JPS601236A - Production of glass fiber-reinforced polyolefin resin composition - Google Patents

Production of glass fiber-reinforced polyolefin resin composition

Info

Publication number
JPS601236A
JPS601236A JP10926783A JP10926783A JPS601236A JP S601236 A JPS601236 A JP S601236A JP 10926783 A JP10926783 A JP 10926783A JP 10926783 A JP10926783 A JP 10926783A JP S601236 A JPS601236 A JP S601236A
Authority
JP
Japan
Prior art keywords
glass fiber
melt
parts
polyolefin
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10926783A
Other languages
Japanese (ja)
Other versions
JPS6311366B2 (en
Inventor
Koichi Matsumoto
光市 松本
Takashi Yamamoto
隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10926783A priority Critical patent/JPS601236A/en
Publication of JPS601236A publication Critical patent/JPS601236A/en
Publication of JPS6311366B2 publication Critical patent/JPS6311366B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled resin compsn. having greatly improved mechanical strength, by melt-kneading an unsaturated silane compd., an org. carboxylic acid, a free radical generating agent and a polyolefin to effect a reaction between the reactants, and melt-kneading glass fiber therewith. CONSTITUTION:In melt-kneading 50-99pts.wt. polyolefin with 1-50pts.wt. glass fiber, 1-50pts.wt. said fiber is added to a molten compsn. obtd. by melt-kneading 0.1-5pts.wt. (per 100pts.wt. glass fiber) unsaturated silane compd., 0.001- 5pts.wt. org. carbosylic acid or anhydride and 50-99pts.wt. said polyolefin to effect a reaction between the reactants, and the resulting mixture is further melt-kneaded. Preferred polyolefin resins include crystalline polyprolylene and a crystalline ethylen/propylene copolymer.

Description

【発明の詳細な説明】 本発明は轡械的強度が特に優れたガラス繊維強化ポリオ
レフィン系樹脂組成物の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a glass fiber reinforced polyolefin resin composition having particularly excellent mechanical strength.

ガラス繊維で強化したポリオレフィン系樹脂は通常のポ
リオレフィン系樹脂よりも機械的性質、耐熱性、寸法安
定性等がすぐれているため、自動車部品、電気器具部品
、各種工業部品への通用が広がりつつある。
Glass fiber-reinforced polyolefin resins have superior mechanical properties, heat resistance, and dimensional stability than regular polyolefin resins, so they are increasingly being used in automobile parts, electrical appliance parts, and various industrial parts. .

従来、ガラス繊維強化ポリオレフィン系樹脂組成物の物
性改善のためにガラス繊維とポリオレフィン系樹脂の界
面改質ないし界面接着を達成するための各種提案がなさ
れている。たとえば、(1)不飽和シラン化合物とラジ
カル発生剤を共存させる方法(特公昭49−41098
号公報等)、(2)ポリオレフィン系樹脂にシラン処理
ガラス繊維と該シランと反応し得る多官能モノマーとラ
ジカル発生剤を添加混合する方法(特公昭49−410
96号公報等)’131アミノアルキルシラン系化合物
化表面処理されたガラス繊維とポリオレフィンに、有機
カルボン酸もしくはその酸無水物を添加する方法(特公
昭49−49029号公報) 、(41不飽和カルボン
酸またはその無水物で変性されたポリオレフイン系樹脂
に、酸と反応する有機基2有するシラン化合物で処理さ
れたガラス繊維を添加混合させる方法(特公昭51−1
0265号公報等)等がある。しかしながら、従来法(
1)、(2)、(3)の方法は簡便ではあるが機械的強
度の改善効果は光分でな(、従来法(4)の方法は機械
的強度の改善効果を充分に得るには変性されたポリオレ
フィン系樹脂を多量に必要とし、また、予め変性された
ポリオレフィン系樹脂を製造もしくは人手する必要があ
るので工程的に煩雑であり、経済的にも高価である。
Conventionally, various proposals have been made for achieving interfacial modification or interfacial adhesion between glass fibers and polyolefin resins in order to improve the physical properties of glass fiber reinforced polyolefin resin compositions. For example, (1) a method of coexisting an unsaturated silane compound and a radical generator (Japanese Patent Publication No. 49-41098
(2) A method of adding and mixing silane-treated glass fibers, a polyfunctional monomer capable of reacting with the silane, and a radical generator to a polyolefin resin (Japanese Patent Publication No. 49-410
No. 96, etc.) '131 A method of adding an organic carboxylic acid or its acid anhydride to glass fibers and polyolefins surface-treated with aminoalkylsilane compounds (Japanese Patent Publication No. 49-49029), (41 Unsaturated carboxylic acid) A method of adding and mixing glass fibers treated with a silane compound having two organic groups that react with acids to a polyolefin resin modified with an acid or its anhydride (Japanese Patent Publication No. 51-1
No. 0265, etc.). However, the conventional method (
Methods 1), (2), and (3) are simple, but the effect of improving mechanical strength is insufficient (and conventional method (4) is difficult to obtain a sufficient effect of improving mechanical strength. It requires a large amount of modified polyolefin resin, and it is also necessary to manufacture or manually prepare the modified polyolefin resin in advance, making the process complicated and economically expensive.

