JPH0227286A - Sampling method and apparatus of underground radar - Google Patents

Sampling method and apparatus of underground radar

Info

Publication number
JPH0227286A
JPH0227286A JP63177079A JP17707988A JPH0227286A JP H0227286 A JPH0227286 A JP H0227286A JP 63177079 A JP63177079 A JP 63177079A JP 17707988 A JP17707988 A JP 17707988A JP H0227286 A JPH0227286 A JP H0227286A
Authority
JP
Japan
Prior art keywords
sampling
frequency
signal
underground
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63177079A
Other languages
Japanese (ja)
Inventor
Takeshi Araya
猛 荒谷
Tomonori Fukumoto
知典 福本
Hiroshi Sato
博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information Systems Ltd
Original Assignee
Hitachi Information Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information Systems Ltd filed Critical Hitachi Information Systems Ltd
Priority to JP63177079A priority Critical patent/JPH0227286A/en
Publication of JPH0227286A publication Critical patent/JPH0227286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To know searching depth and to enhance resolving power by making a change of a sampling cycle proportional to a change of transmission frequency so that a sampling receiving cycle is raised at the time of the searching of a shallow position but lowered at the time of the searching of a deep position. CONSTITUTION:A high frequency generator 2 generates a high frequency signal in synchronous relation to the reference pulse Pr generated by a reference pulse generator 1 and said signal is subjected to non-equilibrium/equilibrium conversion by a balancing transformer 13 to emit a radio wave into the ground from a transmission antenna 5. The high frequency signal generated by the generator 2 is cyclically changed on the basis of the voltage from a delay voltage generator 10 and the reflected wave from the ground is received by a receiving antenna 5 to obtain a receiving signal Sr. This signal Sr is subjected to non-equilibrium/equilibrium conversion by a balancing transformer 6 to be sampled by a sampling circuit 7. The receiving signal SS becoming a pulse like state is held by a holding circuit 8 to obtain an output signal SH. By this constitution, the difference in depth becomes that in the delay quantity of a pulse and delay quantity is measured by a time difference measuring circuit 12 to make it possible to know the depth up to a reflecting body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電波を用いて地中の埋設物等を探査する地中レ
ーダのサンプリング方法とその装置に係り、特に探査深
度の向上と合せて分解能の向上が計れる地中レーダのサ
ンプリング方法とその装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sampling method and device for an underground radar that uses radio waves to search for underground objects, etc. This article relates to a ground penetrating radar sampling method and device that can improve resolution.

〔従来の技術〕[Conventional technology]

従来の地中レーダはアンテナから目標までの距離が非常
に短いため、送信信号は数+1秒程度の幅をもつパルス
またはモノサイクル波等が用いられる。また1反射波の
存在時間が非常に短いため、1回の送信毎に受信波の一
部をサンプリングし、送信のたびにサンプリング位置を
移動させ何回もの送受信を繰り返すことにより、受信波
を再生していた。この種装置として関連するものは(例
えば、特開昭61−11682号公報等が挙げられる。
In conventional underground radar, the distance from the antenna to the target is very short, so the transmission signal uses a pulse or monocycle wave with a width of about several +1 seconds. In addition, since the existence time of one reflected wave is very short, the received wave is regenerated by sampling a part of the received wave each time it is transmitted, moving the sampling position each time it is transmitted, and repeating the transmission and reception many times. Was. Related devices of this type include, for example, Japanese Unexamined Patent Publication No. 11682/1982.

)〔発明が解決しようとする課題〕 上記従来技術に用いられているモノサイクルの送信波に
より探査深度を深くするためには、送信波の周波数を低
くしなければならない、しかし周波数を低くすると、送
信波の幅が長くなり、分解能が低下してしまう、また、
送信波の周波数を高くして探査深度を深くするには送信
電力を大きくすれば良いが、受信のダイナミックレンジ
は限られているため、浅い深度からの大きい反射電力を
持つ反射波は飽和してしまい目標を識別することが出来
なくなってしまう。
) [Problem to be solved by the invention] In order to deepen the exploration depth using the monocycle transmission wave used in the above-mentioned prior art, the frequency of the transmission wave must be lowered. However, when the frequency is lowered, The width of the transmitted wave becomes longer and the resolution decreases, and
In order to increase the frequency of the transmitted wave and deepen the exploration depth, it is possible to increase the transmitted power, but since the dynamic range of reception is limited, the reflected waves with high reflected power from shallow depths are saturated. As a result, it becomes impossible to identify the target.

