JPS60172391A - Manufacturing apparatus of demineralized water - Google Patents

Manufacturing apparatus of demineralized water

Info

Publication number
JPS60172391A
JPS60172391A JP59029902A JP2990284A JPS60172391A JP S60172391 A JPS60172391 A JP S60172391A JP 59029902 A JP59029902 A JP 59029902A JP 2990284 A JP2990284 A JP 2990284A JP S60172391 A JPS60172391 A JP S60172391A
Authority
JP
Japan
Prior art keywords
exchange resin
water
anion exchange
time
basic anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59029902A
Other languages
Japanese (ja)
Inventor
Akira Maeyama
前山 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP59029902A priority Critical patent/JPS60172391A/en
Publication of JPS60172391A publication Critical patent/JPS60172391A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent securely the leakage of silica, etc. into the demineralized water by comparing the difference between the estimated time when the reference value at the part between the weakly basic anion-exchange resin and the strongly basic anion-exchange resin is exceeded and the time when the reference value is actually exceeded. CONSTITUTION:The total amt. of the components to be removed can be obtained on the basis of the permittivity C1 and the flow rate F of the original water by obtaining previously the relationship with the electrical conductivity from the provious water quality measurement. The ion-exchange capacity of a weakly basic anion-exchange resin 5 and a strongly basic ion-exchange resin 6 can be previously obtained. The time when the C2 exceeds the reference value due to the leakage of the anion from the weakly basic anion-exchange resin 5 can be calculated on the basis of said ion-exchange capacity and the load of the orginal water. The time when the C3 exceeds the specified electrical conductivity of the water quality can be calculated in the same way, and the time when the intake of the water is finished can be obtained by multiplying a safety factor to prevent the leakage of silica into said time.

Description

【発明の詳細な説明】 [発明の利用分野] 木発IJJは純水製造装置に係り、特に複層式の2床3
塔型純水製造装置など弱塩基性陰イオン交換樹脂及び強
311基性陰イオン交換樹脂を有する純水製造装置に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] Kibatsu IJJ relates to pure water production equipment, especially a multi-layer type two-bed three
The present invention relates to a water purification apparatus having a weak basic anion exchange resin and a strong 311 base anion exchange resin, such as a tower-type water purification apparatus.

[従来技術] 2床3塔型純水製造装置は陽イオン交換樹脂を充填した
塔(カチオン塔)、脱ガス塔及び塩基性陰イオン交換樹
脂を充填した塔(アニオン塔)より構成され、古くから
最も普及した装置であり、今日でも広く用いられている
。そしてこのうちでも、アニオン塔の通水導入側に弱塩
基性陰イオン交換樹脂を、モして出「1側に強塩基性陰
イオン交換樹脂を充填した複層式のものが、iffff
率が高いことから多く用いられている。第1図は複層式
2床3↓6型純水製造装置の概略的な系統図である。こ
の装置°Iv(は主としてカチオン塔1、脱ガス塔2及
びアニオン場3からなり、アニオン塔31こは塔内に弱
塩基性陰イオン交換樹脂5、強塩基性陰イオン交換樹脂
6′が充填されている。原水は配71τ7よりカチオン
塔1に通水され 、j;j水中の陽イオンが陽イオン交
換樹脂4の水上イオンと交換された後、配管8より脱ガ
ス塔2に通水され、二酸化炭素(及び溶存酸素)を除去
され、次いで配管9よりアニオン塔3に通水され、含有
される陰イオンか水酸化物イオンと交換されると共にシ
リカが除去されて、純水が製造される。10は純水槽へ
の接続管である。
[Prior art] A two-bed, three-column pure water production device is composed of a column filled with a cation exchange resin (cation column), a degassing column, and a column filled with a basic anion exchange resin (anion column). It was the most popular device since then, and is still widely used today. Among these, a multilayer type in which a weakly basic anion exchange resin is filled on the water introduction side of the anion column and a strongly basic anion exchange resin is filled on the first side is iffff.
It is widely used because of its high rate. Figure 1 is a schematic diagram of a multi-layer, two-bed, 3↓6 type pure water production device. This device °Iv (mainly consists of a cation column 1, a degassing column 2, and an anion field 3, and an anion column 31 is filled with a weakly basic anion exchange resin 5 and a strongly basic anion exchange resin 6'). Raw water is passed through pipe 71τ7 to cation tower 1, and after the cations in the water are exchanged with ions on the water in cation exchange resin 4, it is passed through pipe 8 to degassing tower 2. , carbon dioxide (and dissolved oxygen) is removed, and then the water is passed through the anion tower 3 through the pipe 9, where it is exchanged with contained anions or hydroxide ions and silica is removed, producing pure water. 10 is a connection pipe to the pure water tank.

