JPS6017301B2 - Reinforced polyvinyl chloride resin molding material - Google Patents

Reinforced polyvinyl chloride resin molding material

Info

Publication number
JPS6017301B2
JPS6017301B2 JP10901777A JP10901777A JPS6017301B2 JP S6017301 B2 JPS6017301 B2 JP S6017301B2 JP 10901777 A JP10901777 A JP 10901777A JP 10901777 A JP10901777 A JP 10901777A JP S6017301 B2 JPS6017301 B2 JP S6017301B2
Authority
JP
Japan
Prior art keywords
chloride resin
gypsum
polyvinyl chloride
molding material
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10901777A
Other languages
Japanese (ja)
Other versions
JPS5441953A (en
Inventor
正和 上北
実 潮田
紘彦 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP10901777A priority Critical patent/JPS6017301B2/en
Publication of JPS5441953A publication Critical patent/JPS5441953A/en
Publication of JPS6017301B2 publication Critical patent/JPS6017301B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、石こう針状結晶繊維と耐衝撃改良用ゴムとに
よって強化したポリ塩化ビニル系樹脂成形材料に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyvinyl chloride resin molding material reinforced with gypsum needle crystal fibers and impact-improving rubber.

近年、熱可塑性樹脂に繊維状補強剤を複合して機械的強
度、耐熱性等の改善を目的とした研究が各方面でなされ
ている。
In recent years, research has been conducted in various fields aimed at improving mechanical strength, heat resistance, etc. by combining thermoplastic resins with fibrous reinforcing agents.

しかしながら短繊維補強剤を複合したときには繊維方向
の引張強度は改善されるが、実用物性面で非常に重用な
衝撃強度の低下が著しいという欠点があった。
However, when a short fiber reinforcing agent is combined, although the tensile strength in the fiber direction is improved, there is a drawback that the impact strength, which is very important in terms of practical physical properties, is significantly reduced.

塩化ビニル樹脂系樹脂の成形品の耐衝撃性を向上させる
ためにA茂、MSBなどのゴム粒子を混合分散させるこ
とは既に公知である。
It is already known to mix and disperse rubber particles such as Amo and MSB in order to improve the impact resistance of molded products made of vinyl chloride resin.

又、特公昭48−15457には、表面処理した微細な
炭酸カルシウムとABS又はMBSを併用することによ
って耐衝撃性のすぐれた組成物が得られることが報告さ
れているが、この場合は引張強度の低下が著しい。又、
ガラス短繊維のような繊維補強材を塩化ビニル樹脂に複
合する場合には比較例に示したようにABS、MBSの
ようなゴムを混合分散するだけでは衝撃強度の改善は望
めないし、改善のためには高価なゴムを多量に必要とし
経済的にひきあわないばかりでなく引張強度の低下をと
もなうという欠点がある。一方、排煙脱硫からの副産物
として亜硫酸カルシウム又は石膏が多量に生じており、
この有効利用が重要な問題としてもちあがり、安価でか
つ耐火性を有する充てん剤としての利用が各方面で検討
されており、米国特許第総22340号には、石膏を針
状結晶にして補強能力をもつ充填材として使用する方法
が提案されているが、衝撃強度が低下するという欠点が
あった。
In addition, it is reported in Japanese Patent Publication No. 15457/1983 that a composition with excellent impact resistance can be obtained by using surface-treated fine calcium carbonate in combination with ABS or MBS, but in this case, the tensile strength There is a significant decrease in or,
When combining fiber reinforcing materials such as short glass fibers with vinyl chloride resin, as shown in the comparative example, it is not possible to improve the impact strength simply by mixing and dispersing rubber such as ABS or MBS. This has the drawback that it requires a large amount of expensive rubber, which is not only economically unviable, but also involves a decrease in tensile strength. On the other hand, large amounts of calcium sulfite or gypsum are produced as byproducts from flue gas desulfurization.
The effective use of gypsum has been raised as an important issue, and its use as an inexpensive and fire-resistant filler is being considered in various fields. A method of using it as a filler has been proposed, but it has the drawback of decreasing impact strength.