本発明は探査深度の向上と合せて分解能の向上を計り得
る地中レーザのサンプリング方法とその装置を提供する
ことを目的とするものである。
An object of the present invention is to provide an underground laser sampling method and apparatus that can improve the resolution as well as the exploration depth.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は1つの探査位置において、一定の送信周期を
もつ送信波の周波数を、段階的または連続的なチャープ
波等を用いて変化させ、地中へ向けて放射する。地中か
らの反射波のサンプリングは、送信周期ごとに1回のサ
ンプリングを行ない、送信周波数が高い時は、浅い深度
に相当する部分を短いサンプル間隔でサンプルを行ない
、送信周波数が低い時は、深い浅度に相当する部分を長
いサンプル間隔でサンプルを行なう、このサンプル間隔
の変化を送信周波数の変化に比例させ、サンプル後の出
力信号周波数を一定周波数に変換することにより、達成
される。
The above purpose is to change the frequency of a transmission wave with a constant transmission period using a stepwise or continuous chirp wave at one exploration position, and radiate it underground. Sampling of reflected waves from underground is performed once every transmission cycle. When the transmission frequency is high, samples corresponding to shallow depths are sampled at short sampling intervals, and when the transmission frequency is low, This is achieved by sampling portions corresponding to deep and shallow depths at long sampling intervals, making changes in the sampling intervals proportional to changes in the transmission frequency, and converting the output signal frequency after sampling to a constant frequency.

〔作用〕[Effect]

本発明の地中レーダのサンプリング方法では、1つの探
査位置ごとに高い周波数から低い周波数の送受波を放射
し、高い周波数から低い周波数への変化に合わせ、反射
波の浅い深度から深い深度部分へサンプル位置を移動さ
せることにより浅い深度はど分解能が向上し、高い周波
数の送信波では減衰して反射波が得られなくても、低い
周波数での反射波が得られ、探査深度も向上する。
In the underground radar sampling method of the present invention, transmitting and receiving waves from a high frequency to a low frequency are emitted for each exploration position, and as the frequency changes from high to low, the reflected waves move from shallow to deep depths. By moving the sample position, the resolution at shallower depths is improved, and even if the transmitted waves at high frequencies are attenuated and no reflected waves can be obtained, reflected waves at low frequencies can be obtained, and the exploration depth can also be improved.

受信される反射波は、時間と共に周波数が変化するが、
受信波のサンプリング間隔を、サンプル時の送信周波数
の変化に比例して変化することにより1周波数変化は1
つの周波数に圧縮され、低周波信号となる。これにより
サンプリング後は特別な回路を付加する必要がなく、容
易に探査深度の向上した地中レーダを提供することがで
きる。
The frequency of the received reflected waves changes with time, but
By changing the sampling interval of the received wave in proportion to the change in the transmitting frequency at the time of sampling, one frequency change is 1
The signal is compressed to one frequency and becomes a low-frequency signal. As a result, there is no need to add a special circuit after sampling, and it is possible to easily provide an underground radar with improved exploration depth.

〔実施例〕〔Example〕

以下本発明の一実施例を添付図面を用いて説明図する。 An embodiment of the present invention will be explained below with reference to the accompanying drawings.

第1図は本実施例の地中レーダのブロック図である。こ
の地中レーダは第1図に示すように、基準パルス発生器
1.高周波発生器2.バラントランス3、送信アンテナ
4、受信アンテナ5、バラントランス6、サンプル回路
7.ホールド回路8、高速鋸歯状波発生器9、遅延電圧
発生器10、およびサンプルパルス発生器11とで構成
されている。
FIG. 1 is a block diagram of the underground radar of this embodiment. As shown in FIG. 1, this underground radar includes a reference pulse generator 1. High frequency generator 2. Balun transformer 3, transmitting antenna 4, receiving antenna 5, balun transformer 6, sample circuit 7. It consists of a hold circuit 8, a high speed sawtooth wave generator 9, a delay voltage generator 10, and a sample pulse generator 11.

次にこの各構成の個々の動作について説明する。Next, the individual operations of each configuration will be explained.