イオン交換樹脂の11生は、カチオン格1におし1ては
配?r311より塩はなどの(す止剤を流した後、l′
に!管12よりυl ili L、また、アニオン塔3
においては配管13より/、7性ソーダなどのflf生
剤止剤した後、+’iiQ’t’14より排出して1行
なわれる。
The 11th grade of ion exchange resin has a cation rating of 1 and a ratio of 1 to 1. Salt from r311 (after pouring the stopper, l'
To! υl ili L from tube 12, and anion tower 3
In this case, a flf agent such as 7-sodium soda is applied from pipe 13 and then discharged from +'iiQ't' 14.

このような2床3塔型イオン交換装置は、一般にカチオ
ンブレーク(最終処理水中にアニオンより先に、カチオ
ンが漏出すること)になるようにak jlされており
、処理水採水工程の終rはカチオン塔出口水質の導電率
変化により!I’ll断するように構成されている。こ
れは、アニオン塔出目水質により処理水採水工程のに’
!: ”J’を判断するアニオンブレークとした場合に
おいては、シリカが2111出しても導電率をチェック
することができず、採水上程終了の判断を誤るためであ
る。
Such a two-bed, three-column type ion exchange device is generally designed to cause a cation break (cations leak out before anions into the final treated water), and at the end of the treated water sampling process. is due to the change in conductivity of the water quality at the cation tower outlet! I'll be configured to disconnect. This is determined by the water quality of the anion tower in the treated water sampling process.
! : In the case of using an anion break to judge "J", the conductivity cannot be checked even if silica releases 2111, and the judgment of the end of the water sampling process will be incorrect.

しかしながら、カチオンブレークになるように設計され
た純水製造装置においても、原水水質の変動、イオン交
換樹脂の劣化などの原因により、アニオンブレークとな
ることがある。そしてアニオンブレークして実際に陰イ
オンが漏出するに先X’f−ってシリカが漏出した場合
にも、前述の通り41[率ではチェックできない。その
ため、そのまま採水か行なわれ、純水中にシリカがJ@
入するようになる。またシリカを検出するためのシリ力
計を設置しても、このシリ力計は/シンチ式測定である
ところから、処理水の水質変動に迅速に対応することが
できない。しかもシリ力計による測定はコスト、−:1
になるという問題点もある。
However, even in pure water production equipment designed to produce cation breaks, anion breaks may occur due to fluctuations in raw water quality, deterioration of ion exchange resins, and other causes. Even if silica leaks out due to X'f- before the anion actually leaks due to the anion break, it cannot be checked using the 41[ratio] as described above. Therefore, water is collected as is, and silica is added to the pure water.
I started to enter. Furthermore, even if a silica force meter is installed to detect silica, since this silica force meter uses a cinch type measurement, it is not possible to quickly respond to changes in the quality of the treated water. Moreover, measurement using a Siri force meter is costly, -:1
There is also the problem of becoming

[発明の目的] 本発明の1−1的は、」−記従来技術の問題点を解消し
、純水中へのシリカ等の漏出か確実に防1にされる純水
製造装Ffを提供することにある。
[Objectives of the Invention] 1-1 of the present invention is to provide a pure water production system Ff that solves the problems of the prior art described above and reliably prevents leakage of silica, etc. into pure water. It's about doing.

「発明の構成」 本発明の純水製造装置は、原水負荷とJ14基性陰イオ
ン交換樹脂の交換容量とから、弱塩基性陰・イオン交換
樹脂と強塩基性陰イオン交換樹脂との間の部分での・り
電イlが基7(+!値を超える時点及び強塩2(外陰イ
オン交換樹脂用「1水が基準水質を超える採水終r時点
を予測し、弱塩基性陰イオン交換樹脂と強JyA〕、(
ti 陰イAン交[1脂との間の部分の基IJli値超
過r測時点と実測の基準値超過時点とを比較し、両時点
の差に応して採水終j’ II!f点を繰り上げ又は2
延させるようにしたものである。
``Structure of the Invention'' The pure water production apparatus of the present invention is characterized by the ability of the weak basic anion/ion exchange resin and the strong basic anion exchange resin to Predict the point at which the water exceeds the standard water quality and the weak basic anion Exchange resin and strong JyA], (
Compare the point in time when the base IJli value exceeds the measured value in the area between the two points and the actual point in time when the reference value exceeds the measured value, and determine the end of water sampling according to the difference between the two points. Move the f point forward or 2
It was designed to be extended.

[発明の実施例] 以下実施例について説明する。[Embodiments of the invention] Examples will be described below.

