JPS6198758A - Propylene resin composition - Google Patents

Propylene resin composition

Info

Publication number
JPS6198758A
JPS6198758A JP22165084A JP22165084A JPS6198758A JP S6198758 A JPS6198758 A JP S6198758A JP 22165084 A JP22165084 A JP 22165084A JP 22165084 A JP22165084 A JP 22165084A JP S6198758 A JPS6198758 A JP S6198758A
Authority
JP
Japan
Prior art keywords
acid
weight
mica powder
modified
aspect ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22165084A
Other languages
Japanese (ja)
Other versions
JPS6411218B2 (en
Inventor
Rikio Yonaiyama
米内山 力男
Michio Kasai
笠井 三千雄
Nobukazu Atsumi
渥美 信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP22165084A priority Critical patent/JPS6198758A/en
Publication of JPS6198758A publication Critical patent/JPS6198758A/en
Publication of JPS6411218B2 publication Critical patent/JPS6411218B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A composition providing a molded article keeping improved strength and heat resistance of FR-PP, having extremely improved rigidity and deformation properties of warping, obtained by blending a modified propylene with glass fibers and specific mica power and kneading them in a molten state. CONSTITUTION:(A) 45-75 wt.% modified polypropylene modified with an unsatu rated acid is blended with (B) 10-35 wt.% glass fibers, and (C) 15-45 wt.% mica powder having >=25, preferably >=45 aspect ratio in such a way that an amount of the components B+C is 25-55 wt.% based on 100 wt.% total amount of the components A+B+C, and a ratio of the component C/the components (B+C) is 0.35-0.82, and kneaded in a molten state. Glass fibers having <=11mu average diameter and >=0.5 mm average length are used as the component B. A modified propylene modified with acrylic acid, metehacrylic acid, maleic acid anhydride fumaric acid, citraconic acid, or itaconic acid is used as the component A.

Description

【発明の詳細な説明】 本発明は、成形品としたときに機械的強度、耐熱剛性お
よび反り変形防止性に優れた成形品が得られるプロピレ
ン樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a propylene resin composition which, when made into a molded article, provides a molded article with excellent mechanical strength, heat-resistant rigidity, and warpage prevention properties.

ポリプロピレン成形品の機械的強度、剛性、耐熱変形性
などを改良するために各種充填剤例えばガラス繊維、炭
素繊維、ウィスカー、金属繊維などの繊維状の充填剤、
雲母、タルり、カオリナイトなどの板状の充填剤、炭酸
カルシウム、ケイ藻土、アルミナ、ガラスピーズなどの
粒状の充填剤などをプロピレン樹脂に配合することは従
来より行なわれ、すでに広範な用途に用いられている。
In order to improve the mechanical strength, rigidity, heat deformation resistance, etc. of polypropylene molded products, various fillers such as fibrous fillers such as glass fibers, carbon fibers, whiskers, and metal fibers,
Platy fillers such as mica, tar, kaolinite, and granular fillers such as calcium carbonate, diatomaceous earth, alumina, and glass peas have been added to propylene resin for a long time, and are already widely used. It is used in

これら各種形状の充填剤のうち、繊維状の充填剤は他の
形状の充填剤にくらべ補強効果が特に大きく、なかでも
ガラス繊維は価格も比較的安価であり、補強材としての
コストパーフォーマンスに優れていることからガラス繊
維強化ポリプロピレンが機械的強度、剛性、耐熱変形性
を要求される分野で広く用いられている。
Among these various shapes of fillers, fibrous fillers have a particularly large reinforcing effect compared to other shapes of fillers, and glass fibers are particularly cheap and have good cost performance as reinforcing materials. Because of its excellent properties, glass fiber reinforced polypropylene is widely used in fields that require mechanical strength, rigidity, and heat deformation resistance.

しかしながら、ガラス繊維で強化されたポリプロピレン
の成形品は反り変形が大きいという欠点を有しているた
め寸法精度を必要とする用途への使用には大巾な制限が
あった。
However, glass fiber-reinforced polypropylene molded products have the disadvantage of large warpage deformation, which severely limits their use in applications requiring dimensional accuracy.

これに対し、板状の充填剤や粒状の充填剤を使用した場
合には、反り変形は小さくなるが繊維状充填剤を使用し
た場合に(らべ、引張強度、曲げ強度、アイゾツト衝繋
強度に対する補強効果は著しく小さい。しかし雲母粉末
やメルク等の板状の充填剤で強化されたポリプロピレン
の成形品では良好な剛性を示すので繊維状の充填剤と該
板状の充填剤とを併用する試みがなされており、例えば
特開昭52−36141号公報、特開昭54−1306
47号公報、特開昭55−16049号公報、特開昭5
5−21438号公報、特開昭55−4571−も報な
どに開示されている。
On the other hand, when plate-shaped fillers or granular fillers are used, the warping deformation is reduced, but when fibrous fillers are used ( However, polypropylene molded products reinforced with plate-shaped fillers such as mica powder and Merck exhibit good rigidity, so fibrous fillers and plate-shaped fillers are used in combination. Attempts have been made, for example, in JP-A-52-36141 and JP-A-54-1306.
No. 47, JP-A-55-16049, JP-A-Sho 5
Publication No. 5-21438 and Japanese Unexamined Patent Publication No. 55-4571 are also disclosed in publications.