本発明者らは、石こう繊維充てん塩化ビニル樹脂複合材
について、鋭意検討した結果Q−半水石こう、m型無水
石こうあるいはO型無水石こうの針状結晶繊維の少なく
とも1種以上を約5重量%以上望ましくは5〜7の重量
%更に好ましくは10〜5の重量%と1〜10%の耐衝
撃改良用ゴムとを含有させることによって引張強度と衝
撃強度のバランスした成形材料をえることが出来ること
を見出し、本発明に到った。
As a result of intensive studies on gypsum fiber-filled vinyl chloride resin composite materials, the present inventors found that at least one kind of acicular crystal fibers of Q-hemihydrate gypsum, M-type anhydrous gypsum, or O-type anhydrous gypsum is contained in an amount of about 5% by weight. By containing desirably 5 to 7% by weight, more preferably 10 to 5% by weight, and 1 to 10% of impact-improving rubber, a molding material with a balance between tensile strength and impact strength can be obtained. This discovery led to the present invention.

本発明によれば石こうという安価な材料を用い、短繊維
補強複合材ではこれまで実現されていない引張強度がバ
ランスし、しかも成形機や成形金型に摩耗がなく異万性
の少ないポリ塩化ビニル系樹脂成形材料を与えることが
出来る。
According to the present invention, by using an inexpensive material called gypsum, the tensile strength is balanced, which has not been achieved with short fiber reinforced composite materials, and in addition, polyvinyl chloride is used, which does not cause wear on the molding machine or molding die, and has little dislocation. It is possible to provide a molding material based on resin.

何故、ガラス繊維充てん塩化ビニル樹脂複合材で耐衝撃
改良用ゴムを加えても衝撃強度の改善されないものが、
石こう繊維と耐衝撃改良用ゴムとで引張強度をあまり下
げずに衝撃強度が改善されるのかは明らかではないが、
石こう繊維の大きさが重要な役割を果していると思われ
る。本発明に使用される石こう針状結晶繊維は直径が約
6〃以下であるが、直径が2ム以下のものを用いる方が
望ましく、Q−半水石こう、m型無水石こう、O型無水
石こう繊維のいずれでもよく、又混合物でもよい。
Why is it that some glass fiber-filled vinyl chloride resin composites do not have improved impact strength even after adding impact-improving rubber?
It is not clear whether impact strength can be improved by using gypsum fibers and impact-improving rubber without reducing tensile strength too much.
The size of the gypsum fibers appears to play an important role. The acicular gypsum crystal fiber used in the present invention has a diameter of about 6 mm or less, but it is preferable to use one with a diameter of 2 mm or less. It may be any type of fiber or a mixture.

石こう繊維の製造は実施例1に示す如く、焼石こうを水
中に分散せしめ、要すればさらに二水石こうの粉末を加
えて水性スラリー濃度を35重量%以下に調整し、半水
石こう針状結晶繊維が得られるまで燈拝しつつ、加圧下
に加熱して半水石こう針状結晶含有スラリーとなし、炉
別乾燥してQ−半水石こう針状結晶繊維を得る。
As shown in Example 1, gypsum fibers were produced by dispersing calcined gypsum in water, adding dihydrate gypsum powder if necessary to adjust the aqueous slurry concentration to 35% by weight or less, and producing hemihydrate gypsum needle crystals. While heating until fibers are obtained, the slurry is heated under pressure to form a slurry containing hemihydrate gypsum needle crystals, and dried in an oven to obtain Q-hemihydrate gypsum needle crystal fibers.

