JP3558492B2 - Apparatus and method for measuring dry density of soil - Google Patents

Apparatus and method for measuring dry density of soil Download PDF

Info

Publication number
JP3558492B2
JP3558492B2 JP14467297A JP14467297A JP3558492B2 JP 3558492 B2 JP3558492 B2 JP 3558492B2 JP 14467297 A JP14467297 A JP 14467297A JP 14467297 A JP14467297 A JP 14467297A JP 3558492 B2 JP3558492 B2 JP 3558492B2
Authority
JP
Japan
Prior art keywords
electric signal
ground
transmission
soil
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14467297A
Other languages
Japanese (ja)
Other versions
JPH10318942A (en
Inventor
俊光 野津
Original Assignee
株式会社光電製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社光電製作所 filed Critical 株式会社光電製作所
Priority to JP14467297A priority Critical patent/JP3558492B2/en
Publication of JPH10318942A publication Critical patent/JPH10318942A/en
Application granted granted Critical
Publication of JP3558492B2 publication Critical patent/JP3558492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、盛土の締め固め具合を知るために、この盛土の内部の電波の伝播速度を検出し、この検出した伝播速度と別途測定あるいは推定した土の含水率とからこの盛土の乾燥密度を測定する測定装置及び測定方法に関するものであり、特に、受信電気信号の受信時点の検出の高精度化により計測精度の向上を図った土の乾燥密度の測定装置及び測定方法に関するものである。
【0002】
【従来の技術】
従来、本出願人が先に出願した「土の締め固め測定装置」と題する特許出願(特開平2ー196960号)などに開示されているように、盛土の密度、従って締め固め具合を測定する測定装置が知られている。この測定装置は、盛土の比誘電率がその含水率(水分含有率)と密度の増大につれてが増加し、この結果、電波の伝播速度が盛土の含水率と密度の増大につれて低下するという原理を利用したものである。
【0003】
この測定装置によれば、測定しようとする盛土の内部にパルス状の電波が伝播せしめられ、送信時点と受信時点との時間差(伝播所要時間)からこの盛土の内部の電波の伝播速度が測定され、この伝播速度と別途測定ないしは推定されたこの盛土の含水率とからこの盛土の乾燥密度や締め固め具合が測定される。
【0004】
この種の地中にパルス状の電気信号を送受信する測定装置船舶などに設置されるレーダ装置などと根本的になる次のような特徴を有する。第1に、地中を伝播する電波が1メートル当たり10dBもの大きな減衰を受けるため、測定範囲をあまり長くはできず、高々数メートルに限定されるという点である。第2に、地中を伝播する電波は、周波数成分によって伝播経路や速度が異なると見られる点である。
【0005】
第1の特徴である測定可能範囲が狭いという点から、電波の送信から受信までの時間的間隔が極めて短くなり、例えば、地中の比誘電率が16程度であれば、1メートルの伝播所要時間はほぼ13nsec となる。このように、この種の測定装置では、送信から受信までの時間間隔が短くなるため、必要な分解能を確保するうえで、送信対象の孤立パルスは半値幅1nsec 程度の極めて鋭いものが必要になる。
【0006】
上述のような半値幅が1nsec 程度の鋭い孤立パルスは、直流から最高2GHz 程度にまでにわたる極めて広範囲の周波数成分が含まれる。ところで、本出願人が先に出願した「土の締め固め度の測定方法及び装置」と題する特許出願(特開平9ー89807号公報)によれば、周波数成分が高くなるにつれて伝播経路の地表からの侵入深さが減少するという表皮効果と類似の現象が開示されている。
【0007】
すなわち、図3に例示するように、地表Gにほぼ平行に配置された送信アンテナTXと、受信アンテナRXとの間に地表近傍の土中を通して形成される電波の伝播経路は、高周波成分、低周波成分及びこれらの中間の周波数成分のそれぞれについて、fh、fl及びfmのように深さと経路長が異なる。このように、周波数成分によって伝播経路の土中への侵入深さ、従ってその長さが異なるため、図2に例示するように、受信信号の波形(B)は、送信信号の波形(A)に含まれる各種の周波数成分が異なる遅延時間のもとに合成されることにより大きな歪みが生じたリンギング波形になる。
【0008】
また、土に含まれる大きな比誘電率の水分が土の誘電率を増加させることになる。この水の比誘電率は直流成分については80程度の大きな値を示すが、GHz 帯では高周波になるにつれて水の誘電緩和周波数に接近してゆくため、この比誘電率は高周波成分になるにつれて低下してゆくと推定される。このことは、地中の電波の伝播速度は高周波成分ほど大きくなることを示唆している。
【0009】
また、本出願人の先願に係わる「レーダアンテナ」と題する特許出願(特開平9ー116189号)によれば、半値幅1nsec 程度の鋭いパルス状の電気信号を送受信する地中レーダにおいては、アンテナの周波数帯域の制限からも埋設物に反射されて受信される反射電気信号の波形が図2の受信波形(B)と類似のリンギング波形になることも開示されている。
【0010】
上述した地中ではなく空中を伝播するレーザ光線などの電磁波の送受信装置では、受信された反射波の波形は鈍化するものの依然として送信波形と相似形状のパルス状を保つ。本出願人の先願に係わる「レーザレーダ」と題する特許出願 (特開平 6ー214025号公報) には、ほぼ一定値となるように増幅した受信パルスのピーク値の出現時点を受信時点として検出する構成が開示されている。また、本出願人の先願に係わる「レーザレーダ」と題する他の特許出願 (特開平 6ー235765号公報) には、受信パルスのピーク値を検出してこのピーク値に対する一定の比率、例えば1/2 の値を閾値として動的に設定し、受信パルスの振幅がこの閾値を越えた時点を受信時点とする構成が開示されている。
【0011】
【発明が解決しようとする課題】
上述したように、盛土の乾燥密度の測定測定及び測定方法では、地中の透過波や反射波の受信波形が、表皮効果と類似の現象によるマルチパスの形成や、伝播速度の周波数依存性や、アンテナの帯域制限などの諸要因に基づき、図2の(B)に例示するような大きな歪みを受けたリンギング波形となる。このため、このような波形上のどのような特徴的な点が出現したことをもって受信の時点と定め、しかもこのように定めた特徴的な点が出現したことをどのようにして精度良く検出するかが問題となる。
【0012】
【課題を解決するための手段】
上記従来技術の課題を解決する本発明に係わる土の乾燥密度の測定装置及び方法によれば、受信回路は、所定の送信周期よりも僅かに長いサンプリング周期で受信電気信号をサンプルホールドしてゆくことによりこの受信電気信号の時間軸を伸長するサンプルホールド回路と、この時間軸が伸長された受信電気信号を増幅する可変利得増幅回路と、この増幅された受信電気信号の波形をディジタル波形信号に変換するA/D変換回路と、このディジタル波形信号中に最初に出現する振幅の極大値を所定値に保つように前記可変利得増幅回路の増幅利得を制御すると共に、このディジタル信号の振幅が前記所定値に対する所定の比率の閾値に最初に達した時点を前記電気信号の受信時点として検出する制御・検出部とを備えている。
【0013】
【発明の実施の形態】
本発明の好適な実施の形態によれば、上記電気信号の送信から受信時点までの経過時間で送信アンテナの中心と受信アンテナの中心との間の距離を除算することにより、地中の電波の電波速度が算定される。本発明の他の好適な実施の形態によれば、上記所定の閾値は、上記所定値の3乃至4%の値に設定されている。
【0014】
【実施例】
図1は、本発明の一実施例の盛土の乾燥密度の測定装置の構成を示す機能ブロック図であり、1はディジタル・シグナル・プロセッサ(DPS)、2はタイミング制御回路、3は送信回路、4はバラントランス、5は送信アンテナである。更に、6は受信アンテナ、7はバラントランス、8は高周波増幅回路、9はサンプル・ホールド回路、10は帯域通過濾波回路、11は低周波増幅回路、12は可変利得増幅回路、13はA/D変換回路、14はD/A変換回路、15はγ線や中性子線などを用いた含水率の測定部である。
【0015】
タイミング制御回路2は、ディジタル・シグナル・プロセッサ1から起動されて動作を開始すると、一定周期T(この実施例では20μsec )の送信トリガパルスを送信回路3に供給すると共に、この送信トリガパルスの周期Tよりも微小量τ(τ≪T、この例では、0.1 nsec ) だけ大きな周期(T+τ)のサンプリングパルスを、最初の送信トリガパルスよりも(T+τ)だけ遅延させてサンプルホールド回路9に供給する。
【0016】
