JPS60173358A - Hydrogen feeder - Google Patents

Hydrogen feeder

Info

Publication number
JPS60173358A
JPS60173358A JP59248289A JP24828984A JPS60173358A JP S60173358 A JPS60173358 A JP S60173358A JP 59248289 A JP59248289 A JP 59248289A JP 24828984 A JP24828984 A JP 24828984A JP S60173358 A JPS60173358 A JP S60173358A
Authority
JP
Japan
Prior art keywords
hydrogen
pump
supply device
pipe
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248289A
Other languages
Japanese (ja)
Inventor
バルター ペシユカ
ゴツトフリート シユナイダー
ビリイ ニーラーチエカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOITSUCHIE FUORUSHIYUNGUSU UNTO FUERUZUTSUHISU ANSHIYUTARUTO HIYURU RUFUTO UNTO RAUMU FUAARUTO EE FUAU
FUORUSHIYUNGUSU UNTO FUERUZUTS
Original Assignee
DOITSUCHIE FUORUSHIYUNGUSU UNTO FUERUZUTSUHISU ANSHIYUTARUTO HIYURU RUFUTO UNTO RAUMU FUAARUTO EE FUAU
FUORUSHIYUNGUSU UNTO FUERUZUTS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOITSUCHIE FUORUSHIYUNGUSU UNTO FUERUZUTSUHISU ANSHIYUTARUTO HIYURU RUFUTO UNTO RAUMU FUAARUTO EE FUAU, FUORUSHIYUNGUSU UNTO FUERUZUTS filed Critical DOITSUCHIE FUORUSHIYUNGUSU UNTO FUERUZUTSUHISU ANSHIYUTARUTO HIYURU RUFUTO UNTO RAUMU FUAARUTO EE FUAU
Publication of JPS60173358A publication Critical patent/JPS60173358A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流入口及び吐出口を有するポンプを具備し、前
記流入[1か超低温タンク内の液体水素と連通し、前記
吐出口に水素エンジンに至る供給管が接続されている、
水素エンジンに対する水素供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention comprises a pump having an inlet and an outlet, the inlet [1] communicating with liquid hydrogen in a cryogenic tank, and a hydrogen engine connected to the outlet. The supply pipe leading to is connected,
The present invention relates to a hydrogen supply device for a hydrogen engine.

〔従来技術と問題点〕[Conventional technology and problems]

水素エンジン、特に、内部で混合物を形成する水素エン
ジン、即ち、ディーゼルエンジンのように上死点におい
て高圧で水素が噴射されるエンジン用として液体水素を
超低温貯蔵する水素供給装置の場合、ポンプが超低温タ
ンク内に配設される液体水素高圧ポンプであり、このポ
ンプが當に水素の沸点域の作動温度まで冷却された状態
に維持されることは公知である。これにより、長い休止
期間後でも液体水素高圧ポンプを始動さセ、水素エンジ
ンに高圧(30〜100バ一ル以上)の水素を供給する
ことかできる。
In the case of hydrogen engines, especially hydrogen engines that form a mixture internally, i.e., hydrogen supply devices that store liquid hydrogen at an ultra-low temperature for engines such as diesel engines where hydrogen is injected at high pressure at top dead center, the pump is at an ultra-low temperature. It is known that high-pressure liquid hydrogen pumps are arranged in tanks, which pumps are kept cooled to operating temperatures in the boiling range of hydrogen. This makes it possible to start the liquid hydrogen high pressure pump even after a long rest period and supply high pressure (30 to 100 bar or more) hydrogen to the hydrogen engine.

この構成の欠点として、液体水素高圧ポンプを超低温タ
ンク内に組み込むためには前記タンクに大きい開口部を
設ける必要があるため、タンクの絶縁性が著しく損なわ
れる。また、液体水素高圧ポンプを作動させるのに必要
な、超低温タンク内枳二達する接続管か余分な熱的短絡
路を形成する。
A disadvantage of this configuration is that in order to integrate the liquid hydrogen high pressure pump into the cryogenic tank, a large opening must be provided in the tank, which significantly impairs the insulation properties of the tank. It also creates an extra thermal short circuit or connecting pipe that reaches the inside of the cryogenic tank, which is necessary to operate the liquid hydrogen high-pressure pump.