さらに必要に応じて170qo以上で乾燥してm型無水
又は焼成してO型無水石こうの針状結晶にしてもよい。
又、これらの混合物でも良く、必要に応じてボリ塩化ビ
ニル系樹脂との接着性を改良するための表面処理を施し
ても良い。又本発明に使用される耐衝撃改良用のゴムは
、塩化ピニル樹脂用の耐衝撃改良剤として一般に使用さ
れる、A斑、M斑、NBR、塩素化ポリエチレン、EV
A(エチレン‐酢ピ共重合体)・アクリル系モディファ
イヤーなどであり特に限定されない。成型方法について
も特に限定されず石こう針状結晶繊維と耐衝撃改良用ゴ
ムとポリ塩化ビニル系樹脂及び安定剤・滑剤・加工性改
良剤などの配合剤と混合し、二本ロール・単軸押出機・
二軸押出機・特殊な複合混練機によって直接成型材料を
得るか、あるいは二本ロール・バンバリーミキサー・単
軸押出機・二藤押出機・特殊な複合混線機などによって
べレットを製造し、射出成形・吹き込み成型・押出成型
・カレンダー成形・溶融紡糸加工等によって成型材料を
得てもよい。本発明の効果を実現させるには繊維状補強
材とゴムを同時に混練すると補強材及びゴムの分散性が
悪くなる傾向があるのでト分散性が良くなるような工夫
をすることが必要である。
Furthermore, if necessary, it may be dried at 170 qo or more to obtain M-type anhydrous or sintered O-type anhydrous gypsum needle crystals.
Also, a mixture of these may be used, and if necessary, surface treatment may be performed to improve adhesion to polyvinyl chloride resin. Further, the impact resistance improving rubber used in the present invention includes A mottled, M mottled, NBR, chlorinated polyethylene, and EV, which are generally used as impact modifiers for pinyl chloride resin.
A (ethylene-acetic acid pi copolymer), acrylic modifier, etc., and is not particularly limited. There are no particular restrictions on the molding method; the gypsum needle crystal fibers, impact-improving rubber, polyvinyl chloride resin, and compounding agents such as stabilizers, lubricants, and processability improvers are mixed, and the mixture is extruded using two rolls and a single screw. machine・
Either obtain the molding material directly using a twin-screw extruder or a special compound mixer, or manufacture pellets using a two-roll extruder, Banbury mixer, single-screw extruder, Nito extruder, or a special compound mixer, and then inject the material. The molding material may be obtained by molding, blow molding, extrusion molding, calendar molding, melt spinning processing, etc. In order to realize the effects of the present invention, it is necessary to take measures to improve the dispersibility of the reinforcing material and rubber, since kneading the fibrous reinforcing material and rubber at the same time tends to result in poor dispersibility of the reinforcing material and rubber.

