accumulating received signals for -periods T, a signal obtained by inverting the polarity of the -1-th received signal according to the encoding polarity of the first code, and a signal obtained by inverting the polarity of the -1-th received signal according to the encoding polarity of the second code are stored. A signal obtained by inverting the polarity of the received signal described above and shifting it by l code interval Tc, and a signal obtained by inverting the polarity of the received signal described in 3. ..., if we detect the peak position of the signal obtained by sequentially adding the polarity inversion process according to the polarity of the Nth code and the signal shifted by l code interval Tc at corresponding time points. , this peak position corresponds to the delay time of the reflected wave. Moreover, this peak is N times the peak value of each received pulse, as will be described later.

今、符号化系列の各符号を順にKl 、に2 。Now, each code of the encoded sequence is converted to Kl and 2 in turn.

・・・・・・、KN としたときの相関値Piは、で表
わされ、例えば、系列符号がバー力符号のときはi=0
に対してはPO=Nとなり、i洪Oに対してはPi−±
1.0となる。従って、N個の符号区間に送出されたN
個の各パルスを一個の符号区間(Tc)にパルス圧縮し
、その振幅を各パルスの振幅のN倍とすることができる
。従って、前述のピークは、個々の受信パルスのピーク
値のN倍となる。また、受信信号中の雑音は、前記相関
処理ではランダムに加算されるから、相関器出力では極
めて小である。従って、信号対雑音比が改善され、上白
で減衰した小さな反射波も検出することか可能であり、
2つ以にの反射波も容易に識別することができる。相関
器6の処理結果は、蓄積装置8に蓄積し、また表示装置
7の表示形式に合せて波形または埋設深さ等の形式で表
示して測定者に電磁波反射の様子を提示することができ
る。
......, KN, the correlation value Pi is expressed as, for example, when the sequence code is a bar code, i=0
For , PO=N, and for i Hong O, Pi−±
It becomes 1.0. Therefore, N
Each pulse can be pulse compressed into one code interval (Tc), and its amplitude can be N times the amplitude of each pulse. Therefore, the aforementioned peak will be N times the peak value of the individual received pulse. Further, since the noise in the received signal is randomly added in the correlation processing, the noise in the correlator output is extremely small. Therefore, the signal-to-noise ratio is improved, and it is possible to detect small reflected waves that are attenuated in the upper part.
More than two reflected waves can also be easily identified. The processing results of the correlator 6 are stored in the storage device 8, and can be displayed in the form of a waveform or burial depth in accordance with the display format of the display device 7 to present the state of electromagnetic wave reflection to the measurer. .

また、本発明の第2の実施例においては、第1図に示し
た受信器5に、符号化系列発生器lがら前記符号系列の
繰返し周期Tごとにタイミング信号を送り、受信器5は
T+α(例えば、α−T1512)ごとに受信信号をサ
ンプルして保持出力するように構成する。従って、受信
器5がらは、−周期T分の受信信号をT/α倍(例えば
512倍)の時間幅に拡大して出力することがOf能で
ある。すなわち、等測的な周波数変換を行なうことがで
きる。そして、相関器6は例えば512Tcを時間単位
として受信器5の出力信号の相関処理を行なうようにす
る。
Further, in the second embodiment of the present invention, the coded sequence generator l sends a timing signal to the receiver 5 shown in FIG. (for example, α-T1512), the received signal is sampled and held and output. Therefore, the receiver 5 is capable of enlarging the received signal of -period T to a time width of T/α (for example, 512 times) and outputting it. That is, isometric frequency conversion can be performed. Then, the correlator 6 performs correlation processing on the output signal of the receiver 5 using, for example, 512Tc as a time unit.