従って、特別な構成コストを投入しない限り、本来小さ
い自動車用水素エンジンの超低温タンクの一般に高い気
化率か更に著しく高くなる。更に、超低温タンクに組み
込んだ場合、液体水素高圧タンクへの接近は殆んど不可
能であるから、作動状態でのタンク調整は非常に困難で
あり、整備のためには液体水素高圧タンクを超低温タン
クから取り出さねばならない。
Therefore, the generally high evaporation rates of the cryogenic tanks of automotive hydrogen engines, which are small in nature, are even significantly higher, unless special construction costs are invested. Furthermore, when built into an ultra-low temperature tank, it is almost impossible to access the high-pressure liquid hydrogen tank, making it extremely difficult to adjust the tank while it is in operation. Must be removed from the tank.

本発明の目的は、超低温タンクの気化率が比較的低く、
液体水素高圧ポンプへの接近か容易となるように冒頭で
述べた水素供給装置を改良することにある。
The purpose of the present invention is to have a relatively low vaporization rate in a cryogenic tank;
The object of the present invention is to improve the hydrogen supply device mentioned at the beginning so that the liquid hydrogen high-pressure pump can be easily accessed.

〔問題点を解決するための手段及び作用リノ果〕この目
的を、本発明では、冒頭記載のような水素供給装置にお
いて、前記ポンプを超低温タンクとは別の超低温容器に
収納し、超低温タンクから超低温容器に低温の気体状水
素を導入するとともにポンプを冷却するための冷却管を
設けることにより達成する。
[Means and effects for solving the problem] In the present invention, in the hydrogen supply device as described at the beginning, the pump is housed in a cryogenic container separate from the cryogenic tank, and the pump is stored in a cryogenic container separate from the cryogenic tank. This is achieved by introducing low-temperature gaseous hydrogen into the ultra-low temperature container and providing a cooling pipe to cool the pump.

超低温タンク及びポンプをこのように構成すれば、断!
゛ハ性の極めて優れた超低温タンクが得ら、il。
If you configure the ultra-low temperature tank and pump in this way, it will be a no-brainer!
An ultra-low temperature tank with extremely excellent properties is obtained.

るとともにポンプへの接続管によって形成される熱的短
絡路を回避することができるから、超低温タンクの気化
率は極めてて小さくなる。本発明の構成では、気化率が
このように低いにもかかわらず発生ずる低温の水素ガス
を、特に自動車の停止中に超低温容器内のポンプを冷却
するために利用するこ点ができる。更に、整備や調整の
ためのポンプへの接近が著しく容易である。
The evaporation rate of the cryogenic tank is extremely low, since thermal short circuits formed by the connections to the pump can be avoided. With the configuration of the present invention, the low temperature hydrogen gas generated despite such a low vaporization rate can be used to cool the pump in the cryogenic container, especially when the vehicle is stopped. Furthermore, access to the pump for maintenance and adjustment is significantly easier.

本発明の好ましい実施例では気体状水素を超低温容器か
ら吸い込むために超低温容器内に開口する吸込み管と、
吐出管とを具備する補助気体ポンプを設けるのが有利で
あり、このように構成ずれは、超低温容器−2の低温水
素カスの流量を高めるごとにより冷却能率を高め、必要
に応してポンプを急速冷却することかできる。
A preferred embodiment of the invention includes a suction pipe opening into the cryogenic vessel for drawing gaseous hydrogen from the cryogenic vessel;
It is advantageous to provide an auxiliary gas pump equipped with a discharge pipe, and this configuration difference can be achieved by increasing the cooling efficiency by increasing the flow rate of the low-temperature hydrogen gas in the cryogenic container-2, and by switching the pump as necessary. Can be rapidly cooled.

補助気体ポンプの吐出管をポンプから超低温タンクに至
る吸込み管に開口させるのが好ましい。
Preferably, the discharge pipe of the auxiliary gas pump opens into a suction pipe leading from the pump to the cryogenic tank.

これにより水素は超低温容器を通過した後再び超低温タ
ンクに還流するから、閉成冷却回路が得られ、水素の損
失がなくなる。また、超低温容器内で温度上昇し、液体
水素に浸漬している吸込め管を通って超低温タンクに還
流する水素ガスは液体水素中を通過する際に再び冷却さ
れる。水素カス還流用の吸込み管を採用したことの他の
利点として、熱的短絡路を形成する超低温タンクへの導
管数を極力少なくすることかできる。
This allows the hydrogen to flow back into the cryogenic tank after passing through the cryogenic container, resulting in a closed cooling circuit and eliminating hydrogen loss. Further, hydrogen gas whose temperature rises in the cryogenic container and returns to the cryogenic tank through the suction pipe immersed in liquid hydrogen is cooled again as it passes through the liquid hydrogen. Another advantage of using a suction pipe for hydrogen gas reflux is that the number of pipes leading to the cryogenic tank forming a thermal short circuit can be minimized.

