JPH10318942A - Apparatus and method for measuring dry density of soil - Google Patents

Apparatus and method for measuring dry density of soil

Info

Publication number
JPH10318942A
JPH10318942A JP14467297A JP14467297A JPH10318942A JP H10318942 A JPH10318942 A JP H10318942A JP 14467297 A JP14467297 A JP 14467297A JP 14467297 A JP14467297 A JP 14467297A JP H10318942 A JPH10318942 A JP H10318942A
Authority
JP
Japan
Prior art keywords
electric signal
circuit
signal
ground
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14467297A
Other languages
Japanese (ja)
Other versions
JP3558492B2 (en
Inventor
Toshimitsu Nozu
俊光 野津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP14467297A priority Critical patent/JP3558492B2/en
Publication of JPH10318942A publication Critical patent/JPH10318942A/en
Application granted granted Critical
Publication of JP3558492B2 publication Critical patent/JP3558492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable highly accurate measurements by extending a time base of a receiving signal by a sample hold circuit, and setting as a receiving time point when an amplitude of the signal after subjected to variable gain amplification and A/D conversion reaches a threshold value of a constant ratio first. SOLUTION: A receiving signal of a receiving antenna 6 is held with a slightly longer cycle than a cycle of transmission trigger pulses at a sample hold circuit 9 through a balance transformer 7 and a high frequency amplification circuit 8, and a time base of a signal waveform is extended. The receiving signal is sent to a digital signal processor 1 via a low bandpass filter circuit 10, a low frequency amplification circuit 11, a variable gain amplification circuit 12 and an A/D conversion circuit 13. A maximal value appearing first in the signal waveform is detected. The variable gain amplification circuit 12 is controlled to hold a constant peak value. Thereafter, a time point when an amplitude of a first rise part of the signal waveform reaches a threshold value set to be approximately 3-4% of the peak value is used as a detection point, and a propagation time and a propagation speed are obtained. A dry density and a degree of compaction of a ground surface are obtained from the propagation time, propagation speed and a moisture content.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、盛土の締め固め具
合を知るために、この盛土の内部の電波の伝播速度を検
出し、この検出した伝播速度と別途測定あるいは推定し
た土の含水率とからこの盛土の乾燥密度を測定する測定
装置及び測定方法に関するものであり、特に、受信電気
信号の受信時点の検出の高精度化により計測精度の向上
を図った土の乾燥密度の測定装置及び測定方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for detecting the propagation speed of radio waves inside an embankment in order to know the degree of compaction of the embankment. The present invention relates to a measuring apparatus and a measuring method for measuring the dry density of this embankment, and in particular, a measuring apparatus and a measuring apparatus for the dry density of the soil which improve the measurement accuracy by improving the detection accuracy of the reception point of the received electric signal. It is about the method.

【0002】[0002]

【従来の技術】従来、本出願人が先に出願した「土の締
め固め測定装置」と題する特許出願(特開平2ー196
960号)などに開示されているように、盛土の密度、
従って締め固め具合を測定する測定装置が知られてい
る。この測定装置は、盛土の比誘電率がその含水率(水
分含有率)と密度の増大につれてが増加し、この結果、
電波の伝播速度が盛土の含水率と密度の増大につれて低
下するという原理を利用したものである。
2. Description of the Related Art Conventionally, a patent application entitled "Soil compaction measuring device" previously filed by the present applicant (Japanese Patent Laid-Open No. 2-196)
960), the density of the embankment,
Therefore, a measuring device for measuring the degree of compaction is known. This measuring device increases the relative dielectric constant of the embankment as its water content (water content) and density increase,
It uses the principle that the propagation speed of radio waves decreases as the water content and density of the embankment increase.

【0003】この測定装置によれば、測定しようとする
盛土の内部にパルス状の電波が伝播せしめられ、送信時
点と受信時点との時間差(伝播所要時間)からこの盛土
の内部の電波の伝播速度が測定され、この伝播速度と別
途測定ないしは推定されたこの盛土の含水率とからこの
盛土の乾燥密度や締め固め具合が測定される。
According to this measuring device, a pulse-shaped radio wave is propagated inside the embankment to be measured, and the propagation speed of the radio wave inside the embankment is determined from the time difference (transmission time) between the transmission time and the reception time. Is measured, and the dry density and compaction degree of the embankment are measured from the propagation speed and the water content of the embankment separately measured or estimated.

【0004】この種の地中にパルス状の電気信号を送受
信する測定装置が船舶などに設置されるレーダ装置など
と根本的にく異なる次のような特徴を有する。第1に、
地中を伝播する電波が1メートル当たり10dBもの大きな
減衰を受けるため、測定範囲をあまり長くはできず、高
々数メートルに限定されるという点である。第2に、地
中を伝播する電波は、周波数成分によって伝播経路や速
度が異なると見られる点である。
A measuring device for transmitting and receiving a pulsed electric signal under the ground has the following characteristics which are fundamentally different from a radar device installed on a ship or the like. First,
Since the radio waves propagating in the ground are attenuated by as much as 10 dB per meter, the measurement range cannot be so long, and is limited to a few meters at most. Second, radio waves propagating in the ground are considered to have different propagation paths and speeds depending on frequency components.