送信回路3は、タイミング制御回路2から供給された送信トリガパルスを受けると、大電力の鋭い孤立パルス( この実施例では、半値幅約1nsec 、ピーク値約200 volt の孤立パルス) を送信パルスとして発生する。この送信パルスは、2線を4線に変換するバラントランス4を通して、ボータイアンテナなどと称される平面型の送信アンテナ5に供給される。この送信パルスは、図3を参照すれば、地面とほぼ平行に保持されている送信アンテナ5(TX)から、これと地面との間の狭い空隙を介して地中に放射される。
【0017】
地中に放射された送信パルスは、図3を参照すれば、地表を地面とほぼ平行に伝播したのち、地面とほぼ平行に保持されている受信アンテナ6(RX)と地面との間の狭い空隙を介して、この受信アンテナ6(RX)に受信される。受信アンテナ6に受信された受信信号は、4線を2線に変換するバラントランス7を通過し、高周波増幅回路8による増幅を受けたのち、サンプル・ホールド回路9に供給され、タイミング制御回路2から供給される周期(T+τ)サンプリングパルスに同期してホールドされる。
【0018】
受信波形信号は、上記サンプリング・ホールドされることにより、その時間軸が(T/τ)倍(この実施例では、20μsec / 0.1nsec =2×10=20万倍)に伸長された受信信号波形となる。なお、送信パルスが上述した一定の送信周期( この実施例では20μsec)で所定個数 (この実施例では2000個) 連続して送出されることにより、時間軸伸長された1 個の受信信号波形が得られる。従って、このような時間軸伸長された受信波形を1個得るのための所要間は40msec であり、受信信号の検出範囲は、送信パルスの送出から 200nsec(=0.1 nsec/個×2000個)の範囲である。
【0019】
20万倍の時間軸伸長を受けることにより、数kHzの周波数帯域の低周波信号に変換された受信信号波形は、帯域周波数増幅回路10を通過し、低周波増幅回路11で固定された増幅利得の低周波増幅を受けたのち、可変利得増幅(AGC)回路12に供給され、ここで、ディジタル・シグナル・プロセッサ1によって制御される可変利得の増幅を受ける。この可変利得の増幅を受けた時間軸伸長されたディジタル受信信号波形は、A/D変換回路13に供給され、ここで、5μsec の周期でサンプリングされながらディジタル信号に変換され、ディジタル・シグナル・プロセッサ13に供給される。
【0020】
ディジタル・シグナル・プロセッサ1は、A/D変換回路13から供給される時間軸伸長されてディジタル化された受信信号波形を受取る。この受信信号波形は、図2の(C)に例示するようなものであり、ディジタル・シグナル・プロセッサ1は、このような受信信号波形中に出現する最初の極大値Vpfを検出する。具体的な一例として、ディジタル・シグナル・プロセッサ1は、受信波形信号の振幅が正の閾値Vthを越えてから再びこの閾値Vth未満となるまでの区間内の最大値を、この波形中に出現する最初の極大値Vpfとして検出する。
【0021】
ディジタル・シグナル・プロセッサ1は、上記最初に出現した極大値Vpfと、入力回路(IN)1aを介して予め設定中の所定のピーク値Vpp(この実施例では、1volt)とを比較する。ディジタル・シグナル・プロセッサ1は、可変利得増幅回路12に新たに設定する増幅利得を比較結果がVpf<Vppの場合には増加させ、比較結果がVpf>Vppの場合には減少させるための利得制御信号を出力する。この利得制御信号は、D/A変換回路14でアナログ信号に変換され、可変利得制御回路12に設定される。
【0022】
ディジタル・シグナル・プロセッサ1は、上記可変利得の制御によってVpfとVppとがほぼ等しくなると、具体的には、両者の差の絶対値が所定の微小量よりも小さくなると、利得制御信号の変更を停止する。ディジタル・シグナル・プロセッサ1は、この状態において、時間軸伸長されディジタル化された受信信号波形の立ち上がり部分の振幅が、ピーク値Vppの3〜4%値として設定されている閾値Vth( 30mvolt〜40mvolt )にほぼ等しくなった時点を受信パルスの出現時点tr として検出する。
【0023】
ディジタル・シグナル・プロセッサ1は、送信パルスの送信時点と受信パルスの出現時点tr との時間差で、図3に示すように、予め定められている送信アンテナ5(TX)の中心と受信アンテナ6(RX)の中心との間の距離dを除算することにより、送信パルスの地中における伝播時間を算定する。ディジタル・シグナル・プロセッサ1は、この算定した伝播速度と、含水率測定部15で測定された地表の含水率とから、地表の乾燥密度と、締め固め度とを算定し、表示装置などで構成される出力回路(OUT)1b に出力する。
【0024】
以上、電波の伝播経路長を送信アンテナと受信アンテナのそれぞれの中心間の距離とする構成を例示した。しかしながら、この距離に土中への侵入深さを考慮して設定した適宜な係数を乗算したものを伝播経路長とすることもできる。
【0025】
【発明の効果】
以上詳細に説明したように、本発明に係わる土の乾燥密度の測定装置は、受信波形信号のピーク値を基準とする代わりに、最初に出現する振幅の極大値を基準とする構成であるから、受信波形中に真先に出現する高周波の成分に基づく高い測定精度を実現できる。
【0026】
すなわち、低周波成分ほど地表から離れた深く長い伝播経路を経て、しかも小さな伝播速度で、遅れて受信アンテナに到達するため、時間の経過に伴ってこのような低周波成分の合成によって形成される受信信号の波形は複雑化し、信号波形の最初の立ち上がりから遅れて出現するピーク値はその出現時点や振幅に関して大きな変動が生ずる。
【0027】
従って、このような大きな変動を伴うピーク値を基準値とする代わりに、早期に出現する最初の極大値を基準値とすることにより、受信時点の検出精度を高めることができる。そして、このような地中の浅い部分を伝播してくる高周波成分に着目したことに合わせて、好適には、電波の伝播距離を送信アンテナの中心と受信アンテナの中心との間の最短距離で近似される。
【0028】
また、可変利得増幅回路の制御をディジタル・シグナル・プロセッサなどで実現される制御・検出部で行う構成であるから、受信波形信号中に出現するピーク値ではなくて最初の極大値をほぼ所定値に保つように増幅利得を制御するという込み入った機能を簡易な構成のもとに容易に実現できる。
【図面の簡単な説明】
【図1】本発明の一実施例の土の乾燥密度の測定装置の構成を示す機能ブロック図である。
【図2】送信アンテナから地中に送出される送信パルス波形と、地中を伝播したのち受信アンテナに受信される受信波形を例示する波形図である。
【図3】送信パルス信号に含まれる各周波数成分に応じて地中への侵入深さと、伝播経路長が異なることを説明するための概念図である。
【符号の説明】
1 ディジタル・シグナル・プロセッサ
2 タイミング制御回路
3 送信回路
5 送信アンテナ
6 受信アンテナ
9 サンプル・ホールド回路
12 可変利得増幅回路
15 含水率測定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention detects the propagation speed of radio waves inside the embankment in order to know the degree of compaction of the embankment, and calculates the dry density of the embankment from the detected propagation speed and the separately measured or estimated water content of the soil. The present invention relates to a measuring device and a measuring method for measuring, and more particularly, to a measuring device and a measuring method of a dry density of soil which improve measurement accuracy by improving detection accuracy of a reception point of a received electric signal.
[0002]
[Prior art]
Conventionally, as disclosed in a patent application entitled "Soil compaction measuring device" previously filed by the present applicant (Japanese Patent Application Laid-Open No. 2-196960), the density of the embankment, and thus the compaction condition, is measured. Measurement devices are known. This measuring device is based on the principle that the relative permittivity of an embankment increases as its water content (moisture content) and density increase, and as a result, the propagation speed of radio waves decreases as the water content and density of the embankment increase. It was used.
[0003]