本発明の実施態様として、超低温タンクと超低温容器と
の間で冷却管に第1制流手段を設けることが好ましい。
As an embodiment of the present invention, it is preferable to provide a first flow control means in the cooling pipe between the cryogenic tank and the cryogenic container.

これにより、例えばポンプか液体水素を供給し、従って
ポンプを通過する液体水素によって直接冷却されるとき
、又はポンプを温度上昇させたいときに気体状水素によ
るポンプの冷却を中断することができる。
This makes it possible, for example, to interrupt the cooling of the pump with gaseous hydrogen when the pump supplies liquid hydrogen and is therefore directly cooled by the liquid hydrogen passing through the pump, or when it is desired to raise the temperature of the pump.

ポンプの吸込め管に第2制流手段を設けることか好まし
い。これにより、例えば自動車の停止中に第1制流手段
とともに超低温タンクを閉鎖することができく。
It is preferable to provide a second flow control means in the suction pipe of the pump. This makes it possible to close the cryogenic tank together with the first flow restriction means, for example, while the vehicle is stopped.

本発明の他の実施例では、第1制流手段と超低温容器と
の間で冷却管から分岐し、冷31(+管からのガス流だ
けを通過させる逆止弁を具備する一方向流路をポンプの
吸込み管に開口させる。この一方向流路の別の作用効果
として、特殊な場合にポンプが超低温タンクから気体状
水素をも供給することができ、しかも、気体状水素が吸
込み管から冷却管に達して超低温容器冷却回路が短絡す
るのを防止する。
In another embodiment of the present invention, a one-way flow path is provided between the first flow control means and the cryogenic container, which branches from the cooling pipe and is equipped with a check valve that allows only the gas flow from the cooling pipe to pass through. Another advantage of this one-way flow path is that in special cases the pump can also supply gaseous hydrogen from the cryogenic tank; Prevents the cryogenic vessel cooling circuit from shorting by reaching the cooling pipes.

本発明の特殊な実施例はポンプを冷却するために第1制
流手段及び第2制流手段を開放すると同時に補助気体ポ
ンプを作動させる制御装置を設けたことを特徴とする。
A special embodiment of the invention is characterized in that a control device is provided which operates the auxiliary gas pump at the same time as opening the first flow restriction means and the second flow restriction means in order to cool the pump.

〔実施例〕〔Example〕

以下添付図面に示す実施例に沿って本発明のその他の特
徴及び利点を説明する。
Other features and advantages of the present invention will be described below with reference to embodiments shown in the accompanying drawings.

図示の装置はその一部を液体水素12で満たされた超低
温タンク10を具備する。超低温タンク10内で液体水
素12に浸漬された吸込み管14は液体水素高圧ポンプ
16の流入口に達しており、超低温タンク]Oと液体水
素高圧ポンプ16との間に側流手段18を具備する。液
体水素高圧ポンプ16の吐出口には(略示するにとどめ
た)水素エンジン20に至る供給管22が設けてあり、
この供給管22は水素エンジン20に向かってのみ流動
を許容する逆止弁24を具備する。逆止弁24と水素エ
ンジン20との間に側流手段26を設ける。
The illustrated apparatus comprises a cryogenic tank 10 partially filled with liquid hydrogen 12. The suction pipe 14 immersed in liquid hydrogen 12 in the cryogenic tank 10 reaches the inlet of the liquid hydrogen high-pressure pump 16, and a side flow means 18 is provided between the cryogenic tank]O and the liquid hydrogen high-pressure pump 16. . A supply pipe 22 leading to a hydrogen engine 20 (only shown briefly) is provided at the discharge port of the liquid hydrogen high-pressure pump 16.
This supply pipe 22 is equipped with a check valve 24 that allows flow only toward the hydrogen engine 20. A side flow means 26 is provided between the check valve 24 and the hydrogen engine 20.

逆止弁24と側流手段26との間で、逆止弁32を具備
し且つ気体状水素の中間貯蔵手段28に至る一方向流路
30が分岐する。他に逆止弁36を具備する一方向流路
34が中間貯蔵手段28から供給管22に至り、一方向
流路30の分岐点と側流手段26との間で前記供給管2
2に開口する。
Between the check valve 24 and the side flow means 26, a one-way flow path 30, which is provided with a check valve 32 and leads to an intermediate storage means 28 for gaseous hydrogen, branches off. A one-way flow path 34 , further provided with a check valve 36 , leads from the intermediate storage means 28 to the supply pipe 22 , between the branching point of the one-way flow path 30 and the side flow means 26 .
Opens at 2.