【0005】第1の特徴である測定可能範囲が狭いとい
う点から、電波の送信から受信までの時間的間隔が極め
て短くなり、例えば、地中の比誘電率が16程度であれ
ば、1メートルの伝播所要時間はほぼ13nsec となる。
このように、この種の測定装置では、送信から受信まで
の時間間隔が短くなるため、必要な分解能を確保するう
えで、送信対象の孤立パルスは半値幅1nsec 程度の極
めて鋭いものが必要になる。
[0005] The first characteristic, that is, the measurable range is narrow, the time interval between transmission and reception of radio waves is extremely short. For example, if the relative dielectric constant in the ground is about 16, 1 meter Is approximately 13 nsec.
As described above, in this type of measuring apparatus, the time interval from transmission to reception is short, and in order to secure necessary resolution, an isolated pulse to be transmitted needs to be extremely sharp with a half width of about 1 nsec. .

【0006】上述のような半値幅が1nsec 程度の鋭い
孤立パルスは、直流から最高2GHz程度にまでにわたる
極めて広範囲の周波数成分が含まれる。ところで、本出
願人が先に出願した「土の締め固め度の測定方法及び装
置」と題する特許出願(特開平9ー89807号公報)
によれば、周波数成分が高くなるにつれて伝播経路の地
表からの侵入深さが減少するという表皮効果と類似の現
象が開示されている。
A sharp isolated pulse having a half width of about 1 nsec as described above contains an extremely wide range of frequency components from DC to a maximum of about 2 GHz. Meanwhile, a patent application entitled "Method and Apparatus for Measuring Degree of Compaction of Soil" previously filed by the present applicant (Japanese Patent Application Laid-Open No. 9-89807).
Discloses a phenomenon similar to the skin effect in which the penetration depth of the propagation path from the ground decreases as the frequency component increases.

【0007】すなわち、図3に例示するように、地表G
にほぼ平行に配置された送信アンテナTXと、受信アン
テナRXとの間に地表近傍の土中を通して形成される電
波の伝播経路は、高周波成分、低周波成分及びこれらの
中間の周波数成分のそれぞれについて、fh、fl及び
fmのように深さと経路長が異なる。このように、周波
数成分によって伝播経路の土中への侵入深さ、従ってそ
の長さが異なるため、図2に例示するように、受信信号
の波形(B)は、送信信号の波形(A)に含まれる各種
の周波数成分が異なる遅延時間のもとに合成されること
により大きな歪みが生じたリンギング波形になる。
That is, as illustrated in FIG.
The propagation path of the radio wave formed through the soil near the ground surface between the transmitting antenna TX and the receiving antenna RX arranged almost in parallel to the high frequency component, the low frequency component, and the intermediate frequency component between them , Fh, fl, and fm, the depth and the path length are different. As described above, since the depth of penetration of the propagation path into the soil, and thus the length thereof, differs depending on the frequency component, the waveform (B) of the received signal becomes the waveform (A) of the transmitted signal as illustrated in FIG. Is synthesized under various delay times to form a ringing waveform in which a large distortion has occurred.

【0008】また、土に含まれる大きな比誘電率の水分
が土の誘電率を増加させることになる。この水の比誘電
率は直流成分については80程度の大きな値を示すが、GH
z 帯では高周波になるにつれて水の誘電緩和周波数に接
近してゆくため、この比誘電率は高周波成分になるにつ
れて低下してゆくと推定される。このことは、地中の電
波の伝播速度は高周波成分ほど大きくなることを示唆し
ている。
[0008] Further, the water having a large relative dielectric constant contained in the soil increases the dielectric constant of the soil. The relative permittivity of this water shows a large value of about 80 for the DC component,
In the z-band, the relative permittivity is estimated to decrease as the frequency increases, because it approaches the dielectric relaxation frequency of water as the frequency increases. This suggests that the propagation speed of radio waves in the ground increases with higher frequency components.

【0009】また、本出願人の先願に係わる「レーダア
ンテナ」と題する特許出願(特開平9ー116189
号)によれば、半値幅1nsec 程度の鋭いパルス状の電
気信号を送受信する地中レーダにおいては、アンテナの
周波数帯域の制限からも埋設物に反射されて受信される
反射電気信号の波形が図2の受信波形(B)と類似のリ
ンギング波形になることも開示されている。
A patent application entitled "Radar antenna" according to the earlier application of the present applicant (Japanese Patent Laid-Open No. Hei 9-116189)
According to the underground radar, which transmits and receives a sharp pulse-like electric signal having a half-value width of about 1 nsec, the waveform of the reflected electric signal reflected and received by the buried object due to the limitation of the frequency band of the antenna. It is also disclosed that the ringing waveform becomes similar to the reception waveform (B) of FIG.

【0010】上述した地中ではなく空中を伝播するレー
ザ光線などの電磁波の送受信装置では、受信された反射
波の波形は鈍化するものの依然として送信波形と相似形
状のパルス状を保つ。本出願人の先願に係わる「レーザ
レーダ」と題する特許出願 (特開平 6ー214025号公報)
には、ほぼ一定値となるように増幅した受信パルスのピ
ーク値の出現時点を受信時点として検出する構成が開示
されている。また、本出願人の先願に係わる「レーザレ
ーダ」と題する他の特許出願 (特開平 6ー235765号公
報) には、受信パルスのピーク値を検出してこのピーク
値に対する一定の比率、例えば1/2 の値を閾値として動
的に設定し、受信パルスの振幅がこの閾値を越えた時点
を受信時点とする構成が開示されている。
In the above-described transmitting / receiving apparatus for electromagnetic waves such as laser beams propagating in the air instead of in the ground, the waveform of the received reflected wave is slowed down, but still maintains a pulse shape similar to the transmission waveform. Patent application entitled “Laser radar” related to the applicant's earlier application (JP-A-6-214025)
Discloses a configuration in which the present point of time of the peak value of the received pulse amplified to be substantially constant is detected as the reception point. Further, another patent application entitled "Laser radar" (Japanese Patent Laid-Open Publication No. Hei 6-235765) related to the earlier application of the present applicant detects a peak value of a received pulse and detects a certain ratio to the peak value, for example. A configuration is disclosed in which a value of 1/2 is dynamically set as a threshold, and a point in time when the amplitude of a received pulse exceeds the threshold is set as a reception point.