第2図は本発明の実施例に係る純水製造装置の系統図で
あり、第1図の従来装r1と同一部分は同一・93号を
もって示されている。
FIG. 2 is a system diagram of a pure water production apparatus according to an embodiment of the present invention, and the same parts as the conventional system r1 in FIG. 1 are designated by the same number 93.

本実施例においてはカチオン431へ原水を供給する配
管7、アニオン塔3の弱塩基性陰イオン交換樹脂5ど強
塩基性陰イオン交換樹脂6との間の部分及び純水槽への
接続管ioにそれぞれ導電率計15.16.17(その
検出値をC、C2、C3とする。)が設置され、?i’
 I Oには流量計18(その検出流量をFとする。)
が設置され、導電率計15〜17、流量計18の出力値
は制御器19に人力されている。なお流量計は系を流れ
る水の量を測定できれば良く、その他の箇所例えば管7
に設けても良い。また本実施例ではカチオン格1には弱
酸性陽イオン交換樹脂4aと強酸性陽イオン交換樹脂4
bとが充填されているが1強酸性陽イオン交換樹脂だけ
を充填するようにしても良い。さらに、カチオン塔及び
アニオン塔は、−・塔内に二種類のイオン交換樹脂を充
填しているが、これを別々の↓hに充填して通水するよ
うにしてもよい。図中20は不活性樹脂を示す。
In this embodiment, the pipe 7 that supplies raw water to the cation 431, the part between the weakly basic anion exchange resin 5 and the strongly basic anion exchange resin 6 of the anion column 3, and the connecting pipe io to the pure water tank are Conductivity meters 15, 16, and 17 (the detected values are C, C2, and C3) are installed, respectively. i'
A flowmeter 18 is installed at IO (the detected flow rate is F).
are installed, and the output values of conductivity meters 15 to 17 and flow meter 18 are manually input to a controller 19. Note that the flow meter only needs to be able to measure the amount of water flowing through the system, and can be used at other locations such as pipe 7.
It may be set in In this example, the cation class 1 includes a weakly acidic cation exchange resin 4a and a strongly acidic cation exchange resin 4.
b), but it is also possible to fill only one strongly acidic cation exchange resin. Furthermore, although the cation column and anion column are filled with two types of ion exchange resins in the column, they may be filled in separate ↓h and the water may be passed therethrough. In the figure, 20 indicates an inert resin.

制御器19の作動について以下に説明する。The operation of controller 19 will be described below.

J5;(木に捻よれる、被除去成分の総量(負荷)はr
め木質All i: L導電−i4との1川係をめてお
くことにより、18;(水J1.電−fぺC1と流量F
とに基いてめることかできる。
J5; (The total amount (load) of components to be removed that are twisted by the tree is r
Megwood All i: By setting one river connection with L conductivity-i4, 18; (Water J1. Electricity-f Pe C1 and flow rate F
It is possible to conclude on the basis of

また弱J1A基性陰イオン交換u1脂5、強塩基性陰イ
オン交換樹脂6のイオン交換容酸は予めめておくことが
でき、このイオン交換台は、原水負荷に基いて1弱塩基
性陰イオン交換樹脂5から陰イオンか漏出してC2が基
準イf1を超える時点OA、ン暫4ft a過1):1
点)を算出することができる。また同林にしてC3がj
ili定木質の導電率を超える時点を算出するごどがで
き、この111j点に、シリカ漏出を防ぐための安全−
オペをかける(強塩基性陰イオン交換樹脂6を陰イオン
が通過して導電率が向モするに先λ゛Lってシリカが2
111出する++l能性があるか、この陰イオンに九\
°fつシリカの漏洩のiif能件のある時間を勘案する
。)ことにより、採水を終了すべき採水量1時点をめる
ことができる。なお第5図に採水!ljとC、C3の変
化及びS io 2 リークf、 、l、jイ白の一例
をンパす。
In addition, the ion exchange capacity acids of the weak J1A base anion exchange u1 fat 5 and the strong base anion exchange resin 6 can be prepared in advance, and this ion exchange stand can be used to At the point when anion leaks from the ion exchange resin 5 and C2 exceeds the standard f1, OA is 4 ft a): 1
points) can be calculated. Also in the same forest, C3 is j
It is possible to calculate the point at which the electrical conductivity of the fixed wood material is exceeded, and at this point 111j, a safety point is added to prevent silica leakage.
(When the anions pass through the strongly basic anion exchange resin 6 and the conductivity increases, λ゛L becomes 2)
Does this anion have the ability to emit 111++l?
Take into account the possible time of silica leakage. ), it is possible to determine the point in time when the amount of water sampling should end. In addition, water sampling is shown in Figure 5! Let's look at an example of changes in lj, C, and C3, and Sio2 leak f, , l, and j.