超低温容器38内に配設した液体水素高圧タンク16を
冷却するため、超低温タンク1oがら超低温容器38に
至る冷却管4oを超低温タンク10内において液体水素
12の−F方に存在する気体状水素からなる圧縮気体中
に突出させる。冷却管40は流量調節のための側流手段
4oをも具備する。吸込み兜46及び吐出管48を具備
する補助気体ポンプ44を設け、吸込み管46を超低温
容器38に開口させ、吐出管48を側流手段18と液体
水素高圧ポンプ1Gとの間で吸込み管14にそれぞれ開
口させる。
In order to cool the liquid hydrogen high-pressure tank 16 disposed inside the ultra-low temperature container 38, a cooling pipe 4o leading from the ultra-low temperature tank 1o to the ultra-low temperature container 38 is connected to the gaseous hydrogen present on the -F side of the liquid hydrogen 12 in the ultra-low temperature tank 10. Extrude into compressed gas. The cooling pipe 40 also includes side flow means 4o for flow rate regulation. An auxiliary gas pump 44 having a suction helmet 46 and a discharge pipe 48 is provided, the suction pipe 46 is opened into the cryogenic container 38, and the discharge pipe 48 is connected to the suction pipe 14 between the side flow means 18 and the liquid hydrogen high pressure pump 1G. Open each.

側流手段42と超低温容器38との間で逆止弁32を具
備する一方向流路5oが冷却管4oがら分岐し、前記一
方向流路5oが冷却管4oがら分岐し、前記一方向流路
511吐出管48の接続点と液体水素高圧ポンプ16と
の間で吸込み管14に開「1する。
A one-way flow path 5o provided with a check valve 32 is branched from the cooling pipe 4o between the side flow means 42 and the cryogenic container 38, and the one-way flow path 5o is branched from the cooling pipe 4o, and the one-way flow path 5o is branched from the cooling pipe 4o. A line 511 is opened to the suction pipe 14 between the connection point of the discharge pipe 48 and the liquid hydrogen high-pressure pump 16.

吸込み管14の側流手段18、供給管22の側流手段2
6及び冷却管40の側流手段42は種々の態様で作動さ
せることができる。例えば、側流手段18.26.42
を電気的に操作できる磁気弁として実施してもよい。
Side flow means 18 of the suction pipe 14, side flow means 2 of the supply pipe 22
6 and the side flow means 42 of the cooling pipe 40 can be operated in various ways. For example, side flow means 18.26.42
may also be implemented as an electrically operable magnetic valve.

液体水素高圧ポンプ16及び補助気体ポンプ44には種
々の駆動手段を設けることができる。
The liquid hydrogen high pressure pump 16 and the auxiliary gas pump 44 can be provided with various driving means.

好ましくは、補助気体ポンプ44には電気的駆動手段を
、液体水素高圧ポンプ16には油圧式駆動手段を装備す
る。
Preferably, the auxiliary gas pump 44 is equipped with an electric drive means and the liquid hydrogen high pressure pump 16 is equipped with a hydraulic drive means.

水素エンジン2oが停止し、水素供給装置が作動しない
状態では側流手段+8.42.26が閉鎖状態となる。
When the hydrogen engine 2o is stopped and the hydrogen supply device is not operating, the side flow means +8.42.26 is in a closed state.

超低温容器38内に収納されている液体水素高圧ポンプ
16は冷却されず、従って温度が上昇する。
The liquid hydrogen high pressure pump 16 housed in the cryogenic container 38 is not cooled and therefore its temperature increases.