例えば耐衝撃改良用ゴムと塩化ビニル系樹脂とを前混練
して製造したべレット等を石こう繊維及び塩化ビニル樹
脂と混練成型することでも可能であるし石こう繊維、塩
ビ樹脂に耐衝撃改良用ゴムのラテックスを混合分散させ
、これを乾燥したのち混線成型するような方法をとるこ
とも出来る。さらに詳しく石こう繊維の分散性について
いえば成形物1柳3 中の100r以上の凝集塊を光学
顕微鏡でN25で測定して存在しないことが望ましい。
又耐衝撃改良用ゴムの分散性については通常塩化ビニル
系樹脂に用いられる程度の分散性でよく、例えばMBS
では約1600Aのゴム粒径まで分散させればよい。こ
れは電子顕微鏡により測定することが出来る。分散方法
は上記に例示した方法に限定されない。繊維状補強材と
ゴムとのポリ塩化ビニル中に於ける分散を良好ならしめ
て、所望の物理的性質を確保するに最も適当な分散方法
がとられるべきである。本発明でいうポリ塩化ビニル系
樹脂とは、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹
脂及び塩化ビニル・塩化ビニリデン共重合体、塩化ビニ
ル・酢酸ビニル共重合体、塩化ビニル・無水マレィン酸
共重合体、塩化ビニル・エチレン共重合体、塩化ビニル
・ブロピレン共重合体などの共重合体、塩素化ポリ塩化
ビニル樹脂のような変性樹脂を含み、これらを単独で使
用してもよいし混合して使用することも可能である。
For example, it is also possible to knead and mold a pellet made by pre-kneading impact-improving rubber and vinyl chloride resin with gypsum fiber and vinyl chloride resin, or to mix and mold impact-resistant improving rubber with gypsum fiber and vinyl chloride resin. It is also possible to use a method of mixing and dispersing latex, drying this, and then performing cross-wire molding. Regarding the dispersibility of gypsum fibers in more detail, it is desirable that no aggregates of 100 r or more are present in the molded article 1 willow 3 when measured with N25 using an optical microscope.
The dispersibility of the rubber for improving impact resistance may be the same as that normally used for vinyl chloride resins, such as MBS.
Then, it is sufficient to disperse the rubber particles to a diameter of about 1600A. This can be measured using an electron microscope. The dispersion method is not limited to the methods exemplified above. The most appropriate dispersion method should be used to ensure good dispersion of the fibrous reinforcement and rubber in the polyvinyl chloride to ensure the desired physical properties. The polyvinyl chloride resin in the present invention refers to polyvinyl chloride resin, polyvinylidene chloride resin, vinyl chloride/vinylidene chloride copolymer, vinyl chloride/vinyl acetate copolymer, vinyl chloride/maleic anhydride copolymer, It includes copolymers such as vinyl chloride/ethylene copolymer, vinyl chloride/propylene copolymer, and modified resins such as chlorinated polyvinyl chloride resin, and these may be used alone or in combination. It is also possible.

又、ポリ塩化ビニル系樹脂の安定剤〜猪剤には特に限定
はない。本発明の方法を実施例によりさらに詳しく述べ
る。なお、引張強度はASTM法により、デュポン衝撃
強駅試験片厚2.5〜2.7肋、等芯加重300のこよ
る半数破壊高さである。次に実施例を示す。
Further, there are no particular limitations on the stabilizer for the polyvinyl chloride resin. The method of the present invention will be described in more detail by way of examples. In addition, the tensile strength is determined by the ASTM method, and the half height at failure is determined by a DuPont impact strength test piece with a thickness of 2.5 to 2.7 ribs and a uniform load of 300. Next, examples will be shown.

実施例 1 焼石こうlk9を9k9の25℃の水に加え、約30分
間縄拝し、微細な二水石こうスラリーを造り、このスラ
リーを反応槽に入れて、12仇pmで燈拝しながら13
0qoにて5分間加熱後、水蒸気を放出し、反応槽内の
液温度を150午0まで冷却し、スラリーを排出、ただ
ちに炉過し、メチルアルコールで洗浄した後、110o
oの温度で乾燥した。
Example 1 Calcined gypsum LK9 was added to 9K9 water at 25°C and stirred for about 30 minutes to create a fine dihydrate gypsum slurry. This slurry was put into a reaction tank and heated at 12 pm for 13 minutes.
After heating at 0 qo for 5 minutes, steam was released, the liquid temperature in the reaction tank was cooled to 150 o'clock, the slurry was discharged, immediately passed through a furnace, washed with methyl alcohol, and heated to 110 o
It was dried at a temperature of o.