基準パルス発生器1で、周期Trの基準パルスPrを出
力し、それに同期して高周波発生器2が周期Trの高周
波信号を発生し、バラントランス3により不平衡−平衡
変換され、送信アンテナ4から地中へ電波を放射する。
The reference pulse generator 1 outputs a reference pulse Pr with a period Tr, and in synchronization with it, the high frequency generator 2 generates a high frequency signal with a period Tr, which is unbalanced-balanced converted by the balun transformer 3 and sent from the transmitting antenna 4. Emit radio waves underground.

高周波発生器2で発生する高周波信号の周波数は、遅延
電圧発生器10からの電圧により周期的に変化する。地
中からの反射波は受信アンテナ5で受信され、受信信号
Srを得る。受信信号Srはバラントランス6により平
衡−不平衡変換され、サンプル回路7でサンプリングさ
れる。サンプリングされパルス状となった受信信号Ss
1は、ホールド回路8によりホールドされ、出力信号S
、を得る。
The frequency of the high frequency signal generated by the high frequency generator 2 changes periodically depending on the voltage from the delayed voltage generator 10. The reflected wave from underground is received by the receiving antenna 5, and a received signal Sr is obtained. The received signal Sr is subjected to balanced-unbalanced conversion by a balun transformer 6 and sampled by a sampling circuit 7. Received signal Ss sampled and pulsed
1 is held by the hold circuit 8, and the output signal S
, get.

送信に用いる高周波信号は、モノサイクル波又はチャー
プ波が考えられるが、本実施例ではモノサイクル波を用
いた場合を示す。
The high frequency signal used for transmission may be a monocycle wave or a chirp wave, but this embodiment shows a case where a monocycle wave is used.

送信波は、基準パルスに同期した一定周期で発生し、遅
延電圧発生器からの電圧により周波数が段階的又は連続
的に変化するが、例として第2図に示す如く変化するも
のとする。このような周波数変化の送信波を地中へ向け
放射し、送信周波数がflの時、第3図に示す受信波S
r工のごとく送信後t1の時間に現われた部分を短いサ
ンプル間隔Δt1でサンプルされ、t、の時間で受信ア
ンテナ5へ達した受信信号はサンプルされない、送信周
波数がf、での受信波Sr、は、tLの時間で受信アン
テナ5へ達した受信信号はサンプルされず、時間t、で
達した受信波を長いサンプル間隔でサンプルする。この
サンプルは、1回の送信ごとに1回のサンプルを行ない
サンプル位置が送信周波数がflの時Δt1ずつ遅れて
行き、送信周波数がf、に達した時はΔt、ずつ遅れ、
300回の送信で1つの受信波のサンプルを完了する。
The transmitted wave is generated at a constant period in synchronization with the reference pulse, and the frequency changes stepwise or continuously depending on the voltage from the delay voltage generator. As an example, assume that the frequency changes as shown in FIG. 2. When a transmission wave with such a frequency change is radiated underground and the transmission frequency is fl, the reception wave S shown in Fig. 3 is generated.
As shown in step R, the portion appearing at time t1 after transmission is sampled at a short sampling interval Δt1, and the received signal that reaches the receiving antenna 5 at time t is not sampled.The received wave Sr with a transmission frequency f, The received signal that reaches the receiving antenna 5 at time tL is not sampled, but the received wave that arrives at time t is sampled at long sampling intervals. This sample is sampled once for each transmission, and when the transmission frequency is fl, the sample position is delayed by Δt1, and when the transmission frequency reaches f, it is delayed by Δt,
One received wave sample is completed with 300 transmissions.

第4図に基準パルスPrのタイミングとホールド回路8
の出力信号sHの例を示す。
Figure 4 shows the timing of the reference pulse Pr and the hold circuit 8.
An example of the output signal sH of is shown.

周波数とサンプル間隔の関係は第3図のサンプル例に示
すごとく、サンプル時の送信周波数における1サイクル
あたりのサンプル数が同じになる様に設定することによ
り、送信周波数の変化は、サンプリング後は第4図に示
すように同一周波数に圧縮され、周波数変換される。
The relationship between frequency and sample interval is as shown in the sample example in Figure 3. By setting the number of samples per cycle at the transmission frequency at the time of sampling to be the same, changes in the transmission frequency will be As shown in Figure 4, the signals are compressed to the same frequency and frequency converted.