【0011】[0011]

【発明が解決しようとする課題】上述したように、盛土
の乾燥密度の測定測定及び測定方法では、地中の透過波
や反射波の受信波形が、表皮効果と類似の現象によるマ
ルチパスの形成や、伝播速度の周波数依存性や、アンテ
ナの帯域制限などの諸要因に基づき、図2の(B)に例
示するような大きな歪みを受けたリンギング波形とな
る。このため、このような波形上のどのような特徴的な
点が出現したことをもって受信の時点と定め、しかもこ
のように定めた特徴的な点が出現したことをどのように
して精度良く検出するかが問題となる。
As described above, in the measurement and the method for measuring the dry density of the embankment, the reception waveform of the transmitted wave and the reflected wave in the ground causes the formation of multipath due to a phenomenon similar to the skin effect. A ringing waveform having a large distortion as illustrated in FIG. 2B is obtained based on various factors such as the frequency dependence of the propagation speed and the band limitation of the antenna. Therefore, the appearance of such a characteristic point on the waveform is determined as the time of reception, and how the appearance of the characteristic point thus determined is accurately detected. Is a problem.

【0012】[0012]

【課題を解決するための手段】上記従来技術の課題を解
決する本発明に係わる土の乾燥密度の測定装置及び方法
によれば、受信回路は、所定の送信周期よりも僅かに長
いサンプリング周期で受信電気信号をサンプルホールド
してゆくことによりこの受信電気信号の時間軸を伸長す
るサンプルホールド回路と、この時間軸が伸長された受
信電気信号を増幅する可変利得増幅回路と、この増幅さ
れた受信電気信号の波形をディジタル波形信号に変換す
るD/A変換回路と、このディジタル波形信号中に最初
に出現する振幅の極大値を所定値に保つように前記可変
利得増幅回路の増幅利得を制御すると共に、このディジ
タル信号の振幅が前記所定値に対する所定の比率の閾値
に最初に達した時点を前記電気信号の受信時点として検
出する制御・検出部とを備えている。
According to the apparatus and method for measuring the dry density of soil according to the present invention which solves the above-mentioned problems of the prior art, the receiving circuit operates at a sampling period slightly longer than a predetermined transmission period. A sample and hold circuit for extending the time axis of the received electric signal by sampling and holding the received electric signal; a variable gain amplifier for amplifying the received electric signal having the time axis extended; A D / A conversion circuit for converting a waveform of an electric signal into a digital waveform signal, and controlling an amplification gain of the variable gain amplifier circuit so as to keep a maximum value of an amplitude first appearing in the digital waveform signal at a predetermined value. Control / detection for detecting a point in time when the amplitude of the digital signal first reaches a threshold of a predetermined ratio to the predetermined value as a reception point of the electric signal. It is equipped with a door.

【0013】[0013]

【発明の実施の形態】本発明の好適な実施の形態によれ
ば、上記電気信号の送信から受信時点までの経過時間で
送信アンテナの中心と受信アンテナの中心との間の距離
を除算することにより、地中の電波の電波速度が算定さ
れる。本発明の他の好適な実施の形態によれば、上記所
定の閾値は、上記所定値の3乃至4%の値に設定されて
いる。
According to a preferred embodiment of the present invention, the distance between the center of the transmitting antenna and the center of the receiving antenna is divided by the elapsed time from the transmission of the electric signal to the time of reception. , The radio wave speed of the underground radio wave is calculated. According to another preferred embodiment of the present invention, the predetermined threshold is set to a value of 3 to 4% of the predetermined value.

【0014】[0014]

【実施例】図1は、本発明の一実施例の盛土の乾燥密度
の測定装置の構成を示す機能ブロック図であり、1はデ
ィジタル・シグナル・プロセッサ(DPS)、2はタイ
ミング制御回路、3は送信回路、4はバラントランス、
5は送信アンテナである。更に、6は受信アンテナ、7
はバラントランス、8は高周波増幅回路、9はサンプル
・ホールド回路、10は帯域通過濾波回路、11は低域
通過濾波回路、12は可変利得増幅回路、13はA/D
変換回路、14はD/A変換回路、15はγ線や中性子
線などを用いた含水率の測定部である。
FIG. 1 is a functional block diagram showing a configuration of an embankment dry density measuring apparatus according to one embodiment of the present invention. 1 is a digital signal processor (DPS), 2 is a timing control circuit, Is a transmission circuit, 4 is a balun transformer,
5 is a transmitting antenna. Further, 6 is a receiving antenna, 7
Is a balun transformer, 8 is a high-frequency amplifier circuit, 9 is a sample-and-hold circuit, 10 is a band-pass filter circuit, 11 is a low-pass filter circuit, 12 is a variable gain amplifier circuit, and 13 is an A / D converter.
A conversion circuit, 14 is a D / A conversion circuit, and 15 is a moisture content measuring unit using gamma rays and neutron rays.