しかしながら、これらの公報のものは全組成物中のfR
B状充填剤の配合量が比較的少ない領域に関するものの
みであり、特に繊維状充填剤がガラス繊維の場合、該ガ
ラス繊維の配合量が10重量%以下でのみ、比較的反り
、ねじれの少ない成形品が得られているにすぎないつと
ころで、ガラス繊維強化ポリプロピレン(以下、FR−
PPという。)においては、ガラス繊維の配合量が10
重量%以下では必ずしも充分な補強効果が得られないの
で、実際には該配合量が10重量%以上のFR−PPの
需要が多いのであるが、ガラス繊維の配合量が10重量
%を超えると、成形品としたときに該成形品の反り変形
が急激に大きくなるといったり、象を呈する。このため
、ガラス繊維を10重量%以上配合した従来のFR−P
Pは、ソリ、ねじれの発生しにくい形状の成形品の用途
にのみ使用さね、それ以外の用途には使用できなかった
。そこでガラス繊維の配合量が10重量%以上でかつ、
成形品としたときに該成形品の反り変形の少ないFR−
PPが強く要望されていた。
However, in these publications, fR in the whole composition
This only applies to areas where the blending amount of the B-type filler is relatively small, and in particular, when the fibrous filler is glass fiber, only when the blending amount of the glass fiber is 10% by weight or less, there is relatively little warping and twisting. Glass fiber reinforced polypropylene (hereinafter referred to as FR-
It's called PP. ), the blending amount of glass fiber is 10
If the amount of glass fiber is less than 10% by weight, a sufficient reinforcing effect cannot necessarily be obtained, so in reality there is a great demand for FR-PP with a content of 10% by weight or more, but if the content of glass fiber exceeds 10% by weight, , when the molded product is made into a molded product, the warping deformation of the molded product suddenly increases. For this reason, conventional FR-P containing 10% by weight or more of glass fiber
P can only be used for molded products with shapes that are unlikely to warp or twist, and cannot be used for other purposes. Therefore, the blending amount of glass fiber is 10% by weight or more, and
FR- with less warping deformation of the molded product when made into a molded product
PP was strongly requested.

本発明者らは、FR−PPの上述の問題点の解決のため
鋭意研究した。その結果、ガラス繊維の含有量が全組成
物中にlO重重量係上上配合れていても、特定の形状を
有する雲母粉末を特定量配合することにより成形品とし
たときに、該成形品9反り変形をきわめて小さくするこ
とのできるFR−PPが得られることを見い出し本発明
を完成した。
The present inventors conducted extensive research to solve the above-mentioned problems of FR-PP. As a result, even if the content of glass fiber is higher than 10% by weight in the whole composition, when a molded article is made by blending a specific amount of mica powder having a specific shape, the molded article 9. The present invention was completed by discovering that FR-PP can be obtained which can minimize warping deformation.

以上の記述から明らかなように、本発明の目的はFR−
PPのもつ優れた強度と耐熱変形性を維持しつつ、剛性
、反り変形性が著しく改善された成形品を得ることがで
きるプロピレン樹脂組成物を提供することである。
As is clear from the above description, the purpose of the present invention is to
It is an object of the present invention to provide a propylene resin composition capable of obtaining a molded article with significantly improved rigidity and warpage deformability while maintaining the excellent strength and heat deformation resistance of PP.

本発明は下記の構成を有する。The present invention has the following configuration.

下記(a)、(b)、(c)成分の合計量を100重量
%として、(b)および(e)成分をそれぞれの濃度範
囲内で(a)成分に配合し、溶融混練して得られる組成
物であって、(b) + (c)の合計量が25〜55
重量係で、かつ(c)/χb) + (e)が0.35
以上0.82以下であることを特徴とするプロピレン樹
脂組成物(a)不飽和酸で変性された変性ポリプロピレ
ン45〜75重量% (b)ガラス繊維       10〜35重量係(c
)アスペクト比が25以上の雲母粉末15〜45重量%
The total amount of the following components (a), (b), and (c) is 100% by weight, and the components (b) and (e) are blended with component (a) within their respective concentration ranges and obtained by melt-kneading. a composition in which the total amount of (b) + (c) is 25 to 55
In terms of weight, and (c)/χb) + (e) is 0.35
(a) Modified polypropylene modified with an unsaturated acid 45 to 75% by weight (b) Glass fiber 10 to 35% by weight (c
) 15-45% by weight of mica powder with an aspect ratio of 25 or more
.

本発明で用いられる不飽和酸で変性された変性ポリプロ
ピレンとは、ポリプロピレンと不飽和酸とをラジカル発
生剤の存在下に溶融混練処理したポリプロピレンのこと
である。
The modified polypropylene modified with an unsaturated acid used in the present invention is a polypropylene obtained by melt-kneading polypropylene and an unsaturated acid in the presence of a radical generator.

不飽和酸としては、不飽和カルボン酸またはその無水物
例えばアクリル酸、メタクリル酸、マレイン酸、フマル
酸、シトラコン酸、無水マレイン酸、無水イタコン酸な
どを用いることができる。また、変性ポリプロピレンに
用いられる原料のポリプロピレンとしては、特に制限は
なく、プロピレンの単独重合体、プロピレンとエチレン
、ブテン−1、ヘキセン−1、オクテン−1などのα−
オレフィンとのランダム共重合体もしくはブロック共重
合体などを例示できる。
As the unsaturated acid, unsaturated carboxylic acids or their anhydrides such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, citraconic acid, maleic anhydride, itaconic anhydride, etc. can be used. The polypropylene used as a raw material for modified polypropylene is not particularly limited, and may be a propylene homopolymer, propylene and ethylene, α-1 such as butene-1, hexene-1, octene-1, etc.
Examples include random copolymers or block copolymers with olefins.

ポリプロピレンと不飽和酸とを溶融混線処理する方法は
、公知の種々の方法を用いることができるがポリプロピ
レン粉状体に上述の不飽和酸およびジ−t−ブチルパー
オキサイド、ジクミルパーオキサイド、ベンゾイルパー
オキサイドなどの有機過酸化物を加え、ヘンセルミキサ
ー(商品名)などで攪拌混合したのち、押出機を用いて
溶融混練温度150C〜300C,好ましくは180C
〜250Cで溶融混練押出する方法が簡便であり、好適
に用いられる。
Various known methods can be used to melt and cross-mix polypropylene with an unsaturated acid. After adding an organic peroxide such as peroxide and stirring and mixing with a Hensel mixer (trade name), etc., use an extruder to melt and knead at a temperature of 150C to 300C, preferably 180C.
A method of melt-kneading and extrusion at ~250C is simple and preferably used.