サンプルパルスPsの発生は、遅延電圧発生器10から
の電圧と、高速鋸歯状波発生器9からの電圧との交点で
パルスを発生するコンパレータで構成されたサンプルパ
ルス発生器11により行なわれる。遅延電圧発生器10
からのサンプル遅延電圧は、第5図に示す波形例である
。この周期T0は1つの探査位置の受信波サンプリング
が行なわれる時間である。サンプル遅延電圧変化は基準
パルスPrに同期し、基準パルスPrのn回をもって1
周期となり、T、:nTrの関係となる。高速鋸歯状波
も基準パルスPrと同期し、サンプル遅延電圧との交点
でサンプルパルス発生1111がサンプルパルスPsを
発生する。遅延パルス電圧は送信周波数がf1〜f、へ
低くなるにしたがって変化量の傾きが大きくなり、サン
プルパルスPsの基準パルスの遅延時間tdnの変化量
であるΔt=tdn+1−tdnも大きくなる。
The generation of the sample pulse Ps is performed by a sample pulse generator 11 consisting of a comparator that generates a pulse at the intersection of the voltage from the delayed voltage generator 10 and the voltage from the fast sawtooth generator 9. Delay voltage generator 10
The sample delayed voltage from is an example waveform shown in FIG. This period T0 is the time during which received wave sampling at one exploration position is performed. The sample delay voltage change is synchronized with the reference pulse Pr, and becomes 1 after n times of the reference pulse Pr.
The period is T, :nTr. The fast sawtooth wave is also synchronized with the reference pulse Pr, and at the intersection with the sample delay voltage, the sample pulse generator 1111 generates the sample pulse Ps. The slope of the amount of change in the delayed pulse voltage increases as the transmission frequency decreases from f1 to f, and the amount of change in the delay time tdn of the reference pulse of the sample pulse Ps, Δt=tdn+1−tdn, also increases.

各送信周波数f□〜f、における受信波Srをサンプリ
ングにより周波数変換するためには、各周波数における
サンプル遅延電圧の傾きにより、各サンプル間隔Δtを
、サンプル時の送信周波数1サイクルあたりの時間に比
例させる。
In order to frequency convert the received wave Sr at each transmission frequency f□~f by sampling, each sample interval Δt is proportional to the time per cycle of the transmission frequency at the time of sampling, depending on the slope of the sample delay voltage at each frequency. let

第6図において、送信周波数がf工〜f3へ変化した時
における地中0.25++からの反射波P□、地中0.
5mからの反射波Pat地中L5mからの反射波P3、
地中4.5mからの反射波P4を例とし、ホールド回路
8からの出力信号S、は同図のように同一周波数に変換
され、P 1′P 2’ P 3’ P 4′なる出力
を得る。
In FIG. 6, reflected waves P□ from underground 0.25++ and underground 0.25++ when the transmission frequency changes from f to f3.
Reflected wave from 5m Pat Reflected wave from underground L5m P3,
Taking the reflected wave P4 from 4.5m underground as an example, the output signal S from the hold circuit 8 is converted to the same frequency as shown in the figure, and the output is P 1'P 2' P 3' P 4' obtain.

以上のように深度の違いが、各パルスP□′〜P、′の
遅延量の違いt□T tut tel t4となって、
時間差測定回路12により遅延量tを測ることにより、
反射物体までの深度を知ることができる。
As mentioned above, the difference in depth becomes the difference in the amount of delay of each pulse P□'~P,' t□T tut tel t4,
By measuring the delay amount t using the time difference measuring circuit 12,
You can know the depth to the reflecting object.

〔発明の効果〕〔Effect of the invention〕

請求項1および2記載の本発明によれば、1つの位置あ
たりの探査で送信周波数を変化させても、サンプル受信
後は同一周波数に周波数変換できる。
According to the present invention as described in claims 1 and 2, even if the transmission frequency is changed during the search for one position, the frequency can be converted to the same frequency after receiving the sample.