【0015】タイミング制御回路2は、ディジタル・シ
グナル・プロセッサ1から起動されて動作を開始する
と、一定周期T(この実施例では20μsec )の送信トリ
ガパルスを送信回路3に供給すると共に、この送信トリ
ガパルスの周期Tよりも微小量τ(τ≪T、この例で
は、0.1 nsec ) だけ大きな周期(T+τ)のサンプリ
ングパルスを、最初の送信トリガパルスよりも(T+
τ)だけ遅延させてサンプルホールド回路9に供給す
る。
When the timing control circuit 2 is activated by the digital signal processor 1 and starts operation, it supplies a transmission trigger pulse of a fixed period T (20 μsec in this embodiment) to the transmission circuit 3 and the transmission trigger pulse. A sampling pulse having a period (T + τ) larger by a small amount τ (τ≪T, in this example, 0.1 nsec) than the pulse period T is set to (T +
τ) and then supplies it to the sample and hold circuit 9.

【0016】送信回路3は、タイミング制御回路2から
供給された送信トリガパルスを受けると、大電力の鋭い
孤立パルス( この実施例では、半値幅約1nsec 、ピー
ク値約200 volt の孤立パルス) を送信パルスとして発
生する。この送信パルスは、2線を4線に変換するバラ
ントランス4を通して、ボータイアンテナなどと称され
る平面型の送信アンテナ5に供給される。この送信パル
スは、図3を参照すれば、地面とほぼ平行に保持されて
いる送信アンテナ5(TX)から、これと地面との間の
狭い空隙を介して地中に放射される。
When the transmission circuit 3 receives the transmission trigger pulse supplied from the timing control circuit 2, the transmission circuit 3 generates a high power sharp isolated pulse (in this embodiment, an isolated pulse having a half width of about 1 nsec and a peak value of about 200 volt). Generated as a transmission pulse. The transmission pulse is supplied to a planar transmission antenna 5 called a bow-tie antenna or the like through a balun transformer 4 that converts two lines into four lines. Referring to FIG. 3, the transmission pulse is radiated from the transmitting antenna 5 (TX), which is held substantially parallel to the ground, into the ground through a narrow gap between the transmitting antenna 5 and the ground.

【0017】地中に放射された送信パルスは、図3を参
照すれば、地表を地面とほぼ平行に伝播したのち、地面
とほぼ平行に保持されている受信アンテナ6(RX)と
地面との間の狭い空隙を介して、この受信アンテナ6
(RX)に受信される。受信アンテナ6に受信された受
信信号は、4線を2線に変換するバラントランス7を通
過し、高周波増幅回路8による増幅を受けたのち、サン
プル・ホールド回路9に供給され、タイミング制御回路
2から供給される周期(T+τ)サンプリングパルスに
同期してホールドされる。
Referring to FIG. 3, the transmission pulse radiated into the ground propagates on the surface of the ground substantially parallel to the ground, and then, is transmitted between the receiving antenna 6 (RX) held substantially parallel to the ground and the ground. Through the narrow gap between the receiving antenna 6
(RX). The reception signal received by the reception antenna 6 passes through a balun transformer 7 for converting four lines into two lines, and after being amplified by a high-frequency amplifier circuit 8, is supplied to a sample-and-hold circuit 9. And is held in synchronization with the period (T + τ) sampling pulse supplied from.

【0018】受信波形信号は、上記サンプリング・ホー
ルドされることにより、その時間軸が(T/τ)倍(こ
の実施例では、20μsec / 0.1nsec =2×105 =20万
倍)に伸長された受信信号波形となる。なお、送信パル
スが上述した一定の送信周期( この実施例では20μsec)
で所定個数 (この実施例では2000個) 連続して送出され
ることにより、時間軸伸長された1 個の受信信号波形が
得られる。従って、このような時間軸伸長された受信波
形を1個得るのための所要間は40msec であり、受信信
号の検出範囲は、送信パルスの送出から 200nsec(=0.
1 nsec/個×2000個)の範囲である。
The received waveform signal is sampled and held so that its time axis is expanded by (T / τ) times (in this embodiment, 20 μsec / 0.1 nsec = 2 × 10 5 = 200,000 times). The received signal waveform. Note that the transmission pulse has the above-mentioned constant transmission cycle (20 μsec in this embodiment).
, And a predetermined number (2000 in this embodiment) is continuously transmitted, whereby one received signal waveform that is extended in the time axis is obtained. Therefore, the time required to obtain one such reception waveform extended on the time axis is 40 msec, and the detection range of the reception signal is 200 nsec (= 0.
1 nsec / piece × 2000 pieces).