また、本発明の組成物にあっては、変性ポリプロピレン
に未変性のポリプロピレンを混合して用いることもでき
る。
Furthermore, in the composition of the present invention, unmodified polypropylene may be mixed with modified polypropylene.

本発明に用いられるガラス繊維は、通常、樹脂強化用と
して製造され、市販されているガラスチョツプドストラ
ンドまたはガラスロービングであって、平均繊維径が5
〜20μ、平均ft維長はチョツプドストランドタイプ
のものにあっては0.5 van以上10mm以下のも
のが好ましい。
The glass fibers used in the present invention are usually commercially available glass chopped strands or glass rovings produced for resin reinforcement, and have an average fiber diameter of 5.
~20μ, and the average ft fiber length is preferably 0.5 van or more and 10 mm or less for chopped strand type.

一般に、F R−P Pにあっては、ガラス繊維はポリ
プロピレンに配合し溶融混練する段階および成形加工の
段階でそれぞれ切断が起こるので、最終成形品中のガラ
ス繊維の平均繊維長はガラス繊維の平均繊維径にかかわ
らず大体0.5〜0.8順の範囲となる。
Generally, in F R-P, glass fibers are cut at the stage of blending and melt-kneading with polypropylene and at the stage of molding, so the average fiber length of the glass fibers in the final molded product is Regardless of the average fiber diameter, the average fiber diameter is approximately in the order of 0.5 to 0.8.

従って平均a維径のより小さいガラス繊維を使用した方
が最終成形品中の平均アスペクト比(繊維長/繊維径)
がより大きく保てる結果となり、機械的強度、耐熱変形
性などに対する補強効果が大となる。しかしながら、反
面成形異方性が顕著となり、成形品の反り変形が大きく
なる。
Therefore, the average aspect ratio (fiber length/fiber diameter) in the final molded product is better when using glass fibers with a smaller average a-fiber diameter.
As a result, the reinforcement effect on mechanical strength, heat deformation resistance, etc. is large. However, on the other hand, molding anisotropy becomes noticeable, and the warp deformation of the molded product increases.

しかるに本発明の組成物にあっては、平均繊維径が小さ
く、かつ平均繊維長の大穴い、いわゆる高アスペクト比
のガラス繊維を用いるにもかかわらず、得られた成形品
は良好な反り変形防止性を示す。
However, in the composition of the present invention, despite using glass fibers with a small average fiber diameter and large average fiber length, that is, a so-called high aspect ratio, the obtained molded product has good prevention of warpage deformation. Show your gender.

さらに、本発明に用いられる雲母粉末は、雲母結晶板の
平均直径と平均厚さの比すなわち平均アスペクト比が2
5以上特に好ましくは45以上のものである。
Furthermore, the mica powder used in the present invention has a ratio of the average diameter to the average thickness of the mica crystal plates, that is, an average aspect ratio of 2.
It is 5 or more, particularly preferably 45 or more.

この平均アスペクト比が25未満の雲母粉末では反り変
形防止性に乏しく好ましくない。
Mica powder having an average aspect ratio of less than 25 is undesirable because it has poor warpage prevention properties.

また、用いられる雲母粉末の種類としては、平均アスペ
クト比が25以上であれば特に制限はなく、黒雲母、リ
シア雲母、白雲母、金雲母などから広く選ぶことができ
る。
The type of mica powder to be used is not particularly limited as long as it has an average aspect ratio of 25 or more, and can be selected from a wide range of biotite, scad mica, muscovite, phlogopite, and the like.

さらに、本発明に用いられる雲母粉末は、表面処理をさ
られていないものを用いても差しつかえないが、各種の
表面処理剤によって表面処理されたものを用いることも
できる。
Furthermore, the mica powder used in the present invention may be one that has not been surface-treated, but it is also possible to use one that has been surface-treated with various surface-treating agents.

つぎに本発明の組成物を得るにあたって、平均アスペク
ト比が25以上の雲母粉末と、ガラス繊維との配合関係
について述べる。
Next, in obtaining the composition of the present invention, the blending relationship between mica powder having an average aspect ratio of 25 or more and glass fiber will be described.

今、変性ポリプロピレン、ガラス繊維および雲母粉末の
合計配合量を100重量係としだとき、ガラス繊維の配
合量(重量%)と雲母粉末の配合量(重量%)をそれぞ
れ(b)および(c)とすれば lO≦(b)≦35           ■15≦(
c)≦45         00.35≦(c)/(
b)+(c)≦0.82      ■25≦(b) 
+ (c)≦55         ■の関係式を満足
するようにガラス繊維と雲母粉末を、変性ポリプロピレ
ンに配合することが必要である。充填剤としてガラス繊
維と雲母粉末とを併用した場合、かかる強化プロピレン
樹脂組成物を用いた成形品の引張強度、曲げ強度、アイ
ゾツト衝撃強度および耐熱変形性は使用するガラス繊維
の配合量によって実質的に定まってしまうので、式■の
10≦(b)≦35および式■の上限値0,82以下の
規制は本発明の特徴である賃い機械的強度と高耐熱変形
性を達成するために必要な条件である。次に式■の15
≦(c)≦45および式■の下限値035以上は、反り
変形防止性に関する規制であって、式■および式■の関
係は同時に満足されなければならない。すなわち式■を
満足している場合であっても(c)つまり雲母粉末の配
合量が155重量%満の場合には、得られる成形品は充
分な反り変形防止性が得られない。
Now, when the total blending amount of modified polypropylene, glass fiber, and mica powder is expressed as 100 weight percent, the blending amount of glass fiber (wt%) and mica powder blending amount (wt%) are (b) and (c), respectively. Then lO≦(b)≦35 ■15≦(
c)≦45 00.35≦(c)/(
b)+(c)≦0.82 ■25≦(b)
+(c)≦55 It is necessary to blend glass fiber and mica powder into modified polypropylene so as to satisfy the following relational expression (2). When glass fiber and mica powder are used together as fillers, the tensile strength, flexural strength, Izot impact strength, and heat deformation resistance of molded products using such reinforced propylene resin compositions will vary depending on the amount of glass fiber used. Therefore, the regulation of 10≦(b)≦35 in equation (2) and the upper limit of 0.82 in equation (2) is necessary in order to achieve the low mechanical strength and high heat deformation resistance that are the characteristics of the present invention. This is a necessary condition. Next, 15 of formula ■
≦(c)≦45 and the lower limit value of 035 or more of the formula (■) are regulations regarding warpage prevention properties, and the relationships of the formula (2) and the formula (2) must be satisfied at the same time. That is, even if formula (2) is satisfied, if the amount of mica powder (c) blended is less than 155% by weight, the resulting molded product will not have sufficient warpage prevention properties.