第2図は、本発明の第3の実施例を示すブロック1Δで
ある。この場合は、一定周期Tでトリ力パルスを発生す
るトリガパルス発生器9によってパルス発生器2を駆動
する。そして土中埋設物がらの反射波がトランスデユー
サ4および方向性結合回路3を介して受信器5に入力す
る。符号化器14は、受信波の蓄vi機能と乗算機能を
持ち、受イ、を器5の出力する1周期T分の受信信号を
N個使用して、それぞれを一定の符号間隔Tcずつ遅延
させた信号をN個の符号系列の各符号に応じた極性にそ
れぞれ変換し、それらを加算して1つの信号として出力
する。そして、相関器6で符号化器14の出力信号の相
関を取ることによって前述した第1の実施例と同様に埋
設物の検出を行なうことかり能である。この場合も相関
処理によって受信パルスの振幅がN倍され、雑音は完全
にランタム化yれる。従って、第1の実施例と同様な効
果を奏する。
FIG. 2 is a block 1Δ showing a third embodiment of the present invention. In this case, the pulse generator 2 is driven by a trigger pulse generator 9 that generates a trigger pulse at a constant period T. Then, reflected waves from objects buried in the ground are input to the receiver 5 via the transducer 4 and the directional coupling circuit 3. The encoder 14 has a received wave storage function and a multiplication function, and uses N received signals for one period T output from the receiver 5, and delays each by a fixed code interval Tc. The resulting signals are converted into polarities corresponding to the respective codes of the N code sequences, and the polarities are added and output as one signal. Then, by correlating the output signals of the encoder 14 with the correlator 6, buried objects can be detected in the same manner as in the first embodiment described above. In this case as well, the amplitude of the received pulse is multiplied by N by the correlation process, and the noise is completely randomized. Therefore, the same effects as the first embodiment are achieved.

第4の実施例では、第2図の受信器5に、トリガパルス
発生器9から前記一定周期Tのトリガパルスに同期した
タイミング信号を供給し、受信器5は受信信号を上記一
定周期Tよりやや長い周期T+α(αは例えばT151
2)でサンプリングし、サンプリング値を保持出力する
ように構成する。この場合、受信器5の出力信号は1周
期T分の信号が例えば512Tの時間幅に拡大之れだ信
号として出力される。すなわち、周波数変換される。そ
して符号化器14は受信器5の出力信号を例えば512
Tcの符号間隔で符号化し、符号化器14の出力は相関
器6によって相関処理される。
In the fourth embodiment, a timing signal synchronized with the trigger pulse of the constant period T is supplied from the trigger pulse generator 9 to the receiver 5 of FIG. A rather long period T + α (α is T151, for example)
2), and the sampled value is held and output. In this case, the output signal of the receiver 5 is a signal for one cycle T which is expanded to a time width of 512T, for example. That is, the frequency is converted. Then, the encoder 14 converts the output signal of the receiver 5 into 512
Encoding is performed at a code interval of Tc, and the output of the encoder 14 is subjected to correlation processing by a correlator 6.

発明の効果 以−1,のように、本発明においては、送信パルスの反
射波を受信して地中埋設物を検出するための4i5 ’
3収集過程において、送信側または受信側においてパル
ス信号を符号系列化し、符号系列化された受信信号を相
関処理する相関器を備えて、該相関器の処理結果によっ
て地下埋設物を検出するように構成したから、パルス圧
縮によりパルス振幅を大きくし、信号対雑音比を改善す
ることができる。すなわち、受信雑音による探査精度の
低下を防IIニすることができるという効果がある。ま
た、相関処理によって振幅値が増大するから、より大S
なピーク電力を持つ送信器で探査したことと等価となり
、小さい送信ピーク電力でも探査距離を増大Sせること
ができる。
Effects of the Invention As shown in 1, in the present invention, the 4i5' method for detecting underground objects by receiving reflected waves of transmitted pulses
3. In the acquisition process, the pulse signal is converted into a code sequence on the transmitting side or the receiving side, and a correlator is provided to perform correlation processing on the code sequenced received signal, and underground objects are detected based on the processing result of the correlator. With this configuration, pulse compression can increase the pulse amplitude and improve the signal-to-noise ratio. In other words, there is an effect that a decrease in search accuracy due to reception noise can be prevented. Also, since the amplitude value increases due to correlation processing, the larger S
This is equivalent to searching using a transmitter with a small peak power, and the search distance can be increased even with a small transmission peak power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1および第2の実施例を示すブロッ
ク図、第2図は本発明の第3および第4の実施例を示す
ブロック図である。 図において、1:′ti号化耐化系列発生器:パルス発
生器、3:力面P1結合回路、4ニドランスデユー・す
、5:受イ4.器、6:相関器、7:表示装置、8:蓄
積装置、9ニドリ力パルス発生器、14:符号化器。 出―人 11本市信電話公社 代理人 弁理士 住Ell俊宗 オ・1図
FIG. 1 is a block diagram showing first and second embodiments of the invention, and FIG. 2 is a block diagram showing third and fourth embodiments of the invention. In the figure, 1: 'TI type resistance series generator: pulse generator, 3: Force plane P1 coupling circuit, 4 Nidorance duplex, 5: Receiver 4. 6: correlator, 7: display device, 8: storage device, 9 pulse generator, 14: encoder. Person 11 Representative of City Telephone and Telephone Public Corporation Patent attorney Resident Ell Toshimuneo 1 Figure