本発明は従来法を極めて簡便な処決で改善することによ
り、組成物の機械的強度を飛躍的に向上し得ることを見
出し完成したものである。
The present invention was completed based on the discovery that the mechanical strength of the composition can be dramatically improved by improving the conventional method with an extremely simple solution.

すなわち本発明は、ポリオレフィン(1150〜99重
量部とガラス繊維(■)1〜5ON量部とを溶融混練す
るに際し、前記ガラス繊維(Ill 100重量部に対
して帆1〜5重量部の不飽和シラン化合物(alと0.
01〜5重量部の有機カルボン酸もしくは七の酸無水物
(bl、および前記ポリオレフィン(I1100重檜部
に対して0.005〜0.5 本量部のラジカル発生剤
(clと前記ポリオレフィン([150〜99重量部と
を溶融混線反応せしめた溶融状態の組成物に、前記ガラ
ス繊維(■)1〜50重量部を添加し、ついで更に溶融
混練することを特徴とするガラス繊維強化ポリオレフィ
ン系樹脂組成物の製造方法に関するものである。
That is, in the present invention, when melt-kneading polyolefin (1,150 to 99 parts by weight) and 1 to 5 parts by weight of glass fiber (■), 1 to 5 parts by weight of unsaturated polyolefin to 100 parts by weight of the glass fiber (Ill) is melt-kneaded. Silane compound (al and 0.
01 to 5 parts by weight of an organic carboxylic acid or acid anhydride (BL), and 0.005 to 0.5 parts by weight of a radical generator (Cl and the polyolefin ([ A glass fiber-reinforced polyolefin resin characterized in that 1 to 50 parts by weight of the glass fiber (■) is added to a composition in a molten state obtained by subjecting 150 to 99 parts by weight to a melt-mixing reaction, and then further melt-kneaded. The present invention relates to a method for producing a composition.

本発明におけるポリオレフィン系樹脂(11としては、
結晶性ポリプロピレン、結晶性エチレン−ゾロピレン共
重合体、ポリエチレン、ボリデテン、ポリ−4−メチル
ペンテン−1等のα−オレフィンの単独重合体、α−オ
レフィンと他のα−オレフィン、芳香族オレフィン、ジ
エン類など共重合可能なモノマーとの共重合体であり、
これらの混合物、あるいは50重量%未満のニジストマ
ー類、他種ポリマーとの混合物も可能である。特に、結
晶性ポリエチレン、結晶性エチレン−プロピレン共重合
体が好適である。
The polyolefin resin (11) in the present invention is
Crystalline polypropylene, crystalline ethylene-zolopylene copolymer, polyethylene, polydetene, homopolymers of α-olefins such as poly-4-methylpentene-1, α-olefins and other α-olefins, aromatic olefins, dienes It is a copolymer with copolymerizable monomers such as
Mixtures of these, or mixtures with less than 50% by weight of nidistomers or other types of polymers are also possible. In particular, crystalline polyethylene and crystalline ethylene-propylene copolymer are suitable.