According to this measuring device, a pulse-like radio wave is propagated inside the embankment to be measured, and the propagation speed of the radio wave inside the embankment is measured from a time difference (required propagation time) between a transmission time point and a reception time point. The dry density and compaction of the embankment are measured from the propagation speed and the water content of the embankment measured or estimated separately.
[0004]
Transmitting and receiving pulsed electrical signals to the ground of the kind measuring device is characterized as being the following such as a radar apparatus to become fundamentally different are installed in a watercraft. First, the radio wave propagating in the ground is attenuated as much as 10 dB per meter, so that the measurement range cannot be too long and is limited to several meters at most. Second, radio waves propagating in the ground have different propagation paths and speeds depending on frequency components.
[0005]
The first characteristic is that the measurable range is narrow, so the time interval between transmission and reception of radio waves is extremely short. For example, if the relative dielectric constant in the ground is about 16, a propagation distance of 1 meter is required. The time is approximately 13 nsec. As described above, in this type of measuring apparatus, the time interval from transmission to reception is short, and in order to secure a required resolution, an isolated pulse to be transmitted needs to be extremely sharp with a half width of about 1 nsec. .
[0006]
The sharp isolated pulse having a half width of about 1 nsec as described above includes an extremely wide range of frequency components from DC to a maximum of about 2 GHz. By the way, according to a patent application (Japanese Patent Application Laid-Open No. 9-89807) entitled "Method and Apparatus for Measuring Degree of Compaction of Soil", which was filed earlier by the present applicant, as the frequency component becomes higher, A phenomenon similar to the skin effect in which the penetration depth of the skin is reduced is disclosed.
[0007]
That is, as illustrated in FIG. 3, the propagation path of the radio wave formed through the soil near the ground surface between the transmitting antenna TX and the receiving antenna RX arranged substantially parallel to the ground surface G has a high frequency component, a low The frequency components and the intermediate frequency components have different depths and path lengths such as fh, fl, and fm. As described above, since the depth of penetration of the propagation path into the soil, and therefore the length thereof, differs depending on the frequency component, the waveform (B) of the received signal becomes the waveform (A) of the transmitted signal as illustrated in FIG. Is synthesized under various delay times to form a ringing waveform in which large distortion has occurred.
[0008]
Further, the water having a large relative dielectric constant contained in the soil increases the dielectric constant of the soil. The relative permittivity of this water shows a large value of about 80 for the DC component, but in the GHz band, it approaches the dielectric relaxation frequency of water as the frequency increases, so that the relative permittivity decreases as the frequency increases. It is estimated that it will continue. This suggests that the propagation speed of radio waves in the ground increases with higher frequency components.
[0009]
According to a patent application entitled "Radar Antenna" (Japanese Patent Application Laid-Open No. Hei 9-116189) related to the earlier application of the present applicant, an underground radar for transmitting and receiving a sharp pulse-like electric signal having a half width of about 1 nsec is disclosed. It is also disclosed that the waveform of the reflected electric signal reflected and received by the buried object becomes a ringing waveform similar to the received waveform (B) in FIG. 2 due to the limitation of the frequency band of the antenna.
[0010]