このため、高い周波数を送信した時に、その周波数で得
られる探査深度まで分解能よく探査でき、高い周波数で
は探査できない深度に対しては、低い周波数の送信時に
サンプルすることにより探査が可能となり、探査深度を
深くできる。1つの受信波での全サンプリング数も必要
以上のサンプリングを行なわず、効率の良いデータ取得
が行なえる。さらに、サンプリング後の信号周波数が一
定であるため、信号処理回路が安価で容易に構成できる
Therefore, when transmitting a high frequency, it is possible to search with good resolution up to the depth of exploration obtained with that frequency, and depths that cannot be probed with a high frequency can be probed by sampling when transmitting a low frequency, and the depth of exploration can be can be deepened. The total number of samples in one received wave is not more than necessary, and data can be acquired efficiently. Furthermore, since the signal frequency after sampling is constant, the signal processing circuit can be constructed easily and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図は実施例に用いた送信周波数の変化を示すグラフ
、第3図はサンプリングによる周波数変換の動作を示す
波形図、第4図はホールド後の出力信号の波形例を示す
図、第5図はサンプルパルス発生の動作と、ホールド後
の出力信号を得るまでの動作を示した波形図、第6図は
受信波と出力信号の例を示す波形図である。 1・・・基準パルス発生器、2・・・高周波発生器、3
・・バラントランス、4・・・送信アンテナ、訃・・受
信アンテナ、6・・・バラントランス、7・・・サンプ
ル回路、8・・・ホールド回路、9・・・高速鋸歯状波
発生器、10・・・遅延電圧発生器、11・・・サンプ
ルパルス発生器、12・・・時間差測定回路。 特許出願人  日立湘南電子株式会社 代理人弁理士  秋  本  正  実(外1名) 纂 図 纂 図 ! 十 ご
FIG. 1 is a block diagram showing one embodiment of the present invention. Fig. 2 is a graph showing changes in the transmission frequency used in the example, Fig. 3 is a waveform diagram showing the operation of frequency conversion by sampling, Fig. 4 is a diagram showing an example of the waveform of the output signal after holding, and Fig. 5 The figure is a waveform diagram showing the operation of generating a sample pulse and the operation up to obtaining an output signal after holding, and FIG. 6 is a waveform diagram showing an example of a received wave and an output signal. 1... Reference pulse generator, 2... High frequency generator, 3
... Balun transformer, 4... Transmitting antenna, - Receiving antenna, 6... Balun transformer, 7... Sample circuit, 8... Hold circuit, 9... High speed sawtooth wave generator, 10... Delay voltage generator, 11... Sample pulse generator, 12... Time difference measuring circuit. Patent applicant: Hitachi Shonan Electronics Co., Ltd. Representative Patent Attorney: Masami Akimoto (1 other person) Compilation of the summary! Jugo

Claims (1)

【特許請求の範囲】 1、マイクロ波を地中へ向け送信し、地中からの反射波
をサンプリング受信し、地中の埋設物や地中の状態を映
像化する地中レーダにおいて、浅い位置の探査を行なう
時には送信周波数を高くして、サンプリング受信のサン
プリング周期を上げ、深い位置の探査を行なう時には送
信周波数を低くしてサンプリング受信のサンプリング周
期を下げ、このサンプリング周期の変化を送信周波数の
変化と比例させることにより、サンプリング受信の出力
は送信周波数が変化しても一定の周波数となるようにし
た地中レーダのサンプリング方法。 2、基準パルスを出力する基準パルス発生器と、前記基
準パルスに同期して高周波信号を発生する高周波発生器
と、前記高周波信号を地中に放射する送信アンテナと、
前記高周波信号の周波数を周期的に変化させる遅延電圧
発生器と、地中からの反射波を受信する受信アンテナと
、前記アンテナで受信された受信信号をサンプリングす
るサンプリング回路と、前記サンプリング回路の出力を
ホールドするホールド回路と前記サンプリング回路にサ
ンプリング信号を供給する高周波鋸歯状波発生回路とサ
ンプルパルス発生回路と、前記基準パルス発生器の基準
パルスとホールド回路からの出力信号との遅延量の違い
を表示する時間差測定回路とを具備してなる地中レーダ
のサンプリング装置。
[Claims] 1. In an underground radar that transmits microwaves underground, samples and receives reflected waves from underground, and visualizes buried objects and underground conditions, When searching for a deep location, the transmitting frequency is raised to increase the sampling period for sampling reception, and when searching for a deep location, the transmitting frequency is lowered to lower the sampling period for sampling reception, and this change in sampling period is reflected in the transmission frequency. A ground-penetrating radar sampling method in which the sampling reception output remains at a constant frequency even if the transmission frequency changes by making it proportional to the change in frequency. 2. a reference pulse generator that outputs a reference pulse, a high frequency generator that generates a high frequency signal in synchronization with the reference pulse, and a transmitting antenna that radiates the high frequency signal underground;
a delay voltage generator that periodically changes the frequency of the high-frequency signal; a receiving antenna that receives reflected waves from underground; a sampling circuit that samples the received signal received by the antenna; and an output of the sampling circuit. The difference in the amount of delay between the reference pulse of the reference pulse generator and the output signal from the hold circuit is determined by the high-frequency sawtooth wave generation circuit and sample pulse generation circuit that supply sampling signals to the hold circuit and the sampling circuit. An underground radar sampling device comprising a time difference measuring circuit for displaying.
JP63177079A 1988-07-18 1988-07-18 Sampling method and apparatus of underground radar Pending JPH0227286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63177079A JPH0227286A (en) 1988-07-18 1988-07-18 Sampling method and apparatus of underground radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63177079A JPH0227286A (en) 1988-07-18 1988-07-18 Sampling method and apparatus of underground radar