本発明における不飽和7ラン化合物(alとしては、分
子内にエチレン性二重結合と、シラノール基を形成し得
る基を有する有様シランであり、たとえばビニルトリエ
トキシシラン、ビニルトリエトキシシラン、γ−メタク
リロイルオキシゾロピルトリメトキシシラン、γ−アク
リロイルオキシプロピルトリメトキシシラン等が好適で
あり、2積以上の混合物も可能である。これらの不飽和
シラン化合物の使用量は、ガラス繊維100重量部に対
して0.1〜5重量部、より好ましくは0.3〜6重量
部の範囲にある。上記範囲未満では機械的強度の向上は
得られず、上記範囲以上では機械的強度の向上割合は小
さくなり、コスト高になり、耐熱性の低下、変色等が起
り易い。
The unsaturated 7-rane compound (al) in the present invention is a specific silane having an ethylenic double bond and a group capable of forming a silanol group in the molecule, such as vinyltriethoxysilane, vinyltriethoxysilane, γ -Methacryloyloxyzolopyltrimethoxysilane, γ-acryloyloxypropyltrimethoxysilane, etc. are preferred, and a mixture of two or more volumes is also possible.The amount of these unsaturated silane compounds to be used is based on 100 parts by weight of glass fiber. The amount is in the range of 0.1 to 5 parts by weight, more preferably 0.3 to 6 parts by weight.Below the above range, no improvement in mechanical strength is obtained, and above the above range, the rate of improvement in mechanical strength is The size is small, the cost is high, and heat resistance is decreased and discoloration is likely to occur.

本発明における有機カルボン酸もしくはその酸無水物(
b)としては、各種が可能であり、脂肪族カルボン酸で
あっても芳香族カルボン酸であってもよ(、モノカルボ
ン酸であっても ジカルがン酸であってもよ(、飽和カ
ルボン酸であっても不飽和カルビン酸であってもよ(、
他種の官能基ン有していてもよい。たとえば、酢酸、プ
ロピオン酸、カプリン酸、ラウリン酸、ステアリン酸、
アクリル酸、メタクリル酸、オレイン酸、コノ・り酸、
アジピン酸、セバシン酸、マレイン酸、フマール酸、イ
タコン酸、シトラコン酸、乳酸、クエン酸、フタル酸、
安息香酸、トルイル酸、等が代表的なものとして挙げら
れる。とりわけ炭素数3〜10のカルボン酸が好ましい
。またこれらの酸無水物も可能であるが、マレイン酸、
コノ・り酸、7タル酸、シトラコン酸等の酸無水物が有
用である。上記の酸、および酸無水物は単独でもよいが
、2種以上の混合物として使用してもよい。上記の有機
カルボン酸もしくはその酸無水物の使用量は、ガラス繊
維100重量部に対して0.01〜5康蓋部、より好ま
しくは0.1〜1重量部の範囲にある。また、不飽和シ
ラン化合物に対して重量比で1/λo−2o/1の範囲
で良好であるが、1/10− ”5Aの範囲の使用量で
も充分な改善効果が得られる。上記使用量が上記範囲よ
りも少い場合は機械的強度の改善効果が充分でな(、上
記範囲よりも多い場合は改善効果の上昇割合は小さいも
のとなり一変色や臭気等が起り易(なる。
Organic carboxylic acid or its acid anhydride (
Various types of b) are possible, including aliphatic carboxylic acids, aromatic carboxylic acids, monocarboxylic acids, dicarboxylic acids, and saturated carboxylic acids. It can be an acid or an unsaturated carbic acid (,
It may also have other types of functional groups. For example, acetic acid, propionic acid, capric acid, lauric acid, stearic acid,
Acrylic acid, methacrylic acid, oleic acid, cono-phosphoric acid,
Adipic acid, sebacic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, lactic acid, citric acid, phthalic acid,
Typical examples include benzoic acid and toluic acid. Particularly preferred are carboxylic acids having 3 to 10 carbon atoms. These acid anhydrides are also possible, but maleic acid,
Acid anhydrides such as cono-phosphoric acid, 7-talic acid, and citraconic acid are useful. The above acids and acid anhydrides may be used alone, or may be used as a mixture of two or more. The amount of the organic carboxylic acid or its acid anhydride used is in the range of 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, per 100 parts by weight of glass fiber. In addition, a weight ratio of 1/λo-2o/1 to the unsaturated silane compound is satisfactory, but a sufficient improvement effect can be obtained even in the range of 1/10-5A.The above usage amount If it is less than the above range, the mechanical strength improvement effect will not be sufficient, and if it is more than the above range, the rate of increase in the improvement effect will be small and discoloration, odor, etc. will easily occur.