In the above-described transmitting / receiving apparatus for electromagnetic waves such as laser beams that propagate in the air instead of underground, the waveform of the received reflected wave is slowed down, but still maintains a pulse shape similar to the transmitted waveform. A patent application entitled “Laser radar” according to the earlier application of the present applicant (Japanese Patent Application Laid-Open No. Hei 6-214025) discloses that the present point of time of the peak value of a received pulse amplified to be substantially constant is detected as the reception time Is disclosed. Another patent application entitled “Laser radar” related to the applicant's earlier application (Japanese Patent Laid-Open No. 6-235765) discloses that a peak value of a received pulse is detected and a certain ratio to the peak value is detected. A configuration is disclosed in which a value of 1/2 is dynamically set as a threshold, and a point in time when the amplitude of the received pulse exceeds the threshold is set as a reception point.
[0011]
[Problems to be solved by the invention]
As described above, in the measurement and the measurement method of the dry density of the embankment, the reception waveform of the transmitted wave and the reflected wave in the ground causes the formation of multipath due to a phenomenon similar to the skin effect, and the frequency dependence of the propagation speed and the like. Based on various factors such as band limitation of the antenna, a ringing waveform having a large distortion as illustrated in FIG. 2B is obtained. For this reason, the appearance of such a characteristic point on the waveform is determined as the time of reception, and the appearance of the characteristic point thus determined is detected accurately. Is a problem.
[0012]
[Means for Solving the Problems]
According to the apparatus and method for measuring the dry density of soil according to the present invention that solves the above-mentioned problems of the prior art, the receiving circuit samples and holds the received electric signal at a sampling period slightly longer than a predetermined transmission period. A sample-and-hold circuit that extends the time axis of the received electric signal, a variable gain amplifier circuit that amplifies the received electric signal with the extended time axis, and a digital waveform signal that converts the waveform of the amplified received electric signal into a digital waveform signal. An A / D conversion circuit for converting, and controlling the amplification gain of the variable gain amplifier circuit so as to keep a maximum value of the amplitude first appearing in the digital waveform signal at a predetermined value, and controlling the amplitude of the digital signal to A control / detection unit that detects a time point when a threshold value of a predetermined ratio with respect to a predetermined value is first reached as a reception time point of the electric signal.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
According to a preferred embodiment of the present invention, by dividing the distance between the center of the transmitting antenna and the center of the receiving antenna by the elapsed time from the transmission of the electric signal to the time of reception, the radio wave of the underground The radio wave speed is calculated. According to another preferred embodiment of the present invention, the predetermined threshold is set to a value of 3 to 4% of the predetermined value.
[0014]
【Example】
FIG. 1 is a functional block diagram showing a configuration of an embankment dry density measuring apparatus according to one embodiment of the present invention, wherein 1 is a digital signal processor (DPS), 2 is a timing control circuit, 3 is a transmission circuit, 4 is a balun transformer and 5 is a transmitting antenna. Further, 6 is a receiving antenna, 7 is a balun transformer, 8 is a high frequency amplifier circuit, 9 is a sample and hold circuit, 10 is a band pass filter circuit, 11 is a low frequency amplifier circuit, 12 is a variable gain amplifier circuit, and 13 is an A / A A D conversion circuit, 14 is a D / A conversion circuit, and 15 is a moisture content measuring unit using gamma rays, neutron rays, and the like.
[0015]
When the timing control circuit 2 is activated by the digital signal processor 1 and starts operating, the timing control circuit 2 supplies a transmission trigger pulse having a constant period T (20 μsec in this embodiment) to the transmission circuit 3 and the period of the transmission trigger pulse. A sampling pulse having a period (T + τ) larger than T by a small amount τ (τ≪T, in this example, 0.1 nsec) is delayed by (T + τ) from the first transmission trigger pulse to the sample-and-hold circuit 9. Supply.