また式■の下限値は、式■および式■の各下限値から決
まって(る数値であり、式■の上限値55重i%の数値
は、実質的に工業的に生産しうる組成物中の充填剤量の
上限値を示したものである。
In addition, the lower limit of formula (■) is a numerical value determined from the lower limits of formula (■) and formula (■), and the upper limit of formula (■) of 55 wt. This shows the upper limit of the amount of filler in the material.

本発明の組成物は次の方法により製造することができる
。すなわち、たとえば、1)変性ポリプロピレン、雲母
粉末およびガラス繊維のそれぞれ所定量をヘンセルミキ
サー(商品名)K入れ、攪拌混合したのち、1軸または
2軸の押出機を用いて溶融混練押出150C〜300C
好ましくは180C〜250Cで溶融混練押出する方法
、2)通常の原料供給口より変性ポリプロピレンを供給
し、該変性ポリプロピレンが充分に溶融する位置に他の
原料を供給できるような途中添加口な備えた押出機にあ
っては、変性ポリプロピレンと雲母粉末を通常の原料供
給口より供給し、途中添加口よりガラス繊維を供給しな
がら上述の温度で溶融混練押出する方法、3)通常の原
料供給口より変性ポリプロピレンのみを供給し、途中添
加口より雲母粉末とガラス繊維を供給し、上述の温度で
溶融混練押出する方法などである。
The composition of the present invention can be manufactured by the following method. That is, for example, 1) predetermined amounts of each of modified polypropylene, mica powder, and glass fiber are placed in Hensel mixer (trade name) K, stirred and mixed, and then melt-kneaded and extruded at 150C using a single-screw or twin-screw extruder. 300C
Preferably, a method of melt-kneading and extrusion at 180C to 250C, 2) supplying the modified polypropylene from a normal raw material supply port, and providing an intermediate addition port so that other raw materials can be supplied to a position where the modified polypropylene is sufficiently melted. In the extruder, modified polypropylene and mica powder are supplied from a normal raw material supply port, and glass fiber is supplied from an intermediate addition port while melt-kneaded and extruded at the above temperature, 3) from a regular raw material supply port. This method involves supplying only modified polypropylene, supplying mica powder and glass fiber from an intermediate addition port, and melt-kneading and extruding at the above-mentioned temperature.

また本発明の組成物には種々の添加剤たとえば酸化防止
剤、紫外線吸収剤、帯電防止剤、耐熱剤、顔料などを併
用することができる。
Further, various additives such as antioxidants, ultraviolet absorbers, antistatic agents, heat resistant agents, pigments, etc. can be used in combination with the composition of the present invention.

以下実施例および比較例により本発明を具体的に説明す
るが本発明はこれによって限定されるもの゛ではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

なお本発明の効果の評価試験法として、機械的強度の測
定は引張強度の測定(JISに7113に準拠)および
曲げ強度の測定(JIS K7203に準拠)により、
剛性は曲げ弾性率の測定(JIs  K7203に準拠
)により、衝撃強度はアイゾツト衝撃強度の測定(JI
S K7110に準拠)により、耐熱変形性は熱変形温
度(荷重18.6Kq/ajl)の測定(JIS K7
207に準拠)により、反り変形性は次に示す最大反り
変形量の測定により行なった。
As a test method for evaluating the effects of the present invention, mechanical strength was measured by measuring tensile strength (based on JIS 7113) and bending strength (based on JIS K7203).
Rigidity is measured by bending modulus (based on JIs K7203), and impact strength is measured by Izot impact strength measurement (JIs K7203).
According to JIS K7110), the heat deformation resistance was determined by measuring the heat deformation temperature (load 18.6 Kq/ajl) (JIS K7
207), the warp deformability was measured by measuring the maximum warp deformation amount shown below.

最大反り変形量:厚さ2麿、タテ、ヨコそれぞれ150
 m、mの平板を、1辺の全面をフィルムゲートとして
射出成形して作成した。得られた該平板を試験片として
、該試験片を温度23C1RH50’lの条件下で48
時間状態調節を行なった。その後、該試験片を水平な台
の上に1辺の両端を固定し、他端の水平面からの離れた
距離(反り9を測定し反り変形量とする。しかし試験片
の固定する1辺の位置が変わることにより反り変形量が
異なるので、固定する1辺の位置をいろいろ変えて他端
の反り変形量を測定し、このうち最大の変形量を最大反
り変形量とし単位を胴で表わした。
Maximum amount of warping: 2mm thick, 150 each vertically and horizontally
A flat plate of size m and m was made by injection molding with the entire surface of one side as a film gate. The obtained flat plate was used as a test piece, and the test piece was heated at a temperature of 23C1RH50'l for 48 hours.
Time conditioning was performed. After that, the test piece is fixed at both ends of one side on a horizontal table, and the distance (warp 9) from the other end from the horizontal plane is measured and used as the amount of warp deformation. Since the amount of warp deformation differs depending on the position, we varied the position of one fixed side and measured the amount of warp deformation at the other end, and the maximum deformation was taken as the maximum warp deformation and expressed in units of shells. .