【0019】20万倍の時間軸伸長を受けることにより、
数kHzの周波数帯域の低周波信号に変換された受信信号
波形は、低域通過濾波回路10を通過し、低周波増幅回
路11で固定された増幅利得の低周波増幅を受けたの
ち、可変利得増幅(AGC)回路12に供給され、ここ
で、ディジタル・シグナル・プロセッサ1によって制御
される可変利得の増幅を受ける。この可変利得の増幅を
受けた時間軸伸長されたディジタル受信信号波形は、A
/D変換回路13に供給され、ここで、5μsecの周期
でサンプリングされながらディジタル信号に変換され、
ディジタル・シグナル・プロセッサ13に供給される。
By undergoing a 200,000-fold time axis extension,
The received signal waveform converted to a low-frequency signal in a frequency band of several kHz passes through a low-pass filter circuit 10 and receives low-frequency amplification of an amplification gain fixed by a low-frequency amplification circuit 11, and then a variable gain. It is supplied to an amplification (AGC) circuit 12, where it is subjected to variable gain amplification controlled by the digital signal processor 1. The time-domain expanded digital reception signal waveform that has undergone the variable gain amplification is represented by A
/ D conversion circuit 13, where it is converted into a digital signal while being sampled at a period of 5 μsec,
The signal is supplied to the digital signal processor 13.

【0020】ディジタル・シグナル・プロセッサ1は、
D/A変換回路13から供給される時間軸伸長されてデ
ィジタル化された受信信号波形を受取る。この受信信号
波形は、図2の(C)に例示するようなものであり、デ
ィジタル・シグナル・プロセッサ1は、このような受信
信号波形中に出現する最初の極大値Vpfを検出する。具
体的な一例として、ディジタル・シグナル・プロセッサ
1は、受信波形信号の振幅が正の閾値Vthを越えてから
再びこの閾値Vth未満となるまでの区間内の最大値を、
この波形中に出現する最初の極大値Vpfとして検出す
る。
The digital signal processor 1 comprises:
It receives the time-domain expanded and digitized reception signal waveform supplied from the D / A conversion circuit 13. The received signal waveform is as illustrated in FIG. 2C, and the digital signal processor 1 detects the first maximum value Vpf that appears in such a received signal waveform. As a specific example, the digital signal processor 1 calculates the maximum value in the interval from when the amplitude of the received waveform signal exceeds the positive threshold Vth to when the amplitude again falls below the threshold Vth.
It is detected as the first maximum value Vpf appearing in this waveform.

【0021】ディジタル・シグナル・プロセッサ1は、
上記最初に出現した極大値Vpfと、入力回路(IN)1
aを介して予め設定中の所定のピーク値Vpp(この実施
例では、1volt)とを比較する。ディジタル・シグナル
・プロセッサ1は、可変利得増幅回路12に新たに設定
する増幅利得を比較結果がVpf<Vppの場合には増加さ
せ、比較結果がVpf>Vppの場合には減少させるための
利得制御信号を出力する。この利得制御信号は、D/A
変換回路14でアナログ信号に変換され、可変利得制御
回路12に設定される。
The digital signal processor 1 includes:
The first maximum value Vpf that appears first and the input circuit (IN) 1
A predetermined peak value Vpp (1 volt in this embodiment) that is being set in advance is compared via a. The digital signal processor 1 increases the gain to be newly set in the variable gain amplifier circuit 12 when the comparison result is Vpf <Vpp, and decreases the gain when the comparison result is Vpf> Vpp. Output a signal. This gain control signal is D / A
The signal is converted into an analog signal by the conversion circuit 14 and set in the variable gain control circuit 12.

【0022】ディジタル・シグナル・プロセッサ1は、
上記可変利得の制御によってVpfとVppとがほぼ等しく
なると、具体的には、両者の差の絶対値が所定の微小量
よりも小さくなると、利得制御信号の変更を停止する。
ディジタル・シグナル・プロセッサ1は、この状態にお
いて、時間軸伸長されディジタル化された受信信号波形
の立ち上がり部分の振幅が、ピーク値Vppの3〜4%値
として設定されている閾値Vth( 30mvolt〜40mvolt )
にほぼ等しくなった時点を受信パルスの出現時点tr と
して検出する。
The digital signal processor 1 comprises:
When Vpf and Vpp become substantially equal by the variable gain control, specifically, when the absolute value of the difference between the two becomes smaller than a predetermined minute amount, the change of the gain control signal is stopped.
In this state, the digital signal processor 1 sets the threshold Vth (30 mvolts to 40 mvolts) in which the amplitude of the rising portion of the digitized received signal waveform that has been extended on the time axis is set as 3 to 4% of the peak value Vpp. )
Is detected as the present time tr of the reception pulse.

【0023】ディジタル・シグナル・プロセッサ1は、
送信パルスの送信時点と受信パルスの出現時点tr との
時間差で、図3に示すように、予め定められている送信
アンテナ5(TX)の中心と受信アンテナ6(RX)の
中心との間の距離dを除算することにより、送信パルス
の地中における伝播時間を算定する。ディジタル・シグ
ナル・プロセッサ1は、この算定した伝播速度と、含水
率測定部15で測定された地表の含水率とから、地表の
乾燥密度と、締め固め度とを算定し、表示装置などで構
成される出力回路(OUT)1b に出力する。
The digital signal processor 1 comprises:
As shown in FIG. 3, the time difference between the transmission time point of the transmission pulse and the output time point tr of the reception pulse is between the predetermined center of the transmission antenna 5 (TX) and the predetermined center of the reception antenna 6 (RX). By dividing the distance d, the propagation time of the transmission pulse in the ground is calculated. The digital signal processor 1 calculates the dry density of the ground surface and the degree of compaction from the calculated propagation speed and the water content of the ground measured by the water content measuring unit 15, and comprises a display device and the like. Output circuit (OUT) 1b.