[0016]
Upon receiving the transmission trigger pulse supplied from the timing control circuit 2, the transmission circuit 3 uses a sharp isolated pulse of high power (in this embodiment, an isolated pulse having a half width of about 1 nsec and a peak value of about 200 volt) as a transmission pulse. appear. The transmission pulse is supplied to a planar transmission antenna 5 called a bow-tie antenna or the like through a balun transformer 4 that converts two lines into four lines. Referring to FIG. 3, the transmission pulse is radiated from the transmission antenna 5 (TX), which is held substantially parallel to the ground, into the ground through a narrow gap between the transmission antenna 5 and the ground.
[0017]
Referring to FIG. 3, the transmission pulse radiated into the ground propagates on the surface of the ground almost in parallel with the ground, and then a narrow space between the receiving antenna 6 (RX) held substantially in parallel with the ground and the ground. The signal is received by the receiving antenna 6 (RX) via the gap. The reception signal received by the reception antenna 6 passes through a balun transformer 7 for converting four lines into two lines, and after being amplified by a high frequency amplifier circuit 8, is supplied to a sample and hold circuit 9, and is supplied to a timing control circuit 2. And is held in synchronization with the period (T + τ) sampling pulse supplied from.
[0018]
The received waveform signal is sampled and held, and its time axis is expanded by (T / τ) times (in this embodiment, 20 μsec / 0.1 nsec = 2 × 10 5 = 200,000 times). It becomes a signal waveform. A predetermined number (2,000 in this embodiment) of the transmission pulses are continuously transmitted in the above-described fixed transmission cycle (20 μsec in this embodiment), so that one reception signal waveform expanded in the time axis is obtained. can get. Therefore, the time required to obtain one such reception waveform extended on the time axis is 40 msec, and the detection range of the reception signal is 200 nsec (= 0.1 nsec / piece × 2000 pieces) from the transmission of the transmission pulse. ) Range.
[0019]
By receiving 200,000 times longer axis extension, the received signal waveform that has been converted into a low frequency signal of the frequency band of several kHz, through the bandwidth frequency amplifier circuit 10, which is fixed in a low-frequency amplifier circuit 11 amplifies After receiving the low frequency amplification of the gain, it is supplied to a variable gain amplification (AGC) circuit 12 where it is subjected to variable gain amplification controlled by the digital signal processor 1. The digitally-received signal waveform expanded on the time axis which has been amplified by the variable gain is supplied to an A / D conversion circuit 13, where it is converted into a digital signal while being sampled at a period of 5 μsec. 13 is supplied.
[0020]
The digital signal processor 1 receives the received signal waveform supplied from the A / D conversion circuit 13 and expanded on the time axis and digitized. The received signal waveform is as illustrated in FIG. 2C, and the digital signal processor 1 detects the first maximum value Vpf appearing in such a received signal waveform. As a specific example, the digital signal processor 1 appears in this waveform as the maximum value within the interval from when the amplitude of the received waveform signal exceeds the positive threshold value Vth to when the amplitude of the received waveform signal falls below the threshold value Vth again. It is detected as the first maximum value Vpf.
[0021]
The digital signal processor 1 compares the first appearing local maximum value Vpf with a predetermined peak value Vpp (1 volt in this embodiment) being preset through the input circuit (IN) 1a. The digital signal processor 1 increases the gain to be newly set in the variable gain amplifier circuit 12 when the comparison result is Vpf <Vpp, and decreases the gain when the comparison result is Vpf> Vpp. Output a signal. This gain control signal is converted into an analog signal by the D / A conversion circuit 14 and set in the variable gain control circuit 12.