実施例1、比較例1〜2 メルトフローレート(温度230Cにおける荷重2.1
6 Kgを加えた場合の10分間の溶融樹脂の吐出Ji
)4.5のポリプロピレン単独重合体98.15重i%
に無水マレイン酸1.0重量%、2.6−ジーt−ブチ
ルパラゾール0.1麺だ壬、カルシウムステアレート0
1重量4.1.a−ビス(t−プチルパーオキシイソブ
ロビル)ベンゼン0.055重量%よび水酸化マグネシ
ウム0.6重量%をヘンセルミキサー(商品名)に入れ
、3分間攪拌混合したのち、口径45薗、L/D30の
クローレート130の変性ポリプロピレンベレットを得
た。
Example 1, Comparative Examples 1-2 Melt flow rate (load 2.1 at temperature 230C)
Discharge Ji of molten resin for 10 minutes when adding 6 kg
) 4.5 polypropylene homopolymer 98.15% by weight
Contains 1.0% by weight of maleic anhydride, 0.1% of 2.6-di-t-butylparazole, and 0% of calcium stearate.
1 weight 4.1. 0.055% by weight of a-bis(t-butylperoxyisobrobyl)benzene and 0.6% by weight of magnesium hydroxide were placed in a Hensel mixer (trade name), stirred and mixed for 3 minutes, and then mixed with A modified polypropylene pellet with a chloride rate of /D30 of 130 was obtained.

該変性ポリプロピレンペレット50重量%とアスペクト
比が70の雲母粉末30重量%(レプコ■製)とをヘン
セルミキサー(商品名)に入れ、1分間攪拌混合し、上
述の2軸押比機を用い、通常の原料供給口より該混合物
を供給しストランドの直径が13μ、長さ3mのガラス
繊維(チョツプドストランド、日本電気硝子■製、以下
これをガラスflIaという。)20重量係をシリンダ
一部に設けられた別の供給口より計量しながら供給し、
溶融混練温度25.OCで溶融混練押出しペレタイズし
た。
50% by weight of the modified polypropylene pellets and 30% by weight of mica powder with an aspect ratio of 70 (manufactured by Repco ■) were placed in a Hensel mixer (trade name), stirred and mixed for 1 minute, and then mixed using the twin-screw presser described above. , the mixture was supplied from a normal raw material supply port, and 20 weight sections of glass fiber (chopped strand, manufactured by Nippon Electric Glass, hereinafter referred to as glass flIa) with a strand diameter of 13μ and a length of 3m were put into a cylinder. Supplied while measuring from another supply port provided in the section,
Melt kneading temperature 25. The mixture was melt-kneaded, extruded, and pelletized using OC.

また比較例1〜2として、比較例1は変性ポリプロピレ
フ80重量俤を実施例1と同様の押出機の通常の原料供
給口より供給し、ガラス繊#a20重量%をシリンダ一
部に設けられた別の供給口より計量しながら供給し実施
例1と同様にしてペレタイズした。比較例2は変性ポリ
プロピレン50骨部係とアスペクト比70の雲母粉末5
0重量係とを実施例1と同様にして混合し、実施例1で
用いた2軸押用機を用い、該混合物を通常の原料供給口
より供給し、溶融混練温度250Cで溶融混練押出しペ
レタイズした。以上各側により得られたペレットを射出
成形機にかけ、樹脂温度250 r、金型温度50Cで
所定の試験片を成形し、各種評価試験に供した。
Further, as Comparative Examples 1 and 2, in Comparative Example 1, 80% by weight of modified polypropylene was supplied from the normal raw material supply port of the same extruder as in Example 1, and 20% by weight of glass fiber #a was provided in a part of the cylinder. The mixture was metered and fed from another feed port, and pelletized in the same manner as in Example 1. Comparative example 2 is modified polypropylene 50 bone part and mica powder with aspect ratio 70 5
0 weight ratio was mixed in the same manner as in Example 1, and using the twin-screw extrusion machine used in Example 1, the mixture was fed from a normal raw material supply port and melt-kneaded, extruded, and pelletized at a melt-kneading temperature of 250C. did. The pellets obtained on each side were put into an injection molding machine, and predetermined test pieces were molded at a resin temperature of 250 r and a mold temperature of 50 C, and were subjected to various evaluation tests.

実施例2、比較例3、参考例1 ガラス繊維としてストランドの直径が9μ、長さが3鞄
のガラス繊#20骨部係(日本電気硝子■製、以下これ
をガラス繊維すという。)を使用する以外は実施例1と
同様同量の変性ボまた比較例3として、実施例2で用い
たガラス繊維b20骨部係を使用する以外は比較例1と
同様、同量の変性ポリプロピレンを比較例1と同様にし
て混合し、溶融混練押出しペレタイズした。
Example 2, Comparative Example 3, Reference Example 1 As the glass fiber, #20 glass fiber (manufactured by Nippon Electric Glass, hereinafter referred to as glass fiber) with a strand diameter of 9μ and a length of 3 bags was used. The same amount of modified polypropylene was used as in Example 1, except that the same amount of modified polypropylene was used.As Comparative Example 3, the same amount of modified polypropylene was used as in Comparative Example 1, except that the glass fiber B20 bone used in Example 2 was used. The mixture was mixed in the same manner as in Example 1, and then melt-kneaded, extruded, and pelletized.