液体水素の沸点域に相当する操作温度以上の温度では液
体水素高圧ポンプ16が正しく作動せず1、従って水素
エンジン2oを作動させるのに必要な高圧の水素を供給
できないから、水素エンジン20を始動させる前に操作
温度まで冷却しなければならない。このため、冷却管4
oの制流手段42及び吸込み管14の側流手段18を開
放すると開時に補助気体ポンプ44を作動させる。超低
温タンク10中の液体水素12の上方に圧縮気体を形成
している低温水素ガスが冷却管40を通って超低温容器
38に吸い込まれて液体水素高圧ポンプ16を循j3a
”L、その結果、液体水素高圧ポンプ16が冷却される
。その結果温度上昇した水素ガスは補助気体ポンプ44
により吸込み管46を通って超低温容器38から吸引放
出され、吐出管48を通って吸込み管14へ押し込まれ
る。吸込み管14から液体水素12中に浸漬している吸
込み管14を通って再び超低温タンク10に還流し、こ
の際、液体水素12中に吸い込まれるから、液体水素に
よって冷却され、再び冷却媒体として圧縮気体中に補給
される。
At temperatures above the operating temperature corresponding to the boiling point region of liquid hydrogen, the liquid hydrogen high-pressure pump 16 will not operate properly 1 and therefore cannot supply the high-pressure hydrogen necessary to operate the hydrogen engine 2o, so the hydrogen engine 20 is started. It must be cooled to operating temperature before being used. For this reason, the cooling pipe 4
When the flow restricting means 42 of O and the side flow means 18 of the suction pipe 14 are opened, the auxiliary gas pump 44 is activated. The low-temperature hydrogen gas forming a compressed gas above the liquid hydrogen 12 in the ultra-low temperature tank 10 is sucked into the ultra-low temperature container 38 through the cooling pipe 40 and circulated through the liquid hydrogen high pressure pump 16.
"L, as a result, the liquid hydrogen high pressure pump 16 is cooled. As a result, the hydrogen gas whose temperature has increased is transferred to the auxiliary gas pump 44.
The liquid is sucked out from the cryogenic container 38 through the suction pipe 46 and forced into the suction pipe 14 through the discharge pipe 48 . The suction pipe 14 passes through the suction pipe 14 immersed in the liquid hydrogen 12 and returns to the ultra-low temperature tank 10. At this time, since it is sucked into the liquid hydrogen 12, it is cooled by the liquid hydrogen and compressed as a cooling medium again. Replenished in gas.

この冷却プロセスは少なくとも液体水素高圧ポンプ16
がほぼその作動温度に達し、必要な高圧の水素が水素エ
ンジン20に供給可能となり、供電及び側流手段26の
開放で水素エンジン2oの始動が可能となるまで継続さ
れる。中間貯蔵手段28はこの時均圧容器として作用す
るから、水素エンジン20の始動前に必要な高圧か形成
される。
This cooling process includes at least the liquid hydrogen high pressure pump 16
reaches approximately its operating temperature, the necessary high-pressure hydrogen can be supplied to the hydrogen engine 20, and this continues until the hydrogen engine 2o can be started by supplying electricity and opening the side flow means 26. The intermediate storage means 28 then acts as a pressure equalization vessel, so that the necessary high pressure is built up before starting the hydrogen engine 20.

また、水素エンジン20を停止させる前に適正なタイミ
ングで供給管22の側流手段26を締め切れば、中間貯
蔵手段28と液体水素高圧ポンプ16との間に逆止弁2
4が介在するから、停止期間中、中間貯蔵手段28内に
水素がか高圧下に保持され、この高圧は水素エンジン2
0の次の始動に充分なレベルにあり、水素エンジン20
の始動時又はその直後に作動温度レベルにある液体水素
高圧ポンプ16を作動させればよい。
Furthermore, if the side flow means 26 of the supply pipe 22 is closed off at an appropriate timing before stopping the hydrogen engine 20, a check valve 22 can be installed between the intermediate storage means 28 and the liquid hydrogen high pressure pump 16.
4, hydrogen is maintained under high pressure in the intermediate storage means 28 during the shutdown period, and this high pressure
Hydrogen engine 20
The liquid hydrogen high pressure pump 16, which is at the operating temperature level, may be operated at or immediately after the start-up of the liquid hydrogen pump 16.