得られたQ一半水石こう針状結晶繊維は直径が0.5〜
1.5仏、長さ80〜150仏である。このQ一半水石
こう針状結晶繊維を700午CIhr乾燥したところ直
径0.5〜1.5〆長さ80〜150一のO型無水針状
結晶繊維が得られる。この石こう針状結晶繊維とポリ塩
化ビニル樹脂(重合度、looo)とM斑(鐘汗予淵化
学■製、カネェースB一22)を表1のように配合(安
定剤は鉛配合)し、ベルトを押出し、プレス成型ののち
試験片を切出し、物性を求めた。又比較のためにガラス
繊維直径10〃、孝インチ・チョップストランドを表1
のように配合し、ロールプレスにより成形物を作成し、
物性を求めた。表1 ガラス繊維では、引張強度の低下にもかかわらず衝撃強
度は改善されないが石こう繊維の場合には引張強度の低
下はわずかで衝撃強度の飛躍的な改善がみられる。
The obtained Q1-hemihydrate gypsum needle-like crystal fibers have a diameter of 0.5~
It is 1.5 Buddhas long and 80 to 150 Buddhas long. When this Q-1 anhydrous gypsum needle-like crystal fiber is dried for 700 minutes CI hr, an O-type anhydrous needle-like crystal fiber having a diameter of 0.5 to 1.5 mm and a length of 80 to 1,50 mm is obtained. This gypsum needle-like crystal fiber, polyvinyl chloride resin (degree of polymerization, looo), and M spots (Kanesu B-22, manufactured by Kaneka Yobuchi Chemical ■) were mixed as shown in Table 1 (lead was added as a stabilizer), After the belt was extruded and press-molded, test pieces were cut out and their physical properties were determined. For comparison, glass fiber diameter 10 inch chopped strands are shown in Table 1.
Mix as follows, create a molded product using roll press,
We sought physical properties. Table 1 Glass fibers do not improve impact strength despite a decrease in tensile strength, but gypsum fibers show a dramatic improvement in impact strength with only a slight decrease in tensile strength.

実施例 2 実施例1においてM斑をその倍量の塩化ビニル樹脂と予
め鷹練したものを使い表1と同じ様に配合して成型し物
性を求めた。
Example 2 In Example 1, the M spots were blended and molded in the same manner as in Table 1 using double the amount of vinyl chloride resin that had been mixed with vinyl chloride resin, and the physical properties were determined.

表2 実施例1にくらべてさらに衝撃強度の改善がみられ分散
改良の効果が見られる。
Table 2 Compared to Example 1, the impact strength was further improved and the effect of improved dispersion was observed.

実施例 3 O型無水石こう繊維2肌t%塩化ビニル71M%耐衝撃
改良用ゴム棚t%(6wt%の塩ビと予め混線したもの
)を押出し成型して物性を測定した。
Example 3 O-type anhydrous gypsum fiber 2 t% vinyl chloride 71M% impact-improving rubber shelf t% (mixed in advance with 6 wt% PVC) was extrusion molded and its physical properties were measured.

耐衝撃改良用ゴムの如何にかかわらず効果のあることが
明らかである。表3 妾・昭電ェラスレン351A *2 住化ェバテートR5011 妾3カネエース・FM 実施例 4 表4のようにO型無水石こう繊維、塩化ビニル樹脂(重
合度1000)、M粥(カネエースB‐22)を配合し
て成型し、物性を求めた。
It is clear that the present invention is effective regardless of the type of rubber used to improve impact resistance. Table 3 Concubine/Shoden Elasuren 351A *2 Sumika Evatate R5011 Concubine 3 Kane Ace/FM Example 4 As shown in Table 4, O-type anhydrous gypsum fiber, vinyl chloride resin (degree of polymerization 1000), and M porridge (Kane Ace B-22) were used. It was mixed and molded, and its physical properties were determined.

M旧Sはその倍量の塩化ビニル樹脂と予め渥練したもの
を用いた。比較例としてMBSを含まないもの物性を併
記した。表4 すべての石こう繊維充てん量において衝撃強度の改善が
見られ、引張強度の低下は少ないことがわかる。
For M old S, a material that had been mixed in advance with double the amount of vinyl chloride resin was used. As a comparative example, the physical properties of a sample not containing MBS are also shown. Table 4 It can be seen that impact strength was improved for all gypsum fiber filling amounts, and there was little decrease in tensile strength.