本発明におけるラジカル発、生剤(clとしては有機過
酸化物やアゾ化合物が挙げられる。とくに分解の半減期
が1分間となる分解温度゛が120°C以上になる有機
過酸化物が好適である。たとえば、ベンゾイルパーオキ
サイド−、ジクミルパーオキサイド、2,5−ジメチル
−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2.
5−ジメチル−2゜5−ジ(t−ブチルパーオキシ)ヘ
キシン−3,1,6−ビス(t−ブチルパーオキシイソ
プロビル)ベンゼン、1,4−ビス(t−ブチルパーオ
キシイソプロビル)ベンゼン、ジ−t−ブチルパーオキ
シド、クメンヒドロパーオキシド、t−デテルパーペン
ゾエート等があり、2種以上の混合物としても使用でき
る。これらのラジカル発生剤の使用蓋はポリオレフィン
の種類、ガラス繊維の量、不飽和シラン化合物の量、混
線条件によっても異なるが、通常ポリオレフィン100
重量部に対して0.005〜0.5重量部、より好まし
くは0.01〜0.1重量部の範囲にある。上記範囲よ
りも少い場合は機械的強度の改善効果は充分でなく、上
記範囲よりも多い場合はポリマーラジカルの生成量が多
過ぎて、架橋や主鎖切断が起きて、物性上も成形性も好
ましくない。
Examples of the radical generating agent (Cl) in the present invention include organic peroxides and azo compounds. Particularly suitable are organic peroxides whose decomposition temperature is 120°C or higher at which the half-life of decomposition is 1 minute. For example, benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2.
5-dimethyl-2゜5-di(t-butylperoxy)hexyne-3,1,6-bis(t-butylperoxyisopropyl)benzene, 1,4-bis(t-butylperoxyisopropyl) Examples include benzene, di-t-butyl peroxide, cumene hydroperoxide, and t-deterperpenzoate, and they can also be used as a mixture of two or more. The lid used for these radical generators varies depending on the type of polyolefin, amount of glass fiber, amount of unsaturated silane compound, and crosstalk conditions, but usually polyolefin 100
It is in the range of 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.1 parts by weight. If the amount is less than the above range, the mechanical strength improvement effect will not be sufficient, and if it is more than the above range, too many polymer radicals will be generated, resulting in crosslinking and main chain scission, resulting in poor physical properties and moldability. I also don't like it.

本発明において使用するガラス繊維([1は、通常市販
のガラス繊維で光分であり、表面処理は通常アミノンラ
ン、エポキシシラン、ビニルシラン、アクリルシラン寺
で処理されているが、いずれで処理されたものも可能で
あり、また処理されていなくてもよい。
The glass fibers used in the present invention ([1] are commercially available glass fibers, which are usually surface-treated with aminorane, epoxy silane, vinyl silane, or acrylic silane, but can be treated with any of them. can also be processed, and may not be processed.

通常、ガラス繊維は3 mm、6龍長等に切断されたチ
ョツプドストランドがよいが、長繊維のロービングな供
給して混練中に折断せしめ゛〔もよい。
Usually, the glass fibers are preferably chopped strands cut into 3 mm, 6 lengths, etc., but long fibers may also be supplied in the form of rovings and broken during kneading.

本発明の組成物において、ガラス繊維の濃度は1〜50
重社係−より好ましくは6〜40重量%の範囲にある。
In the composition of the invention, the concentration of glass fibers is between 1 and 50
It is more preferably in the range of 6 to 40% by weight.

上記範囲より少い場合はガラス繊維の補強効果は小さい
ものであり、上記範囲より多い場合は補強効果は飽和し
、成形性、成形品の外観等が低下してしまう。
If the amount is less than the above range, the reinforcing effect of the glass fibers will be small, and if it is more than the above range, the reinforcing effect will be saturated and the moldability, appearance of the molded product, etc. will deteriorate.