【0024】以上、電波の伝播経路長を送信アンテナと
受信アンテナのそれぞれの中心間の距離とする構成を例
示した。しかしながら、この距離に土中への侵入深さを
考慮して設定した適宜な係数を乗算したものを伝播経路
長とすることもできる。
In the above, the configuration in which the propagation path length of the radio wave is the distance between the centers of the transmitting antenna and the receiving antenna has been exemplified. However, a value obtained by multiplying this distance by an appropriate coefficient set in consideration of the depth of penetration into the soil may be used as the propagation path length.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明に係
わる土の乾燥密度の測定装置は、受信波形信号のピーク
値を基準とする代わりに、最初に出現する振幅の極大値
を基準とする構成であるから、受信波形中に真先に出現
する高周波の成分に基づく高い測定精度を実現できる。
As described in detail above, the apparatus for measuring the dry density of soil according to the present invention uses the first maximum value of the amplitude instead of the peak value of the received waveform signal as a reference. With such a configuration, it is possible to realize high measurement accuracy based on a high-frequency component appearing first in a received waveform.

【0026】すなわち、低周波成分ほど地表から離れた
深く長い伝播経路を経て、しかも小さな伝播速度で、遅
れて受信アンテナに到達するため、時間の経過に伴って
このような低周波成分の合成によって形成される受信信
号の波形は複雑化し、信号波形の最初の立ち上がりから
遅れて出現するピーク値はその出現時点や振幅に関して
大きな変動が生ずる。
That is, the lower frequency components reach the receiving antenna with a slower propagation speed through the deeper and longer propagation path farther from the ground surface and at a lower propagation speed. The waveform of the received signal to be formed becomes complicated, and the peak value appearing later than the first rising edge of the signal waveform has a large fluctuation with respect to the present time and the amplitude.

【0027】従って、このような大きな変動を伴うピー
ク値を基準値とする代わりに、早期に出現する最初の極
大値を基準値とすることにより、受信時点の検出精度を
高めることができる。そして、このような地中の浅い部
分を伝播してくる高周波成分に着目したことに合わせ
て、好適には、電波の伝播距離を送信アンテナの中心と
受信アンテナの中心との間の最短距離で近似される。
Therefore, instead of using the peak value accompanied by such a large fluctuation as the reference value, the first local maximum value appearing earlier is used as the reference value, so that the detection accuracy at the time of reception can be improved. And, focusing on the high-frequency component propagating in such a shallow part of the ground, preferably, the propagation distance of the radio wave is determined by the shortest distance between the center of the transmitting antenna and the center of the receiving antenna. Approximated.

【0028】また、可変利得増幅回路の制御をディジタ
ル・シグナル・プロセッサなどで実現される制御・検出
部で行う構成であるから、受信波形信号中に出現するピ
ーク値ではなくて最初の極大値をほぼ所定値に保つよう
に増幅利得を制御するという込み入った機能を簡易な構
成のもとに容易に実現できる。
Since the control of the variable gain amplifier circuit is performed by a control / detection unit realized by a digital signal processor or the like, the first local maximum value is used instead of the peak value appearing in the received waveform signal. The complicated function of controlling the amplification gain so as to keep it at a substantially predetermined value can be easily realized with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の土の乾燥密度の測定装置の
構成を示す機能ブロック図である。
FIG. 1 is a functional block diagram showing a configuration of an apparatus for measuring a soil dry density according to an embodiment of the present invention.

【図2】送信アンテナから地中に送出される送信パルス
波形と、地中を伝播したのち受信アンテナに受信される
受信波形を例示する波形図である。
FIG. 2 is a waveform diagram illustrating a transmission pulse waveform transmitted from a transmission antenna to the ground and a reception waveform transmitted to the reception antenna after propagating through the ground.

【図3】送信パルス信号に含まれる各周波数成分に応じ
て地中への侵入深さと、伝播経路長が異なることを説明
するための概念図である。
FIG. 3 is a conceptual diagram for explaining that a penetration depth into the ground and a propagation path length are different depending on each frequency component included in a transmission pulse signal.

【符号の説明】[Explanation of symbols]