一方向流路50を設けたから、作動温度まで冷却された
液体水素高圧ポンプ1Gとともに気体状水素をも供給で
き、この場合、気体状水素を吸込み管14の側流手段1
8が締め切られた状態で冷却管40及び一方向流路50
を通って液体水素高圧ポンプ16に供給することができ
る。
Since the one-way flow path 50 is provided, gaseous hydrogen can also be supplied together with the liquid hydrogen high-pressure pump 1G cooled to the operating temperature.
8 is closed, the cooling pipe 40 and the one-way flow path 50
Liquid hydrogen can be supplied to the high-pressure pump 16 through.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の水素供給装置を略示する構成線図である。 IO超低温タンク、12−液体水素、 16 液体水素高圧ポンプ、 18 第2制流手段、 38−超低温容器、40 冷却
管、 42−第1制流手段、44−補助気体ポンプ、5
〇 一方向流路、52−逆止弁。 特許出願人 トイ・7チエ フォルシュンゲス−ウントフェルズハシ
ュアンシュタルト フユア ルフトー ラント ラウムファールト ニー、ファウ。 特許出願代理人 弁理士 青 木 朗 弁理士西舘 和才 弁理士百聞 邦昭 弁理士 山 口 昭 之 弁理士 西 山 雅 也 ZHの浄書(内容に変更なしン 1z14 48 44 46 第1頁の続き [相]発 明 者 ゴツトフリート シュ ドイナイダ
ー エラ 0発 明 者 ビリイ ニーラーチェ トイカー ンシ ソ連邦共和国、 7000 スチュットガルト80.ザ
ルッカーシュトラーセ 168 ソ連邦共和国、 7000 スチュットガルト 1.リ
ンデュピュールシュトラーセ(番地なし) 手続補正書(方式) 昭和60年3月ユ8日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年 特許類 第248289号2、発明の名称 水素供給装置 3、補正をする者 事件との関係 特許出願人 ニー、7アウ。 4、代理人 し く外 4 名) 6、補正の対象 (1)願書の「出願人の代表者」の欄 (2)委任状 (3)図面 Z 補正の内容 (1)(2) 別紙の通り (311yJ面の浄書(内容に変更なし)8、添付書類
の目録 (1)訂正願書 1通 (2)委任状及び訳文 各1通 (3)浄書図面 1通
The figure is a configuration diagram schematically showing the hydrogen supply device of the present invention. IO cryogenic tank, 12-liquid hydrogen, 16 liquid hydrogen high-pressure pump, 18 second flow control means, 38-cryogenic container, 40 cooling pipe, 42-first flow control means, 44-auxiliary gas pump, 5
〇 One-way flow path, 52-check valve. Patent ApplicantToy 7thie Forschunges-Untfelshashuanstaltfuur Luftor Landraumfahrtny, Fau. Patent application agent Akira Aoki, Patent Attorney Nishidate, Japanese Patent Attorney Hyakumon, Kuniaki Patent Attorney, Akira Yamaguchi, Patent Attorney Masaya Nishiyama, ZH's engraving (no changes to the content) 1z14 48 44 46 Continued from page 1 ] Inventor Gottsfried Schudneider Eller 0 Inventor Billy Nierache Teukan 7000 Stuttgart, 7000 Stuttgart 168 Stuttgart, 7000 USSR 1. Lindupurstrasse (no street address) Procedural amendment (method) 1988 March 8th, 2016 Manabu Shiga, Commissioner of the Japan Patent Office 1, Indication of the case 1982 Patent No. 248289 2, Name of the invention Hydrogen supply device 3, Person making the amendment Relationship with the case Patent applicant Ni, 7 4. 4 persons other than the agent) 6. Subject of amendment (1) "Applicant's representative" field in the application (2) Power of attorney (3) Drawing Z Contents of amendment (1) (2) Attachment As per (311yJ side engraving (no change in content) 8, list of attached documents (1) 1 copy of application for correction (2) 1 copy each of power of attorney and translation (3) 1 copy of engraving drawings

Claims (1)