[0022]
The digital signal processor 1 changes the gain control signal when Vpf and Vpp become substantially equal by the variable gain control, specifically, when the absolute value of the difference between the two becomes smaller than a predetermined minute amount. Stop. In this state, the digital signal processor 1 sets the threshold Vth (30 mvolts to 40 mvolts) in which the amplitude of the rising portion of the digitized received signal waveform that has been extended on the time axis is set as 3 to 4% of the peak value Vpp. ) Is detected as the point of time tr of the reception pulse.
[0023]
As shown in FIG. 3, the digital signal processor 1 determines the center of the transmission antenna 5 (TX) and the reception antenna 6 ( By dividing the distance d from the center of RX), the propagation time of the transmitted pulse in the ground is calculated. The digital signal processor 1 calculates the dry density of the ground surface and the compaction degree from the calculated propagation speed and the water content of the ground measured by the water content measuring unit 15, and comprises a display device and the like. To the output circuit (OUT) 1b.
[0024]
The configuration in which the propagation path length of the radio wave is the distance between the centers of the transmission antenna and the reception antenna has been described above. However, a value obtained by multiplying this distance by an appropriate coefficient set in consideration of the depth of penetration into the soil may be used as the propagation path length.
[0025]
【The invention's effect】
As described in detail above, since the soil dry density measuring device according to the present invention is configured not based on the peak value of the received waveform signal but based on the maximum value of the amplitude that first appears. In addition, high measurement accuracy based on the high-frequency component appearing first in the received waveform can be realized.
[0026]
In other words, the lower-frequency component arrives at the receiving antenna with a slower propagation speed through a deeper and longer propagation path farther from the ground surface, and is formed by the synthesis of such a low-frequency component over time. The waveform of the received signal is complicated, and the peak value appearing later than the first rise of the signal waveform has a large fluctuation with respect to the point of occurrence and the amplitude.
[0027]
Therefore, instead of using the peak value accompanied by such a large fluctuation as the reference value, the detection accuracy at the time of reception can be improved by using the first maximum value appearing earlier as the reference value. And, focusing on the high-frequency component propagating in such a shallow part of the ground, preferably, the propagation distance of the radio wave is determined by the shortest distance between the center of the transmitting antenna and the center of the receiving antenna. Approximated.
[0028]
In addition, since the control of the variable gain amplifier circuit is performed by a control / detection unit realized by a digital signal processor or the like, the first local maximum value is not a peak value appearing in the received waveform signal but a substantially predetermined value. The complicated function of controlling the amplification gain so as to maintain the gain can be easily realized with a simple configuration.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a configuration of an apparatus for measuring a dry density of soil according to one embodiment of the present invention.
FIG. 2 is a waveform diagram exemplifying a transmission pulse waveform transmitted from a transmission antenna to the ground and a reception waveform transmitted to the reception antenna after propagating through the ground.
FIG. 3 is a conceptual diagram for explaining that a penetration depth into the ground and a propagation path length are different depending on each frequency component included in a transmission pulse signal.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 digital signal processor 2 timing control circuit 3 transmission circuit 5 transmission antenna 6 reception antenna 9 sample and hold circuit 12 variable gain amplifier circuit 15 water content measurement unit