Claims (1)

【特許請求の範囲】 (1) パルス発生器の出力を地中に放射し地下埋設物
で反射されたパルスを受信し、受信パルスのII!f間
遅れによって地下埋設物の深さを検出する地「埋設物探
査装置において、一定の符号間隔で符号化された一定長
の符号系列によって前記パルス発生器を駆動する符号化
系列発生器と、受信信号の相関処理を行なう相関器とを
備えて、該相関器の処理結果によって地下埋設物を探査
することを特徴とする地下埋設物探査装置。 (2、特許請求の範囲第1項記載の地下埋設物探査装置
において、受信信号を前記一定長の符号系列の繰返し周
期よりやや長い時間間隔でサンプルすることにより前記
繰返し周期内の受信信号を該繰返し周期の整数倍の幅に
拡大して出力する受信器を備えて、前記相関器は上記受
信器の出力信号の相関処理を行なうことを特徴とするも
の。 (3) パルス発生器の出力を地中に放射し地下埋設物
で反射されたパルスを受信し、受信パルスの時間遅れに
よって地下埋設物の深さを検出する地下埋設物探査装置
において、前記パルス発生器を一定周期で駆動するため
のトリガパルス発生器と、受信信号を所定の符号間隔ず
つ遅延させた信号を一定長の符号系列の各符号に応して
それぞれ極性変換して出力する符号化器と、該符号化器
の出力信号の自己相関処理を行なう相関器とを備えて、
該相関器の出力によって地下埋設物を探査することを特
徴とする地下埋設物探査装置。 (4) 特許請求の範囲第3項記載の地下埋設物探査装
置において、受信信号を前記一定周期よりやや長い時間
間隔ごとにサンプルすることにより前記一定周期内の受
信信号を前記一定周期の整数倍の幅に拡大して出力する
受信器を備えて、前記符号化器は−1−記受信器の出力
偶りを符号化することを特徴とするもの。
[Claims] (1) The output of the pulse generator is emitted into the ground, the pulse reflected by underground objects is received, and the received pulse II! A coded sequence generator that drives the pulse generator with a code sequence of a constant length encoded at a constant code interval in a buried object exploration device that detects the depth of an underground buried object by a delay of f time; An underground buried object exploration device characterized by comprising a correlator that performs correlation processing on received signals, and searches for underground objects based on the processing results of the correlator. In an underground buried object exploration device, the received signal is sampled at a time interval slightly longer than the repetition period of the code sequence of the certain length, and the received signal within the repetition period is expanded to a width that is an integral multiple of the repetition period and output. The correlator is characterized in that the correlator performs correlation processing on the output signal of the receiver. (3) The output of the pulse generator is radiated underground and reflected by underground objects. In an underground buried object exploration device that receives pulses and detects the depth of underground objects based on the time delay of the received pulses, the device includes a trigger pulse generator for driving the pulse generator at a constant cycle, and a trigger pulse generator for driving the pulse generator at a predetermined period. It includes an encoder that converts the polarity of a signal delayed by a code interval and outputs the signal in accordance with each code of a code sequence of a fixed length, and a correlator that performs autocorrelation processing on the output signal of the encoder. hand,
An underground buried object exploration device characterized in that underground buried objects are explored using the output of the correlator. (4) In the underground buried object exploration device according to claim 3, by sampling the received signal at time intervals slightly longer than the certain period, the received signal within the certain period is an integer multiple of the certain period. The encoder is characterized in that the encoder encodes the output even of the −1−th receiver.
JP59016608A 1984-02-01 1984-02-01 Survey device for underground buried body Pending JPS60173486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016608A JPS60173486A (en) 1984-02-01 1984-02-01 Survey device for underground buried body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016608A JPS60173486A (en) 1984-02-01 1984-02-01 Survey device for underground buried body