【特許請求の範囲】 1、 流入口及び吐出口を有するポンプを備え、前記流
入口が超低温タンク内の液体水素と連通し、前記吐出口
に水素エンジンに至る供給管が接続されている、水素エ
ンジンに対する水素供給装置において、前記ポンプ(1
6)を超低温タンク(10)とは別の超低温容器(3B
)に収納し、超低温タンク(10)から超低温容器(3
8)に低温の気体状水素を導入するとともにポンプ(1
6)を冷却するための冷却管(40)を設けたことを特
徴とする水素供給装置。 2、気体状水素を超低温容器(38)から吸い込むため
に、超低温容器(38)内に開口する吸込み管(46)
と、吐出管(48)とを具備する補助気体ポンプ(44
)を設けたことを特徴とする特許請求の範囲第1項に記
載の水素供給装置。 3、補助気体ポンプ(44)の吐出管(48)がポンプ
(16)から超低温タンク (10)に至る吸込み管(
14)に開口することを特徴とする特許請求の範囲第2
項に記載の水素供給装置。 4、超低温タンク(10)と超低温容器(38)との間
で冷却管(40)に第1制流手段(42)を設けたこと
を特徴とする特許請求の範囲第1項から第3項までのい
ずれかに記載の水素供給装置。 5、 ポンプ(16)の吸込み管(14)に第2制流手
段(18)を設けたことを特徴とする特許請求の範囲第
1項から第4項までのいずれかに記載の水素供給装置。 6、第1制流手段(42)と超低温容器(38)との間
で冷却管(40)から分岐し、冷却管(40)からのガ
ス流だけを通過させる逆止弁(52)を具備する一方向
流路(50)がポンプ(16)の吸込み管(14)に開
口することを特徴とする特許請求の範囲第4項又は第5
項に記載の水素供給装置。 7、 ポンプ(J6)を冷却するために第1制流手段(
42)及び第2制流手段(18)を開放すると同時に補
助気体ポンプ(44)を作動さ−Uる制御装置を設L−
またことを特徴とする特許請求の範囲第4項、第5頃又
しよ第6項に記載の水素供給装置。
[Claims] 1. A pump having an inlet and a discharge port, the inlet communicating with liquid hydrogen in a cryogenic tank, and the discharge port connected to a supply pipe leading to a hydrogen engine. In the hydrogen supply device for the engine, the pump (1
6) in a cryogenic container (3B) separate from the cryogenic tank (10).
) and then transport it from the ultra-low temperature tank (10) to the ultra-low temperature container (3).
At the same time, low-temperature gaseous hydrogen is introduced into the pump (1).
6) A hydrogen supply device characterized by being provided with a cooling pipe (40) for cooling the hydrogen. 2. A suction pipe (46) that opens into the cryogenic container (38) to suck gaseous hydrogen from the cryogenic container (38)
and a discharge pipe (48).
) The hydrogen supply device according to claim 1, characterized in that the hydrogen supply device is provided with: 3. The discharge pipe (48) of the auxiliary gas pump (44) connects to the suction pipe (
14) Claim 2 characterized in that it opens to
Hydrogen supply device as described in Section. 4. Claims 1 to 3, characterized in that a first flow control means (42) is provided in the cooling pipe (40) between the ultra-low temperature tank (10) and the ultra-low temperature container (38). The hydrogen supply device according to any of the above. 5. The hydrogen supply device according to any one of claims 1 to 4, characterized in that the suction pipe (14) of the pump (16) is provided with a second flow control means (18). . 6. A check valve (52) is provided that branches from the cooling pipe (40) between the first flow control means (42) and the ultra-low temperature container (38) and allows only the gas flow from the cooling pipe (40) to pass through. Claim 4 or 5, characterized in that the unidirectional flow path (50) opens into the suction pipe (14) of the pump (16).
Hydrogen supply device as described in Section. 7. First flow control means (to cool the pump (J6)
42) and a control device that operates the auxiliary gas pump (44) at the same time as opening the second flow restriction means (18).
The hydrogen supply device according to claim 4, 5, or 6, characterized in that:
JP59248289A 1983-11-25 1984-11-26 Hydrogen feeder Pending JPS60173358A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3342581.7 1983-11-25
DE19833342581 DE3342581A1 (en) 1983-11-25 1983-11-25 Hydrogen supply device

Publications (1)

Publication Number Publication Date
JPS60173358A true JPS60173358A (en) 1985-09-06

Family

ID=6215195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248289A Pending JPS60173358A (en) 1983-11-25 1984-11-26 Hydrogen feeder

Country Status (3)