1 ディジタル・シグナル・プロセッサ 2 タイミング制御回路 3 送信回路 5 送信アンテナ 6 受信アンテナ 9 サンプル・ホールド回路 12 可変利得増幅回路 15 含水率測定部 1 Digital signal processor 2 Timing control circuit 3 Transmitter circuit 5 Transmit antenna 6 Receive antenna 9 Sample and hold circuit 12 Variable gain amplifier circuit 15 Moisture content measurement unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】所定の送信周期のパルス状の電気信号を発
生し出力する送信回路と、この送信回路から出力された
パルス状の電気信号を地中に送信する送信アンテナと、
地中を伝播した電気信号を受信する受信アンテナと、こ
の受信アンテナに受信された受信電気信号の波形から受
信時点を検出する受信回路と、前記電気信号の送信から
受信時点までの経過時間から電気信号の地中の伝播速度
を算定し、この算定した伝播速度と地中の含水率とから
この土の乾燥密度を算定するプロセッサとを備えた土の
乾燥密度の測定装置において、 前記受信回路は、 前記所定の送信周期よりも僅かに長いサンプリング周期
で前記受信電気信号をサンプルホールドしてゆくことに
よりこの受信電波の時間軸を伸長するサンプルホールド
回路と、 この時間軸が伸長された受信電気信号を増幅する可変利
得増幅回路と、 この増幅された受信電気信号の波形をディジタル波形信
号に変換するD/A変換回路と、 このディジタル波形信号中に最初に出現する振幅の極大
値をほぼ所定値に保つように前記可変利得増幅回路の増
幅利得を制御すると共に、このディジタル波形信号の振
幅が前記所定値に対する所定の比率の閾値に最初に達し
た時点を前記電気信号の受信時点として検出する制御・
検出部とを備えたことを特徴とする土の乾燥密度の測定
装置。
A transmitting circuit for generating and outputting a pulsed electric signal having a predetermined transmission cycle; a transmitting antenna for transmitting the pulsed electric signal output from the transmitting circuit to the ground;
A receiving antenna that receives an electric signal that has propagated in the ground, a receiving circuit that detects a receiving time point from a waveform of the received electric signal received by the receiving antenna, and an electric circuit that detects an elapsed time from the transmission of the electric signal to the receiving time point. A processor for calculating the underground propagation speed of the signal and a processor for calculating the dry density of the soil from the calculated propagation speed and the underground moisture content, wherein the receiving circuit includes: A sample and hold circuit for extending the time axis of the received radio wave by sampling and holding the received electric signal at a sampling period slightly longer than the predetermined transmission cycle; and a received electric signal having the time axis extended. A variable gain amplifier circuit for amplifying the digital signal; a D / A converter circuit for converting the waveform of the amplified received electric signal into a digital waveform signal; The amplification gain of the variable gain amplifier circuit is controlled so as to keep the maximum value of the amplitude first appearing in the signal at a substantially predetermined value, and the amplitude of the digital waveform signal is initially set to a threshold of a predetermined ratio to the predetermined value. Control to detect the point in time when the
An apparatus for measuring dry density of soil, comprising: a detection unit.
【請求項2】 請求項1において、 前記プロセッサは、前記電気信号の送信から受信時点ま
での経過時間で前記送信アンテナの中心と受信アンテナ
の中心との間の距離を除算することにより、前記地中の
電波の伝播速度を算定することを特徴とする土の乾燥密
度の測定装置。
2. The processor according to claim 1, wherein the processor divides a distance between a center of the transmitting antenna and a center of the receiving antenna by an elapsed time from transmission of the electric signal to reception of the electric signal. An apparatus for measuring the dry density of soil, which calculates the propagation speed of radio waves in the ground.
【請求項3】前記所定の閾値は、前記所定値の3乃至4
%の値に設定されたことを特徴とする土の乾燥密度の測
定装置。
3. The method according to claim 2, wherein the predetermined threshold is 3 to 4 of the predetermined value.
An apparatus for measuring dry density of soil, wherein the apparatus is set to a value of%.
【請求項4】所定の送信周期のパルス状の電気信号を発
生し出力する送信回路と、この送信回路から出力された
パルス状の電気信号を地中に送信する送信アンテナと、
地中を伝播した電気信号を受信する受信アンテナと、こ
の受信アンテナに受信された受信電気信号の波形から受
信時点を検出する受信回路と、前記電気信号の送信から
受信時点までの経過時間から地中の電波の伝播速度を算
定する地中の電波の伝播速度の測定装置において、 前記受信回路は、 前記所定の送信周期よりも僅かに長いサンプリング周期
で前記受信電気信号をサンプルホールドしてゆくことに
よりこの受信電気信号の時間軸を伸長するサンプルホー
ルド回路と、 この時間軸が伸長された受信電気信号を増幅する可変利
得増幅回路と、 この増幅された受信電気信号の波形をディジタル波形信
号に変換するD/A変換回路と、 このディジタル波形信号中に最初に出現する振幅の極大
値をほぼ所定値に保つように前記可変利得増幅回路の増
幅利得を制御すると共に、このディジタル波形信号の振
幅が前記所定値に対する所定の比率の閾値に最初に達し
た時点を前記受信時点として検出する制御・検出部とを
備えたことを特徴とする地中の電波の伝播速度の測定装
置。
4. A transmission circuit for generating and outputting a pulsed electric signal having a predetermined transmission cycle, a transmission antenna for transmitting the pulsed electric signal output from the transmission circuit to the ground,
A receiving antenna that receives an electric signal that has propagated in the ground, a receiving circuit that detects a reception time point from a waveform of the received electric signal received by the reception antenna, and a ground circuit based on an elapsed time from the transmission of the electric signal to the reception time point. In the apparatus for measuring the propagation speed of an underground radio wave for calculating the propagation speed of an underground radio wave, the receiving circuit samples and holds the received electric signal at a sampling period slightly longer than the predetermined transmission period. A sample-and-hold circuit that extends the time axis of the received electric signal, a variable gain amplifier circuit that amplifies the received electric signal with the extended time axis, and converts the waveform of the amplified received electric signal into a digital waveform signal A D / A conversion circuit, and a variable gain amplifying circuit that keeps the maximum value of the amplitude first appearing in the digital waveform signal at a substantially predetermined value. And a control / detection unit for detecting the time when the amplitude of the digital waveform signal first reaches a threshold of a predetermined ratio with respect to the predetermined value as the reception time. A device for measuring the propagation speed of radio waves underground.
【請求項5】所定の送信周期のパルス状の電気信号を地
中に送信し、地中を伝播した電気信号を受信し、この受
信された受信電気信号の波形から受信時点を検出し、前
記電気信号の送信から受信時点までの経過時間から地中
の電波の伝播速度を算定し、この算定した伝播速度と地
中の含水率とからこの土の乾燥密度を算定する土の乾燥
密度の測定方法において、 前記地中を伝播した電波信号を受信する際に、 前記所定の送信周期よりも僅かに長いサンプリング周期
で前記受信電気信号をサンプルホールドしてゆくことに
よりこの受信電気信号の時間軸を伸長し、 この時間軸が伸長された受信電気信号を可変利得増幅回
路で増幅し、 この増幅された受信電気信号の波形をディジタル波形信
号に変換し、 このディジタル波形信号中に最初に出現する振幅の極大
値をほぼ所定値に保つように前記可変利得増幅回路の増
幅利得を制御すると共に、このディジタル波形信号の振
幅が前記所定値に対する所定の比率の閾値に最初に達し
た時点を前記受信時点として検出することを特徴とする
土の乾燥密度の測定方法。
5. A pulse-like electric signal having a predetermined transmission cycle is transmitted into the ground, an electric signal transmitted through the ground is received, and a reception time point is detected from a waveform of the received electric signal. Calculate the propagation speed of radio waves in the ground from the elapsed time from the transmission of electrical signals to the time of reception, and calculate the dry density of the soil from the calculated propagation speed and the moisture content in the ground. In the method, when receiving the radio signal propagated in the ground, the time axis of the received electric signal is sampled and held by sampling and holding the received electric signal at a sampling period slightly longer than the predetermined transmission period. The received electric signal whose time axis is expanded is amplified by a variable gain amplifier circuit, and the waveform of the amplified received electric signal is converted into a digital waveform signal, which is first output in this digital waveform signal. Controlling the amplification gain of the variable gain amplifying circuit so as to keep the maximum value of the amplitude to be approximately a predetermined value, and the point in time when the amplitude of the digital waveform signal first reaches a threshold of a predetermined ratio to the predetermined value. A method for measuring the dry density of soil, which is detected as a reception point.
JP14467297A 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil Expired - Lifetime JP3558492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14467297A JP3558492B2 (en) 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14467297A JP3558492B2 (en) 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil

Publications (2)

Publication Number Publication Date
JPH10318942A true JPH10318942A (en) 1998-12-04
JP3558492B2 JP3558492B2 (en) 2004-08-25

Family

ID=15367565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14467297A Expired - Lifetime JP3558492B2 (en) 1997-05-19 1997-05-19 Apparatus and method for measuring dry density of soil

Country Status (1)

Country Link
JP (1) JP3558492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833080A1 (en) * 2001-12-05 2003-06-06 France Etat Ponts Chaussees METHOD FOR DETERMINING THE WATER CONTENT OF A MATERIAL AND MEASURING DEVICE
WO2009069999A3 (en) * 2007-11-30 2009-10-15 Mimos Berhad Method for determination of chemical ions
CN102721628A (en) * 2012-06-21 2012-10-10 广西壮族自治区中国科学院广西植物研究所 Method for measuring soil bulk density

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833080A1 (en) * 2001-12-05 2003-06-06 France Etat Ponts Chaussees METHOD FOR DETERMINING THE WATER CONTENT OF A MATERIAL AND MEASURING DEVICE
WO2003048750A1 (en) * 2001-12-05 2003-06-12 Laboratoire Central Des Ponts Et Chaussees Method for determining water content of a material and measuring device
GB2399182A (en) * 2001-12-05 2004-09-08 France Etat Ponts Chaussees Method for determining water content of a material and measuring device
GB2399182B (en) * 2001-12-05 2005-06-08 France Etat Ponts Chaussees A method of determining the water content of a material, and measuring device
WO2009069999A3 (en) * 2007-11-30 2009-10-15 Mimos Berhad Method for determination of chemical ions
CN102721628A (en) * 2012-06-21 2012-10-10 广西壮族自治区中国科学院广西植物研究所 Method for measuring soil bulk density

Also Published As

Publication number Publication date
JP3558492B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
Webster A pulsed ultrasonic distance measurement system based upon phase digitizing
US4905008A (en) Radar type underground searching apparatus
CA1332458C (en) Distance and level measuring system
KR20000057568A (en) Method and device for ultrasonic ranging
JP2008145236A (en) Equivalent-time sampling type radar
JP2000508056A (en) measuring device
JP3558492B2 (en) Apparatus and method for measuring dry density of soil
JP3558491B2 (en) Apparatus and method for transmitting and receiving pulsed signals into the ground
JP2001264419A (en) Distance detector
US4360928A (en) Non-interfering on-line receiver test system
JP2520042B2 (en) Underground radar tomography device
JPS63120271A (en) Radar-type underground investigation apparatus
JPH0471190B2 (en)
EP0980009B1 (en) Radar
JPH10300843A (en) Pulse radar distance measuring device and pulse radar distance measuring method
JP4609742B2 (en) Subsurface radar exploration device and exploration data collection method
JPS61260109A (en) Measuring instrument for concrete thickness
JPH11183635A (en) Apparatus and method for detecting hidden object in ground
JP3535284B2 (en) Method and apparatus for measuring the degree of compaction of soil
JPS63159781A (en) Buried body surveying device
JP3243052B2 (en) Sampling receiver
JPH11118943A (en) Direct signal processor for search radar apparatus
JPH02262082A (en) Fish-finder
RU2058558C1 (en) Radio signal amplitude and phase measuring device
JPH0227286A (en) Sampling method and apparatus of underground radar

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

EXPY Cancellation because of completion of term