本発明の製造方法は、ポリオレフィン(1)と不飽和シ
ラン化合物tal、有機カルボン酸(tel、およびラ
ジカル発生剤(C1を溶融混線反応せしめた溶融状態の
組成物に、ガラズ繊維fll’a?添加し、更に溶融混
練することにより製造できる。本発明はパン!ぐリーミ
キサーのようなバッチ式で製造することもできるが、ガ
ラス繊維を連続的に供給できるベント孔を有する単軸も
しくは多軸押出機、ある(・は溶融混練機部と造粒押出
磯部乞別にした多段押出機等を利用して連続的に製造す
る方法が工業的にも簡便で好まし、い。+11と(al
、(bl、(clは、コーンデレンダー、リボンデレン
ダー、ヘンシェルミキサー等の混合機で予備混合するか
、(11の溶融状態に(a)、(bl、fOn’注入す
ることで混合できる。(11もしくは(11と(al、
(bl、(c)の混合物は前記の単軸もしくは多軸押出
機あるいはバンバリーミキサ−等に供給して、ポリオレ
フィンの融点以上分解温度以下の温度で、好ましくは1
80〜280 ’C1より好ましくは200〜250℃
の温度で溶融混線反応せしめる。この溶融状態にガラス
繊維+Illを添加混入して、さらに溶融混線せしめる
。(11)の添加混入は連続的に前記押出機のベント孔
であってもよいし、多段押出機の造粒押出機側ホッパー
であってもよ(、またバッチ式に直接混入してもよい。
In the production method of the present invention, glass fiber fll'a? The present invention can also be produced by a batch method such as a pan-grill mixer, but it can also be produced by single-screw or multi-screw extrusion having a vent hole that allows continuous supply of glass fibers. A method of continuous production using a multi-stage extruder, etc., which has a separate melt-kneader section and a granulation/extrusion section, is industrially simple and preferred. +11 and (al
. (11 or (11 and (al,
The mixture of (bl and (c)) is fed to the above-mentioned single-screw or multi-screw extruder or Banbury mixer, etc., at a temperature above the melting point of the polyolefin and below the decomposition temperature, preferably 1.
80~280'C1, preferably 200~250℃
The melt crosstalk reaction is carried out at a temperature of . Glass fiber +Ill is added and mixed into this molten state to further melt and mix the wires. (11) may be added continuously through the vent hole of the extruder, or may be added to the hopper on the granulation extruder side of a multi-stage extruder (or may be directly mixed in a batch system). .

(11と(al、tb+、(clを溶融混練反応せしめ
た溶融状態に(Illを添加混入して史に溶融混練する
のが、(11とillと(al、(b)、(C1’&同
時に溶融混練するよりもはるかにすぐれた機械的強度ケ
有する組成物ケ得ることかできる。当然ながらガラス繊
維は混練中に折損1−るが、組成物中の平均繊維長は好
ましくは0.3關以上、より好ましくは0.5s+m以
上である。従来法による組成物中の平均繊維長が本発明
よりも長い場合でも、本発明の組成物ははるかに優れた
機械的強度を有している。
(11 and (al, tb+, It is possible to obtain a composition with much better mechanical strength than by melt-kneading at the same time.Of course, glass fibers break during kneading, but the average fiber length in the composition is preferably 0.3. or more, more preferably 0.5 s+m or more.Even if the average fiber length in the composition by the conventional method is longer than that of the present invention, the composition of the present invention has far superior mechanical strength. .

本発明により得られる組成物は、射出成形、押出成形、
圧縮成形などの通常用いる溶融成形法により各種成形品
、シート、棒、パイプ状物に成形される。
The composition obtained by the present invention can be formed by injection molding, extrusion molding,
It is molded into various molded products, sheets, rods, and pipe-shaped products by commonly used melt molding methods such as compression molding.

本発明方法により製造された組成物は、上記成分以外に
熱安定剤、紫外線吸収剤、帯電防止剤、滑剤、光てん剤
、難燃剤、着色剤、結晶核剤等の/4棟添加剤を含有し
ていてもよい。
In addition to the above-mentioned components, the composition produced by the method of the present invention contains additives such as a heat stabilizer, an ultraviolet absorber, an antistatic agent, a lubricant, a photonic agent, a flame retardant, a coloring agent, and a crystal nucleating agent. May contain.

以下に実施例及び比較例により本発明をさらに具体的に
説明する。実施例及び比較例中の部、係は全て重量部、
重量%を表子。
The present invention will be explained in more detail below using Examples and Comparative Examples. All parts in Examples and Comparative Examples are parts by weight.
Express weight%.