参考例1として、雲母粉末のかわりに、タルク粉末(松
材産業■製商品名)・イフイラ−5000PJ) 30
骨部係を用いる以外は実施例2と同様、同量の変性ポリ
プロピレン、ガラス繊維すを用い、変性ポリプロピレン
およびタルク粉末を実施例1と同様にして混合し、実施
例1と同様に溶融混線押出しペレタイズした。これらの
ペレットを用いて実施例1と同様にして射出成形により
、所定の試験片を成形し、各種評価試験に供した。
As Reference Example 1, instead of mica powder, talc powder (trade name manufactured by Matsuzai Sangyo ■) Ifilla-5000PJ) 30
The same amount of modified polypropylene and glass fibers were used as in Example 2 except that a bone parter was used, the modified polypropylene and talc powder were mixed in the same manner as in Example 1, and the mixture was melt-cross-extruded in the same manner as in Example 1. Pelletized. Using these pellets, prescribed test pieces were molded by injection molding in the same manner as in Example 1, and were subjected to various evaluation tests.

実施例3〜5、比較例4〜6 実施例3はアスペクト比55の雲母粉末を、実施例4は
アスペクト比45の雲母粉末を、実施例5はアスペクト
比25の雲母粉末を使用する以外は実施例1と同様、同
量の変性ポリプロピレンおよびガラス繊維すを用い、変
性ポリプロピレンおよび雲母粉末を実施例1と同様にし
て混合し、実施例1と同様に溶融混線押出しペレタイズ
した。
Examples 3 to 5, Comparative Examples 4 to 6 Example 3 uses mica powder with an aspect ratio of 55, Example 4 uses mica powder with an aspect ratio of 45, and Example 5 uses mica powder with an aspect ratio of 25. Similar to Example 1, using the same amounts of modified polypropylene and glass fibers, the modified polypropylene and mica powder were mixed in the same manner as in Example 1, and pelletized by melt cross-extrusion in the same manner as in Example 1.

また比較例4〜6として、比較例4はアスペクト比20
の雲母粉末を、比較例5はアスペクト比15の雲母粉末
を、比較例6はアスペクト比12の雲母粉末を使用する
以外は実施例2と同様、同量の変性ポリプロピレンおよ
びガラス繊維すを用い、実施例3と同様にして混合し、
実施例3と同様に溶融混線押出しペレタイズした。これ
らのペレットを用いて実施例1と同様にして試験片を成
形し、各種評価試験に供した。
Further, as Comparative Examples 4 to 6, Comparative Example 4 has an aspect ratio of 20
The same amount of modified polypropylene and glass fibers were used as in Example 2, except that Comparative Example 5 used mica powder with an aspect ratio of 15, and Comparative Example 6 used mica powder with an aspect ratio of 12. Mixed in the same manner as in Example 3,
Pelletization was carried out in the same manner as in Example 3 by melt mixing and extrusion. Using these pellets, test pieces were molded in the same manner as in Example 1 and subjected to various evaluation tests.

実施例6〜8、比較例7〜8 実施例6は変性ポリプロピレン50重i%、ガラス繊維
b25重量−チ、アスペクト比70の雲母粉末25重量
%な、実施例7は変性ポリプロピレン50骨部係、ガラ
スtR維″b30重量俤、アスペクト比70の雲母粉末
20重量%を、実施例8は変性ポリプロピレフ54骨部
係、ガラス繊維b30重量係、アスペクト比70の雲母
〜8として、比較例7は変性ポリプロピレフ60骨部係
、ガラス繊維b30重量%、アスペクト比70の雲母粉
末10重i%を、比較例8は、変性ポリプロピレフ65
骨部係、ガラス繊混練押出しペレタイズした。これらの
ペレットを用いて実施例1と同様にして試験片を成形し
各種評価試験に供した。
Examples 6 to 8, Comparative Examples 7 to 8 Example 6 was made of modified polypropylene 50% by weight, glass fiber b 25% by weight, mica powder with an aspect ratio of 70 25% by weight, and Example 7 was made of modified polypropylene 50% by weight. , glass tR fiber "b30 weight ratio, mica powder with aspect ratio 70 20% by weight, Example 8 modified polypropyref 54 bone part, glass fiber b30 weight ratio, mica ~ 8 with aspect ratio 70, Comparative example 7 Comparative Example 8 is modified polypropyref 60 bone part, glass fiber b 30% by weight, mica powder with an aspect ratio of 70 10% by weight.Comparative Example 8 is modified polypropyref 65
Bone department, glass fiber kneading extrusion pelletizing. Using these pellets, test pieces were molded in the same manner as in Example 1 and subjected to various evaluation tests.

以上の結果をまとめて第1表に示した。The above results are summarized in Table 1.

第1表から明らかなように、本発明の組成物を用いた実
施例1は、ガラス繊維aのみを配合した比較例1に(ら
べて最大反り変形量が大巾に改善されており、ガラス繊
維を用いず雲母粉末50重量%を配合した比較例2とま
ったく同等の良好な低反り変形性を示した。また実施例
1では比較例1に(らべて曲げ弾性率が大巾に改善され
たほか、引張強度、曲げ強度および熱変形温度も改善さ
れていることが判明した。
As is clear from Table 1, in Example 1 using the composition of the present invention, the maximum amount of warping deformation was greatly improved compared to Comparative Example 1 in which only glass fiber a was blended. In Example 1, the bending elastic modulus was significantly lower than in Comparative Example 1 (compared to Comparative Example 1). It was found that the tensile strength, bending strength and heat distortion temperature were also improved.

さらに比較例2とくらべると、引張強度、曲げ強度、ア
イゾツト衝撃強度および熱変形温度が改善された。
Furthermore, when compared with Comparative Example 2, the tensile strength, bending strength, isot impact strength, and heat distortion temperature were improved.