Publications (1)

Publication Number Publication Date
JPH0227286A true JPH0227286A (en) 1990-01-30

Family

ID=16024759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63177079A Pending JPH0227286A (en) 1988-07-18 1988-07-18 Sampling method and apparatus of underground radar

Country Status (1)

Country Link
JP (1) JPH0227286A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180938A (en) * 1992-01-07 1993-07-23 Japan Radio Co Ltd Buried object searching device
JP2020507750A (en) * 2017-01-27 2020-03-12 マサチューセッツ インスティテュート オブ テクノロジー Vehicle location method and system using surface penetrating radar
WO2023100954A1 (en) * 2021-12-02 2023-06-08 住友金属鉱山株式会社 Method for measuring state of substance and device for measuring state of substance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180938A (en) * 1992-01-07 1993-07-23 Japan Radio Co Ltd Buried object searching device
JP2020507750A (en) * 2017-01-27 2020-03-12 マサチューセッツ インスティテュート オブ テクノロジー Vehicle location method and system using surface penetrating radar
US11402493B2 (en) 2017-01-27 2022-08-02 Massachusetts Institute Of Technology Determining surface characteristics
WO2023100954A1 (en) * 2021-12-02 2023-06-08 住友金属鉱山株式会社 Method for measuring state of substance and device for measuring state of substance

Similar Documents

Publication Publication Date Title
US5075863A (en) Distance measuring method and apparatus therefor
KR930001549B1 (en) Distance measuring method and apparatus
US5323114A (en) Method and apparatus for obtaining sectional information of the underground by measuring time differences and strength of electromagnetic signals
CN1055392A (en) In-furnace slag level measuring apparatus
CN109633758B (en) Multi-frequency composite ground penetrating radar system
JP4704968B2 (en) Correlation detector
SE9300689D0 (en) RADAR APPARATUS AND METHOD
JPH0616080B2 (en) Distance measuring device
JPH0227286A (en) Sampling method and apparatus of underground radar
JP2520042B2 (en) Underground radar tomography device
GB2012422A (en) Apparatus and Method for Determining Velocity of Acoustic Waves in Earth Formations
JPS5892877A (en) Ultrasonic distance measuring device
JP3558492B2 (en) Apparatus and method for measuring dry density of soil
JPS62175685A (en) Underground buried object probe
JPH0471190B2 (en)
JPS63120271A (en) Radar-type underground investigation apparatus
JPS60173486A (en) Survey device for underground buried body
JPH01280279A (en) Underground survey device
JP2512339B2 (en) Underground radar tomography device
JP3558491B2 (en) Apparatus and method for transmitting and receiving pulsed signals into the ground
JPH058992B2 (en)
Tomizawa et al. Coded pulse signal subsurface radar
RU7514U1 (en) SIGNAL DELAY MEASUREMENT DEVICE
JPS59144481U (en) radar device
JPH05288834A (en) Variable-cycle correlation-type detection apparatus and variable-cycle correlation-type signal detection apparatus