また、機械的強度は引張強度および曲げ特性を測定した
。測定方法は以下の方法によった。
In addition, mechanical strength was measured by measuring tensile strength and bending properties. The measurement method was as follows.

引張強度: ASTM’ D6ろ8、単位に!?/c+
n”曲は強度: ASTM D79L1. a−位kg
/c7n2曲げ弾性率: ASTM D790、単位に
9/Crn2実施例1−1〜6 MFI 4.0の結晶性ポリプロピレン(11、r−メ
タクリロイルオキシフ0ロビルトリメトキンンラン(a
l、マレイン酸(tel、2.5−ジメチル−2,5−
ジ(t−ブチルパーオキシ)ヘキサン(clを第1表に
記載の割合で充分混合した後、200〜250℃に設定
した押出様に供給した。この押出機は、L/D−ろ0で
、ベント孔はホッパー側から2/3のところにあり、ガ
ラス繊維(■)はこのベント孔から第1表に記載の割合
になるように連続的に供給した。この押出機のスクリュ
ーはベント孔直前にダルメージタイプの混線ゾーンを有
していた。ガラス繊維としてγ−アミノプロピルトリメ
トキシシランで表面処理された、長さ3 vyr、直径
16μのチョツプドストランドを使用した。得られたペ
レットから射出成形により試験片を作成し5、機械的強
度ケ測定し、た。その結果を第1表に示す。
Tensile strength: ASTM' D6 to 8, in units! ? /c+
n” strength: ASTM D79L1. a-kg
/c7n2 Flexural modulus: ASTM D790, unit 9/Crn2 Examples 1-1 to 6 MFI 4.0 crystalline polypropylene (11,
l, maleic acid (tel, 2,5-dimethyl-2,5-
After thoroughly mixing di(t-butylperoxy)hexane (cl) in the proportions listed in Table 1, it was fed in an extrusion mode set at 200 to 250°C. The vent hole was located 2/3 from the hopper side, and the glass fiber (■) was continuously supplied from this vent hole at the ratio shown in Table 1.The screw of this extruder It had a Dalmage-type crosstalk zone just before it. Chopped strands with a length of 3 vyr and a diameter of 16 μm, surface-treated with γ-aminopropyltrimethoxysilane, were used as the glass fibers.The resulting pellets A test piece was prepared by injection molding from 5, and its mechanical strength was measured.The results are shown in Table 1.

比較例1−r−t; 実施例1において、各成分の負比火第1表に示す割合に
したこと以外は実施例1と同様にして組成物ペレットを
製造し、機械的強度を測定した。
Comparative Example 1-rt: Composition pellets were produced in the same manner as in Example 1 except that the proportions of each component were set as shown in Table 1, and the mechanical strength was measured. .

その結果ケ第1表に示す。The results are shown in Table 1.

比較例2 実施例1−5の組成比と同じに、(IIと(a)、(b
)、(clおよびfIllケ予備混合した後、実施例1
で使用した押出機のポツパ一部から供給l〜だ。但し1
、この防−に使用したスクリューは実施例1とは異なり
、フルフライトタイプのスクリューを1史月1した。そ
の結果−得られた組成物ペレット中)if ラス繊維の
平均繊維長を測定したところ、0.6間であり。
Comparative Example 2 Same composition ratio as Example 1-5, (II, (a), (b)
), (after premixing cl and fIll, Example 1
It is supplied from a portion of the extruder used in . However, 1
The screw used for this prevention was different from that in Example 1, and was a full-flight type screw. Results - The average fiber length of the lath fibers in the resulting composition pellets was measured and was found to be between 0.6 and 0.6.

実施例1−5の平均繊維長CJ−6mm、とほぼ同等で
あった。機械的強度を測定した結果ン第1表に示す。
The average fiber length of Example 1-5 was approximately CJ-6 mm. The results of measuring mechanical strength are shown in Table 1.

比較例6 無水マレイン酸16部でグラフ)f性されたM!I 8
の結晶性ポリプロピレン7o部と、ガラス繊維60部を
実施例1と同様に押出様2便月」してペレット組成物を
41処し評価し、た。その結果を第1表に示す。
Comparative Example 6 M! I 8
A pellet composition was prepared by extruding 70 parts of crystalline polypropylene and 60 parts of glass fiber in the same manner as in Example 1, and then evaluated. The results are shown in Table 1.