Publications (1)

Publication Number Publication Date
JPS60173486A true JPS60173486A (en) 1985-09-06

Family

ID=11921020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016608A Pending JPS60173486A (en) 1984-02-01 1984-02-01 Survey device for underground buried body

Country Status (1)

Country Link
JP (1) JPS60173486A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362992A2 (en) * 1988-10-06 1990-04-11 Nkk Corporation Distance measuring method and apparatus therefor
JPH0385519A (en) * 1989-08-30 1991-04-10 Nitto Denko Corp Laminated phase difference plate and liquid crystal panel
JP2010071861A (en) * 2008-09-19 2010-04-02 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for detection of position information
JP2016090583A (en) * 2014-11-05 2016-05-23 ピエゾテック・エルエルシー High frequency inspection of downhole environment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362992A2 (en) * 1988-10-06 1990-04-11 Nkk Corporation Distance measuring method and apparatus therefor
JPH0385519A (en) * 1989-08-30 1991-04-10 Nitto Denko Corp Laminated phase difference plate and liquid crystal panel
JP2010071861A (en) * 2008-09-19 2010-04-02 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for detection of position information
JP2016090583A (en) * 2014-11-05 2016-05-23 ピエゾテック・エルエルシー High frequency inspection of downhole environment

Similar Documents

Publication Publication Date Title
JP5560711B2 (en) Optimal pseudo-random sequence determination method, position detection system, position detection method, transmitter and receiver
CN103616696B (en) A kind of method of laser imaging radar device and range finding thereof
EP1252535B1 (en) Optical distance measurement
EP1540365B1 (en) Underwater location apparatus
CN103430043B (en) Variable length ranging and direction-finding signals constructed from bandlimited kernels and sparse spreading sequences
CN1041654A (en) Distance-finding method and device
JPH07140233A (en) Radar system using disorderly code
CN106371084A (en) Detection method for electron density of ionization layer based on radar echoes
Diaz et al. Using Golay complementary sequences for multi-mode ultrasonic operation
WO1992001957A1 (en) Method and apparatus for underground radar tomography
CN1333555C (en) Method for testing network transmission line using time-domain signal
JPH0781995B2 (en) Ultrasonic probe and ultrasonic flaw detector
JPS60173486A (en) Survey device for underground buried body
Hernández et al. Reduction of blind zone in ultrasonic transmitter/receiver transducers
JPWO2010010832A1 (en) Position detection system, transmission device, reception device, position detection method, position detection program
CN105572674B (en) Active target detection unit and method based on GOLD sequences
JPH02165086A (en) Radar
Nakahira et al. The use of binary coded frequency shift keyed signals for multiple user sonar ranging
US3487409A (en) Reflected-beam system
RU102270U1 (en) PARAMETRIC ECHO Sounder
JPS6361976A (en) Ultrasonic switch
GB2420238A (en) Optical correlation measurement for automotive applications
JP3020150B2 (en) Spread spectrum radar equipment
JPH0227286A (en) Sampling method and apparatus of underground radar
RU7211U1 (en) SIGNAL DELAY MEASUREMENT DEVICE