実施例2は実施例1よりもアスペクト比の大きいガラス
繊維を用いたものであるが、実施例1と同様の良好な低
反り変形性を示した。それ以外の機械的強度、曲げ弾性
率、アイゾツト衝撃強度、熱変形温度は実施例1よりも
優れたものであった。一般に使用するガラス繊維の繊維
長が0.5調以上の場合には、平均繊維径のより小さい
ものほど、最終成形品中のガラス繊維のアスペクト比が
実質的に太き(なるので、得られる成形品の機械的強度
、曲げ弾性率、アイゾツト衝撃強度などは大きくなるの
であるが、ガラス繊維のみを配合した場合には、該ガラ
ス繊維や異方性が顕著となるため、反り変形性は大きく
なる。このことは比較例3の方が比較例2より反り変形
性が大きいことからもわかる。しかるに実施例2は実施
例1より細い径のガラス繊維を用いたにもかかわらず反
り変形性が大きくなっていないことは驚くべきことであ
る。
Although Example 2 used glass fibers having a larger aspect ratio than Example 1, it exhibited good low warpage deformability similar to Example 1. The other mechanical strength, flexural modulus, Izot impact strength, and heat distortion temperature were superior to those of Example 1. Generally, when the fiber length of the glass fibers used is 0.5 or more, the smaller the average fiber diameter, the thicker the aspect ratio of the glass fibers in the final molded product. The mechanical strength, flexural modulus, and isot impact strength of the molded product will increase, but if only glass fiber is blended, the glass fiber and anisotropy will be significant, so the warping deformability will be large. This can be seen from the fact that Comparative Example 3 has greater warping deformability than Comparative Example 2. However, in Example 2, the warping deformability was greater than that of Example 1 even though glass fibers with a smaller diameter were used. It's surprising that it hasn't gotten any bigger.

参考例1は実施例2の雲母粉末のかわりに、同じ板状の
充埴剤であるタルク粉末を配合したものであるが、実施
例2にくらべて、すべての点で改善効果が劣っている。
Reference Example 1 contains talc powder, which is the same plate-shaped filler, instead of the mica powder in Example 2, but compared to Example 2, the improvement effect is inferior in all respects. .

実施例3〜5および比較例4〜6は、用いる雲母粉末の
アスペクト比の効果を調べたものであるが、アスペクト
比が20以下の雲母粉末を配合した比較例4〜6にくら
べて、反り変形性およびその他の諸性能がすべて優れて
いることが判明した。
In Examples 3 to 5 and Comparative Examples 4 to 6, the effect of the aspect ratio of the mica powder used was investigated, but compared to Comparative Examples 4 to 6, in which mica powder with an aspect ratio of 20 or less was blended, the warping was lower. It was found that the deformability and other properties were all excellent.

アスペクト比が20以下の場合には比較例4〜6にみら
れるように該アスペクト比が大きくなるにつれて反り変
形性の改善はある程度みられるものの充分なものではな
く、該アスペクト比が20〜25の範囲で反り変形性に
関して急激な改善がみもれ、該アスペクト比が25以上
になると反り変形量は大巾に小さくなる。また実施例4
にみられるように、雲母粉末のアスペクト比が45以上
では反り変形性は特に良好となり、雲母粉末のみを配合
した比較例2とほぼ同程度の反り変形性となる。さらに
、用いる雲母粉末のアスペクト比が25以上になると曲
げ弾性率およびアイゾツト衝撃強度が大巾に改善される
ことも判明した。
When the aspect ratio is 20 or less, as seen in Comparative Examples 4 to 6, as the aspect ratio increases, the warping deformability is improved to some extent, but it is not sufficient. A rapid improvement in warp deformability is observed within this range, and when the aspect ratio becomes 25 or more, the amount of warp deformation becomes significantly smaller. Also, Example 4
As can be seen, when the aspect ratio of the mica powder is 45 or more, the warp deformability is particularly good, and the warp deformability is approximately the same as Comparative Example 2, which contains only mica powder. Furthermore, it has been found that when the aspect ratio of the mica powder used is 25 or more, the flexural modulus and Izot impact strength are greatly improved.

実施例6〜8および比較例7〜8は用いるガラス繊維お
よび雲母粉末の合計配合t ((b)+(c) )に対
する雲母粉末の必要配合f (c)を調べたもので、(
c)/(b)+(c)が本発明の範囲外である0、25
以下では、得られる成形品の反り変形性が大きく、また
0、25から0.35の間で反り変形性に関して急激な
改善効果がみられるが未だ充分とはいえない。(c)/
(b)+(c)が0.35以上、特に0.4以上になる
と該反り変形性が充分に改善されることが判明した。
In Examples 6 to 8 and Comparative Examples 7 to 8, the required ratio f (c) of mica powder to the total ratio t ((b) + (c)) of the glass fibers and mica powder used was investigated.
c)/(b)+(c) is outside the scope of the present invention 0, 25
Below, the warpage deformability of the obtained molded product is large, and a rapid improvement effect on the warp deformability is seen between 0.25 and 0.35, but it cannot be said to be sufficient yet. (c)/
It has been found that when (b)+(c) is 0.35 or more, particularly 0.4 or more, the warp deformability is sufficiently improved.

以上記述したように、本発明になる組成物を用いて得ら
れる成形品は、反り変形性が大巾に改善され、かつ引張
強度、曲げ強度などの機械的強度、剛性、アイゾツト衝
撃強度、熱変性温度などに優れた成形品であることが判
明し、本発明の顕著な効果が確認された。
As described above, the molded product obtained using the composition of the present invention has significantly improved warp deformability, mechanical strength such as tensile strength and bending strength, rigidity, isot impact strength, and thermal strength. It was found that the molded product had excellent denaturation temperature, etc., and the remarkable effects of the present invention were confirmed.