(以下全白) 実施例2 実施例1−5において、マレイン酸の代りに各種有機カ
ルボン酸および酸無水物を使用すること欠除いては実施
例1−5と同様にして組成物ペレットを製造し、機械的
強度ケ迎1定した。その結果2第2表に示す。
(All white below) Example 2 Composition pellets were produced in the same manner as in Example 1-5, except that various organic carboxylic acids and acid anhydrides were used instead of maleic acid. The mechanical strength was determined to be 1. The results are shown in Table 2.

第 2 表 実施例6 実施例1−5において、結晶性ポリゾロピレンの代りに
M■20、密度0.962の^密度ポリエチレンを使用
1−ることを除いては実施例1−5と一同様にして組成
物ペレットン製造し、機械的強度を測定した。引張強度
は870 kl/cm’、曲げ強度は1290 kl?
/cr/12であった。
Table 2 Example 6 In Example 1-5, the procedure was the same as in Example 1-5 except that ^density polyethylene of M 20 and density 0.962 was used instead of crystalline polyzolopyrene. Composition pellets were manufactured using the same method, and their mechanical strength was measured. The tensile strength is 870 kl/cm' and the bending strength is 1290 kl?
/cr/12.

比較例ろ 実施例6において、筒密度ポリエチレンとガラス繊維の
みを使用することを除いては実施例6と同様にして組成
物ペレットを製造し、機械的強度を測定した。引張強度
は560kg/cIrL2、曲げ強度は690 kg/
cx2であった。
Comparative Example In Example 6, composition pellets were produced in the same manner as in Example 6 except that only cylindrical density polyethylene and glass fiber were used, and the mechanical strength was measured. Tensile strength is 560 kg/cIrL2, bending strength is 690 kg/
It was cx2.

本発明の組成物は機械的強度が優れており、特に引張強
度、曲げ強度が極めて高い値を示す。本発明によれは、
ガラス繊維2[]チを充てんすることにより、従来法の
組成物ではガラス繊維30%の充てんを要する引張強度
、曲げ強度と近似の値を発現1−ることかできる。ガラ
ス繊維の充てん量を下げることができるということは、
コストタウンはもとより、成形様の摩耗は少くなり、成
形品の外観は良(なり、軽くなり、異方性が少くできる
等メリットは数多い。
The composition of the present invention has excellent mechanical strength, and particularly exhibits extremely high tensile strength and bending strength. According to the present invention,
By filling the glass fibers with 2[chi], it is possible to develop tensile strength and bending strength values that are similar to those of conventional compositions that require 30% glass fiber filling. The fact that the amount of glass fiber filling can be lowered means that
There are many benefits, including cost reduction, less molding wear, better appearance of molded products, lighter weight, and less anisotropy.

しかも本発明の組成物は、簡便な方法で製造できる。Moreover, the composition of the present invention can be produced by a simple method.

特許出願人 旭化成工栗株式会社Patent applicant: Asahi Kasei Kokuri Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリオレフィン+1150〜99重量部とガラス
繊維(■)1〜50貞を部とを溶融混練するに際し、前
記ガラス繊維(■)100重量部に対して0.1〜5重
量部の不飽和7ラン化合物(alと0.01〜5N量部
の有機カルボン酸もしくはその酸無水物(b)、および
前記ポリオレフィン(Jlloo:ff1−1iir部
に対して0、OO’5〜0.5重量部のラジカル発生剤
tc+と前記ポリオレフィン+1150〜99重量部と
乞溶融混線反応せしめた溶融状態の組成物に前記ガラス
繊維(1)1〜50重量部を添加し、次いで更に溶融混
練すること乞特徴とするガラス繊維強化ポリオレフィン
系樹脂組成物の製造方法
(1) When melt-kneading polyolefin + 1,150 to 99 parts by weight and 1 to 50 parts of glass fiber (■), 0.1 to 5 parts by weight of unsaturation per 100 parts by weight of the glass fiber (■). 7 run compound (al and 0.01 to 5 N parts of organic carboxylic acid or its acid anhydride (b), and the polyolefin (Jlloo: 0, OO' 5 to 0.5 parts by weight per part of ff1-1iir) Adding 1 to 50 parts by weight of the glass fiber (1) to a composition in a molten state obtained by subjecting the radical generator tc+ and the polyolefin + 1,150 to 99 parts by weight to a melt-mixing reaction, and then further melt-kneading. Method for producing glass fiber reinforced polyolefin resin composition
JP10926783A 1983-06-20 1983-06-20 Production of glass fiber-reinforced polyolefin resin composition Granted JPS601236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10926783A JPS601236A (en) 1983-06-20 1983-06-20 Production of glass fiber-reinforced polyolefin resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10926783A JPS601236A (en) 1983-06-20 1983-06-20 Production of glass fiber-reinforced polyolefin resin composition