Claims (1)

【特許請求の範囲】 1 α−半水石こう、III型無水石こうあるいはII型無
水石こうの針状結晶繊維の少なくとも1種以上を5重量
%以上と1〜10%の対衝撃改良用ゴムとを含有する事
を特徴とする強化ポリ塩化ビニル系樹脂成形材料。 2 石こう針状結晶繊維を5乃至70重量%含有する特
許請求の範囲第1項記載の強化ポリ塩化ビニル系樹脂成
形材料。 3 石こう針状結晶繊維を10乃至50重量%含有する
特許請求の範囲第1項記載の強化ポリ塩化ビニル系樹脂
成形材料。
[Claims] 1. 5% or more by weight of at least one kind of acicular crystal fibers of α-hemihydrate gypsum, type III anhydrite, or type II anhydrite, and 1 to 10% of impact-improving rubber. A reinforced polyvinyl chloride resin molding material that contains 2. The reinforced polyvinyl chloride resin molding material according to claim 1, which contains 5 to 70% by weight of gypsum needle crystal fibers. 3. The reinforced polyvinyl chloride resin molding material according to claim 1, which contains 10 to 50% by weight of gypsum needle crystal fibers.
JP10901777A 1977-09-09 1977-09-09 Reinforced polyvinyl chloride resin molding material Expired JPS6017301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10901777A JPS6017301B2 (en) 1977-09-09 1977-09-09 Reinforced polyvinyl chloride resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10901777A JPS6017301B2 (en) 1977-09-09 1977-09-09 Reinforced polyvinyl chloride resin molding material

Publications (2)

Publication Number Publication Date
JPS5441953A JPS5441953A (en) 1979-04-03
JPS6017301B2 true JPS6017301B2 (en) 1985-05-02

Family

ID=14499459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10901777A Expired JPS6017301B2 (en) 1977-09-09 1977-09-09 Reinforced polyvinyl chloride resin molding material

Country Status (1)

Country Link
JP (1) JPS6017301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2295351B (en) * 1994-11-25 1998-12-16 Tenmat Ltd Composite articles
DE102015217576B4 (en) 2015-09-15 2017-03-30 Conti Temic Microelectronic Gmbh Media-tight control device for a motor vehicle and method for producing the control device

Also Published As

Publication number Publication date
JPS5441953A (en) 1979-04-03

Similar Documents

Publication Publication Date Title
US5145891A (en) Polypropylene resin composition
US5145892A (en) Polypropylene resin composition
EP0346840B1 (en) High-melt-flow fiber-reinforced polypropylene compositions
JPH0618929B2 (en) Glass fiber reinforced polypropylene composition
CN107286692A (en) A kind of crystal whisker reinforced and toughened plastics of modified gypsum base and preparation method thereof
KR101016386B1 (en) Wood Plastic Composites and Manufacturing method thereof
JP2000086832A (en) Polyolefin resin composition for extrusion molding and preparation thereof
JPS6017301B2 (en) Reinforced polyvinyl chloride resin molding material
US4997871A (en) Fibrous magnesium oxysulfate granular form and thermoplastic resin composition containing the magnesium oxysulfate
JP3641202B2 (en) Manufacturing method and manufacturing apparatus for wood / plastic composite
JPS59172533A (en) Production of reinforced resin composition
CN112500639B (en) Isotropic high-strength polypropylene composite material and preparation method thereof
JPH10292080A (en) Thermoplastic resin composition
JPS623178B2 (en)
JPH039952A (en) Thermoplastic resin composition
JPS601236A (en) Production of glass fiber-reinforced polyolefin resin composition
JPS6198758A (en) Propylene resin composition
JPS621419B2 (en)
JPS59227936A (en) Compositely reinforced polypropylene resin
JPS61236858A (en) Thermoplastic resin composition
JPS6410010B2 (en)
JPH0425291B2 (en)
JPS6242933B2 (en)
JPH04225034A (en) Production of polyamide resin thin molded product
JPS6017302B2 (en) Reinforced polyvinyl chloride resin molded body