Claims (4)

所定の送信周期のパルス状の電気信号を発生し出力する送信回路と、地面に対してほぼ平行に配置され前記送信回路から出力されたパルス状の電気信号を地中に送信する送信アンテナと、地面に対してほぼ平行に配置され前記地中を伝播した電気信号を受信する受信アンテナと、この受信アンテナに受信された受信電気信号の波形から受信時点を検出する受信回路と、前記電気信号の送信から受信時点までの経過時間から電気信号の地中の伝播速度を算定し、この算定した伝播速度と地中の含水率とからこの土の乾燥密度を算定するプロセッサとを備えた土の乾燥密度の測定装置において、
前記受信回路は、
前記所定の送信周期よりも僅かに長いサンプリング周期で前記受信電気信号をサンプルホールドしてゆくことによりこの受信電波の時間軸を伸長するサンプルホールド回路と、
この時間軸が伸長された受信電気信号を増幅する可変利得増幅回路と、
この増幅された受信電気信号の波形をディジタル波形信号に変換するA/D変換回路と、
このディジタル波形信号中に最初に出現する振幅の極大値をほぼ所定値に保つように前記可変利得増幅回路の増幅利得を制御すると共に、このディジタル波形信号の振幅が前記所定値に対する所定の比率の閾値に最初に達した時点を前記電気信号の受信時点として検出する制御・検出部と
を備えたことを特徴とする土の乾燥密度の測定装置。
A transmission circuit that generates and outputs a pulse-like electric signal of a predetermined transmission cycle, and a transmission antenna that is disposed substantially parallel to the ground and transmits the pulse-like electric signal output from the transmission circuit to the ground , A receiving antenna that is disposed substantially parallel to the ground and receives the electric signal propagated in the ground, a receiving circuit that detects a reception time point from a waveform of the received electric signal received by the receiving antenna, A soil drying apparatus comprising: a processor that calculates an underground propagation speed of an electric signal from an elapsed time from transmission to reception, and calculates a dry density of the soil from the calculated propagation speed and the underground moisture content. In the density measuring device,
The receiving circuit,
A sample and hold circuit that extends the time axis of the received radio wave by sampling and holding the received electric signal at a sampling period slightly longer than the predetermined transmission period,
A variable gain amplifier circuit for amplifying the received electric signal whose time axis has been extended,
An A / D conversion circuit for converting the waveform of the amplified received electric signal into a digital waveform signal;
The amplification gain of the variable gain amplifying circuit is controlled so that the maximum value of the amplitude first appearing in the digital waveform signal is kept substantially at a predetermined value, and the amplitude of the digital waveform signal is set at a predetermined ratio to the predetermined value. A control / detection unit for detecting a time point at which the threshold value is first reached as a reception time point of the electric signal, wherein the soil dry density measurement device is provided.
請求項1において、
前記プロセッサは、前記電気信号の送信から受信時点までの経過時間で前記送信アンテナの中心と受信アンテナの中心との間の距離を除算することにより、前記地中の電波の伝播速度を算定することを特徴とする土の乾燥密度の測定装置。
In claim 1,
The processor calculates the propagation speed of the underground radio wave by dividing the distance between the center of the transmission antenna and the center of the reception antenna by the elapsed time from the transmission of the electric signal to the reception time. An apparatus for measuring dry density of soil.
前記所定の閾値は、前記所定値の3乃至4%の値に設定されたことを特徴とする土の乾燥密度の測定装置。The said predetermined threshold value was set to the value of 3-4% of the said predetermined value, The measuring apparatus of the dry density of soil characterized by the above-mentioned. 所定の送信周期のパルス状の電気信号を地面にほぼ平行に配置した送信アンテナから地中に送信し、地中を伝播した電気信号を地面にほぼ平行に配置した受信アンテナで受信し、この受信された受信電気信号の波形から受信時点を検出し、前記電気信号の送信から受信時点までの経過時間から地中の電波の伝播速度を算定し、この算定した伝播速度と地中の含水率とからこの土の乾燥密度を算定する土の乾燥密度の測定方法において、
前記地中を伝播した電波信号を受信する際に、
前記所定の送信周期よりも僅かに長いサンプリング周期で前記受信電気信号をサンプルホールドしてゆくことによりこの受信電気信号の時間軸を伸長し、
この時間軸が伸長された受信電気信号を可変利得増幅回路で増幅し、
この増幅された受信電気信号の波形をディジタル波形信号に変換し、
このディジタル波形信号中に最初に出現する振幅の極大値をほぼ所定値に保つように前記可変利得増幅回路の増幅利得を制御すると共に、このディジタル波形信号の振幅が前記所定値に対する所定の比率の閾値に最初に達した時点を前記受信時点として検出する
ことを特徴とする土の乾燥密度の測定方法。
A pulse-like electric signal of a predetermined transmission cycle is transmitted into the ground from a transmitting antenna arranged substantially parallel to the ground, and an electric signal propagated in the ground is received by a receiving antenna arranged substantially parallel to the ground. The reception time is detected from the waveform of the received electric signal, and the propagation speed of the underground radio wave is calculated from the elapsed time from the transmission of the electric signal to the reception time, and the calculated propagation speed and underground water content are calculated. In the method of measuring the dry density of the soil to calculate the dry density of this soil from
When receiving the radio signal transmitted in the ground,
Extending the time axis of the received electric signal by sampling and holding the received electric signal at a sampling period slightly longer than the predetermined transmission period,
The received electric signal whose time axis is extended is amplified by a variable gain amplifier circuit,
The amplified waveform of the received electric signal is converted into a digital waveform signal,
The amplification gain of the variable gain amplifying circuit is controlled so that the maximum value of the amplitude first appearing in the digital waveform signal is kept substantially at a predetermined value, and the amplitude of the digital waveform signal is set at a predetermined ratio to the predetermined value. A method for measuring dry density of soil, wherein a time point when a threshold value is first reached is detected as the reception time point.
JP14467297A 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil Expired - Lifetime JP3558492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14467297A JP3558492B2 (en) 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14467297A JP3558492B2 (en) 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil

Publications (2)

Publication Number Publication Date
JPH10318942A JPH10318942A (en) 1998-12-04
JP3558492B2 true JP3558492B2 (en) 2004-08-25

Family

ID=15367565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14467297A Expired - Lifetime JP3558492B2 (en) 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil

Country Status (1)

Country Link
JP (1) JP3558492B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833080B1 (en) * 2001-12-05 2004-10-29 France Etat Ponts Chaussees METHOD FOR DETERMINING THE WATER CONTENT OF A MATERIAL AND MEASURING DEVICE
MY143657A (en) * 2007-11-30 2011-06-30 Mimos Berhad Method for determination of chemical ions
CN102721628A (en) * 2012-06-21 2012-10-10 广西壮族自治区中国科学院广西植物研究所 Method for measuring soil bulk density

Also Published As

Publication number Publication date
JPH10318942A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
CA1332458C (en) Distance and level measuring system
US4905008A (en) Radar type underground searching apparatus
Webster A pulsed ultrasonic distance measurement system based upon phase digitizing
US5315258A (en) Method and apparatus for determining the moisture content of a material
DE69529830D1 (en) RADIO DETECTING SYSTEM WITH DURATION MEASUREMENT
CA2270453A1 (en) Level measuring device operating with microwave
KR20000057568A (en) Method and device for ultrasonic ranging
JP2000508056A (en) measuring device
JP3558492B2 (en) Apparatus and method for measuring dry density of soil
JP3558491B2 (en) Apparatus and method for transmitting and receiving pulsed signals into the ground
JP2001264419A (en) Distance detector
JP2520042B2 (en) Underground radar tomography device
JPS63120271A (en) Radar-type underground investigation apparatus
RU2356065C2 (en) Method of millimicrosecond radar-location with resonant compression of transmitter pulse
JPH0471190B2 (en)
RU2227953C2 (en) Device for detecting ice on conductors and ground wires of power transmission lines
JPS61260109A (en) Measuring instrument for concrete thickness
JP3535284B2 (en) Method and apparatus for measuring the degree of compaction of soil
Hansen et al. Ultrawideband sea clutter: system and measurements at X-band
JPH02262082A (en) Fish-finder
JPH11118943A (en) Direct signal processor for search radar apparatus
JPH0227286A (en) Sampling method and apparatus of underground radar
JP2001318137A (en) Electric wave range finder
JPS63159781A (en) Buried body surveying device
JPS593367A (en) Measuring device for reflected wave

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

EXPY Cancellation because of completion of term