Publications (2)

Publication Number Publication Date
JPS601236A true JPS601236A (en) 1985-01-07
JPS6311366B2 JPS6311366B2 (en) 1988-03-14

Family

ID=14505831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10926783A Granted JPS601236A (en) 1983-06-20 1983-06-20 Production of glass fiber-reinforced polyolefin resin composition

Country Status (1)

Country Link
JP (1) JPS601236A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178153A (en) * 1987-01-20 1988-07-22 Mitsui Toatsu Chem Inc Production of filled propylene polymer composition
JPH04209657A (en) * 1990-12-03 1992-07-31 Minoru Sangyo Kk Blow molding composition
JPH054374U (en) * 1991-06-21 1993-01-22 テイーデイーケイ株式会社 Disk Cartridge
US6136926A (en) * 1996-07-22 2000-10-24 Borealis Gmbh Cross-linkable, olefinic polymers and methods for their synthesis
JP2019529620A (en) * 2016-09-19 2019-10-17 ロッテ ケミカル コーポレーション Glass fiber composite material with improved impact strength

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474676U (en) * 1990-11-14 1992-06-30

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178153A (en) * 1987-01-20 1988-07-22 Mitsui Toatsu Chem Inc Production of filled propylene polymer composition
JPH04209657A (en) * 1990-12-03 1992-07-31 Minoru Sangyo Kk Blow molding composition
JPH054374U (en) * 1991-06-21 1993-01-22 テイーデイーケイ株式会社 Disk Cartridge
US6136926A (en) * 1996-07-22 2000-10-24 Borealis Gmbh Cross-linkable, olefinic polymers and methods for their synthesis
JP2019529620A (en) * 2016-09-19 2019-10-17 ロッテ ケミカル コーポレーション Glass fiber composite material with improved impact strength

Also Published As

Publication number Publication date
JPS6311366B2 (en) 1988-03-14

Similar Documents

Publication Publication Date Title
US5324755A (en) Glass fiber reinforced composition of propylene polymer grafted with styrenic monomer and containing styrenic polymer
JP2883369B2 (en) Method for producing polyolefin resin composition for long fiber reinforced molding
JP3338124B2 (en) Propylene-based heat-resistant resin molding material and molded article thereof
JPS61190549A (en) Glass fiber-reinforced polypropylene composition
JPS60203654A (en) Glass fiber-reinforced polypropylene composition
JP2010116571A (en) Filler-containing polyolefin resin composition, pellet, and molded article of the same
US5296186A (en) Process for producing molded products of propylene resin
JPS58204043A (en) Reinforced polyolefin resin composition
KR930011365B1 (en) Polyolefin resin composition for molding reinforced fiber and their production process
JPH0277459A (en) Fiber-reinforced polypropylene composition having high melt flow
JP2004197068A (en) Filler-containing polyolefin resin composition, pellet and its molded product
CN109790325B (en) Glass fiber composite compositions with improved impact strength
JP3066361B2 (en) Polyolefin resin composition for extrusion molding and method for producing the same
JPS601236A (en) Production of glass fiber-reinforced polyolefin resin composition
JPS58167637A (en) Preparation of molded polyolefin type resin article
KR101063712B1 (en) Method for producing thermoplastic resin having scratch resistance
JPH0425291B2 (en)
JPS6311365B2 (en)
JPS58217532A (en) Production of glass fiber-reinforced polyolefin
JPS58145745A (en) Production of polyolefin resin molding
JPH038382B2 (en)
JPS6381147A (en) Glass fiber reinforced polypropylene resin composition
JPS5883043A (en) Reinforced polyolefin
JPS5986646A (en) Reinforced polyolefin resin composition
JPS63172751A (en) Production of modified polyolefin