以  上that's all

Claims (4)

【特許請求の範囲】[Claims] (1)下記(a)、(b)、(c)成分の合計量を10
0重量%として、(b)および(c)成分をそれぞれの
濃度範囲内で(a)成分に配合し、溶融混練して得られ
る組成物であつて、(b)+(c)の合計量が25〜5
5重量%で、かつ(c)/(b)+(c)が0.35以
上0.82以下であることを特徴とするプロピレン樹脂
組成物 (a)不飽和酸で変性された変性ポリプロピレン45〜
75重量% (b)ガラス繊維10〜35重量% (c)アスペクト比が25以上の雲母粉末 15〜45重量%。
(1) The total amount of the following components (a), (b), and (c) is 10
0% by weight, a composition obtained by blending components (b) and (c) with component (a) within their respective concentration ranges and melt-kneading, the total amount of (b) + (c) is 25-5
5% by weight, and (c)/(b)+(c) is 0.35 or more and 0.82 or less. (a) Modified polypropylene 45 modified with unsaturated acid. ~
75% by weight (b) 10-35% by weight of glass fiber (c) 15-45% by weight of mica powder having an aspect ratio of 25 or more.
(2)雲母粉末のアスペクト比が45以上である特許請
求の範囲第(1)項に記載のプロピレン樹脂組成物。
(2) The propylene resin composition according to claim (1), wherein the mica powder has an aspect ratio of 45 or more.
(3)ガラス繊維の平均繊維径が11μ以下であつて、
平均繊維長が0.5mm以上のガラス繊維を用いる特許
請求の範囲第(1)項に記載のプロピレン樹脂組成物。
(3) The average fiber diameter of the glass fibers is 11μ or less,
The propylene resin composition according to claim (1), which uses glass fibers having an average fiber length of 0.5 mm or more.
(4)不飽和酸としてアクリル酸、メタクリル酸、マレ
イン酸、フマル酸、シトラコン酸、無水マレイン酸、無
水イタコン酸またはこれらの2以上を用いる特許請求の
範囲第(1)項に記載のプロピレン樹脂組成物。
(4) The propylene resin according to claim (1), which uses acrylic acid, methacrylic acid, maleic acid, fumaric acid, citraconic acid, maleic anhydride, itaconic anhydride, or two or more of these as the unsaturated acid. Composition.
JP22165084A 1984-10-22 1984-10-22 Propylene resin composition Granted JPS6198758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22165084A JPS6198758A (en) 1984-10-22 1984-10-22 Propylene resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22165084A JPS6198758A (en) 1984-10-22 1984-10-22 Propylene resin composition

Publications (2)

Publication Number Publication Date
JPS6198758A true JPS6198758A (en) 1986-05-17
JPS6411218B2 JPS6411218B2 (en) 1989-02-23

Family

ID=16770102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22165084A Granted JPS6198758A (en) 1984-10-22 1984-10-22 Propylene resin composition

Country Status (1)

Country Link
JP (1) JPS6198758A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983647A (en) * 1988-11-08 1991-01-08 Ube Industries, Ltd. Reinforced polypropylene composition
US5045589A (en) * 1988-11-21 1991-09-03 Ube Industries, Ltd. Polypropylene composition
JPH0585832U (en) * 1992-04-15 1993-11-19 東和産業株式会社 Plastic moldings
KR20010054822A (en) * 1999-12-08 2001-07-02 유현식 Polypropylene resin composition having thermal resistance, high rigidity and low warpage properties

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872466B2 (en) * 1991-10-07 1999-03-17 チッソ株式会社 Method for producing composite reinforced polypropylene resin composition
JPH084183A (en) * 1994-06-08 1996-01-09 Toda Constr Co Ltd Method of flat-slab construction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162743A (en) * 1978-06-14 1979-12-24 Kuraray Co Ltd Mica-loaded resin composition for injection molding
JPS58204020A (en) * 1982-05-24 1983-11-28 Mitsubishi Rayon Co Ltd Reinforced polyolefin resin composition
JPS5986646A (en) * 1982-11-10 1984-05-18 Mitsubishi Rayon Co Ltd Reinforced polyolefin resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162743A (en) * 1978-06-14 1979-12-24 Kuraray Co Ltd Mica-loaded resin composition for injection molding
JPS58204020A (en) * 1982-05-24 1983-11-28 Mitsubishi Rayon Co Ltd Reinforced polyolefin resin composition
JPS5986646A (en) * 1982-11-10 1984-05-18 Mitsubishi Rayon Co Ltd Reinforced polyolefin resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983647A (en) * 1988-11-08 1991-01-08 Ube Industries, Ltd. Reinforced polypropylene composition
US5045589A (en) * 1988-11-21 1991-09-03 Ube Industries, Ltd. Polypropylene composition
JPH0585832U (en) * 1992-04-15 1993-11-19 東和産業株式会社 Plastic moldings
KR20010054822A (en) * 1999-12-08 2001-07-02 유현식 Polypropylene resin composition having thermal resistance, high rigidity and low warpage properties

Also Published As

Publication number Publication date
JPS6411218B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
US5264174A (en) Process for producing compositely reinforced polypropylene resin composition
US4613647A (en) Polypropylene compositions containing polyamides reinforced by glass fibers
AU620380B2 (en) Fiber-reinforced polymer composition and method of producing same
JPS63235357A (en) Reinforced resin composition for molding
JPH0425541A (en) Polypropylene resin composition
JPS6198758A (en) Propylene resin composition
US5133316A (en) Engine cylinder head cover and molding composition used therefor
US5494948A (en) Mica-reinforced propylene resin composition
JP3579770B2 (en) Crystalline thermoplastic resin columns reinforced with long fibers and plate-like inorganic fillers
JPH039952A (en) Thermoplastic resin composition
WO1997047680A1 (en) Process of making injection molded parts with high temperature dimensional stability
JPS60104136A (en) Glass fiber-reinforced polypropylene composition
JPS63297460A (en) Polymer composition
JPH10219027A (en) Powdery glass fiber-reinforced resin composition
Trotignon et al. Polypropylene-mica composites
JPH0711129A (en) Whisker-reinforced thermoplastic resin composition
JPH0132856B2 (en)
JPS6215247A (en) Thermoplastic resin composition
JPH03223356A (en) Polyolefin resin composition
JP2885883B2 (en) Propylene resin composition
KR100808722B1 (en) High conductive and stiff polypropylene resin composition
JPH03100062A (en) Thermoplastic resin composition
JPH04106158A (en) Resin composition
JPS5835538B2 (en) polyamide resin composition
JPH02167366A (en) Polyamide resin composition