Country Link
JP (1) JPS60173358A (en)
DE (1) DE3342581A1 (en)
FR (1) FR2555666A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750007A (en) * 1985-08-06 1988-06-07 Canon Kabushiki Kaisha Ink sheet cassette and image recording apparatus using the same
US4887096A (en) * 1986-03-24 1989-12-12 Canon Kabushiki Kaisha Recording apparatus
JPH02157464A (en) * 1988-12-08 1990-06-18 Shinnenshiyou Syst Kenkyusho:Kk Super-low pollution internal combustion engine
US5175563A (en) * 1986-02-03 1992-12-29 Canon Kabushiki Kaisha Image recording apparatus and ink sheet cassette usable in the image recording apparatus
US5199805A (en) * 1986-02-18 1993-04-06 Canon Kabushiki Kaisha Image recording apparatus and ink sheet cassette applicable therein
US11559964B2 (en) 2019-06-06 2023-01-24 Northrop Grumman Systems Corporation Composite structures, composite storage tanks, vehicles including such composite storage tanks, and related systems and methods
CN116096988A (en) * 2020-07-31 2023-05-09 赛峰集团 Aviation cryogenic turbine fuel supply circuit and related method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546617A1 (en) * 1995-12-14 1997-06-19 Messer Griesheim Gmbh Device for supplying a consumer with cryofuel from a cryotank
DE102004062155A1 (en) * 2004-12-23 2006-07-13 Bayerische Motoren Werke Ag Fuel supply device for a motor vehicle which can be operated with hydrogen
FR3049654B1 (en) * 2016-04-01 2018-04-20 Arianegroup Sas SPATIAL ENGINE COMPRISING AN IMPROVED CIRCUIT FOR COLDING ERGOL POWER SUPPLY TURBOPOM PUMP FOR ROTOR ENGINE
FR3106855B1 (en) * 2020-02-01 2022-09-30 Julien Trigalot Direct injection of dihydrogen and dioxygen under pressure for heat engine adapted to the pressurized gas mixture.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1030807A (en) * 1951-01-09 1953-06-17 Air Liquide Improvements to liquefied gas pumping installations
DE903936C (en) * 1951-02-28 1954-02-11 Nordwestdeutsche Sauerstoffwer Process for compressing low-boiling liquefied gases
US2818029A (en) * 1952-05-02 1957-12-31 Messer Adolf Gmbh High pressure piston pump for liquefied gases
BE553071A (en) * 1955-12-02 1900-01-01

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750007A (en) * 1985-08-06 1988-06-07 Canon Kabushiki Kaisha Ink sheet cassette and image recording apparatus using the same
US5175563A (en) * 1986-02-03 1992-12-29 Canon Kabushiki Kaisha Image recording apparatus and ink sheet cassette usable in the image recording apparatus
US5199805A (en) * 1986-02-18 1993-04-06 Canon Kabushiki Kaisha Image recording apparatus and ink sheet cassette applicable therein
US4887096A (en) * 1986-03-24 1989-12-12 Canon Kabushiki Kaisha Recording apparatus
JPH02157464A (en) * 1988-12-08 1990-06-18 Shinnenshiyou Syst Kenkyusho:Kk Super-low pollution internal combustion engine
US11559964B2 (en) 2019-06-06 2023-01-24 Northrop Grumman Systems Corporation Composite structures, composite storage tanks, vehicles including such composite storage tanks, and related systems and methods
CN116096988A (en) * 2020-07-31 2023-05-09 赛峰集团 Aviation cryogenic turbine fuel supply circuit and related method
CN116096988B (en) * 2020-07-31 2024-01-19 赛峰集团 Aviation cryogenic turbine fuel supply circuit and related method

Also Published As

Publication number Publication date
DE3342581A1 (en) 1985-06-05
FR2555666A1 (en) 1985-05-31

Similar Documents

Publication Publication Date Title
CA1224987A (en) Method and apparatus for operating a hydrogen engine
US4253428A (en) Hydrogen fuel systems
JP3229023B2 (en) Hydrogen gas supply system for hydrogen engine
JPH01172699A (en) Treater for liquid hydrogen
US10125751B2 (en) Multimode gas delivery for rail tender
JPS60173358A (en) Hydrogen feeder
US6663350B2 (en) Self generating lift cryogenic pump for mobile LNG fuel supply system
CA2517113C (en) Lpg vehicular liquid transfer system
US5868122A (en) Compressed natural gas cylinder pump and reverse cascade fuel supply system
US20130118449A1 (en) System and method for circulating fuel through a direct injection pump of a bi-fuel engine
KR100470879B1 (en) Diesel engine
JP6910484B2 (en) Ship fuel oil supply system and method
JP2008019719A (en) Storage device for liquefied gas fuel
JP4223751B2 (en) Fuel supply device for internal combustion engine
US20020069857A1 (en) Method and apparatus for conveying a cryogenically-stored fuel
JP3699656B2 (en) Power generation engines on ships
CN113586292A (en) Gas pressure stabilizing and adjusting system and adjusting method thereof
KR102648123B1 (en) Fuel gas supply system having bog treatment apparatus
KR102648124B1 (en) Fuel gas supply system
KR20060122155A (en) Fuel supplying device for electric driven lng carrier
JP2003269256A (en) Liquefied gas fuel feeding system
JP2004270560A (en) Fuel injection device
JP2005146964A (en) Liquefied gas fuel supplying device for diesel engine
JP2004027863A (en) Dme fuel supplying device for diesel engine
CN117432554A (en) Ammonia fuel supply system and ship