上記のようにしてめた基準4f4超過時点は原氷水賀の
変動、樹脂の劣化の原因により、実際に測定される。、
!I!i半値超過時点と差が出てくる。
The point in time when the standard 4f4 determined as described above is exceeded is actually measured due to fluctuations in the original ice and water and deterioration of the resin. ,
! I! There is a difference from the time when i exceeds half price.

そこで計算された基準イ16超過時点と実測された基準
値超過時点とを比較し、実測時点がJ1算時点よりも−
I+1い場合にはそれに応して採水量1時点を繰りにげ
、逆に実測時点が計算時点よりも遅い場合にはそれに応
じて採水終了時点を遅延させる。
The calculated point in time when the standard value A16 was exceeded was compared with the actually measured point in time when the standard value was exceeded, and the actual measured point was -
If I+1, the water sampling amount is postponed by one time point, and conversely, if the actual measurement time point is later than the calculation time point, the water sampling end point is delayed accordingly.

採水を終了させるには、図示しないが、原水ポンプを停
止して配管7の原水供給を止める。そして、カチオン塔
l及びアニオン塔2のそれぞれのイオン交換樹脂を酸あ
るいは?jY性ソータ等のI11生薬剤で再生する。
To end the water sampling, although not shown, the raw water pump is stopped to stop the raw water supply from the piping 7. Then, each of the ion exchange resins in the cation column 1 and anion column 2 is replaced with an acid or ion exchange resin. Regenerate with I11 crude drugs such as jY sorta.

なお導電率計17からの出力fハC3は水質監視等に用
いる。
Note that the output fc3 from the conductivity meter 17 is used for water quality monitoring, etc.

第3図は制御器19の概略的な構成を示すブロック閲で
ある。この制御器19は、導電率計15〜17及び流量
計18の出カイfiC−C3、F並ひに02の)1半値
を演算判定回路24に人力させる入力手段23からのデ
ータを選択するマルチプレクリ21、入力アナログ信号
をデジタル信号に変換するΔ/D変換器22、入力信り
に基いて1.述の如き一連の演ηを行ない所定の条件の
ときに採水4? ’;を発する演算丁Il疋回路24、
採水信号を増幅して採水1゛I;止L’14M(例えば
原水ポンプ及び6配(Itに付いている弁等の駆動機構
からなる。)26に制御器りを発する増幅器25を備え
る。
FIG. 3 is a block diagram showing a schematic configuration of the controller 19. This controller 19 is a multiplayer that selects data from an input means 23 that manually inputs the outputs fiC-C3 and F of the conductivity meters 15 to 17 and the flowmeter 18 as well as the half value of 02) to an arithmetic and judgment circuit 24. A Δ/D converter 22 converts an input analog signal into a digital signal, based on the input signal 1. Perform a series of calculations as described above, and when the predetermined conditions are met, water sampling 4? '; An operational circuit 24 that emits
Equipped with an amplifier 25 that amplifies the water sampling signal and issues a control signal to the water sampling 1'I; .

fjSd図は、制御1プログラムの一例を示すフローチ
ャー1・であり、ステップ41でC、F及びC2ノ、u
 J(1:イ〆【を入力し、)+k It”値超過時点
、採水量1時点を汗lqする(ステップ42)。次いで
C2を人力し02基?!’j i+rtを比較しくステ
ップ43.44)、CかC2)、I(?lI+ i直重
ドであればステップ43にノズる。一方C2がC2基準
値を超えた場合にはステップ45にずすJtr7Ill
Iされた基411値超過時点と実際にC2)、’、: 
Ji+11〆Iを超えた時点との差をめて採水量(II
+j点に捕11−を加え(ステップ45)、次いでステ
ップ46にて抽11°された採水終rllν点まで待徒
し、しかる後揺水終r信号を出力する(ステップ47)
The fjSd diagram is a flowchart 1 showing an example of the control 1 program.
J(1: I〆〆[Input) +k It'' value is exceeded, the amount of water sampled is 1 time point (Step 42). Next, manually input C2 and compare 02?!'j i+rt Step 43. 44), C or C2), I (?lI+i) If it is a straight load, go to step 43. On the other hand, if C2 exceeds the C2 reference value, go to step 45 Jtr7Ill
The point in time when the base 411 value was exceeded and actually C2),',:
The amount of water sampled (II
Add 11- to the +j point (step 45), then wait until the water sampling end rllv point drawn 11° in step 46, and then output the shaking water end r signal (step 47)
.

以−に゛°のようにして採水量1時点の補止をし、純水
中へのシリカやその他者a被除去物質の混入が防止され
る。
The amount of water sampled at one point in time is then supplemented as described in ゛°, thereby preventing silica and other substances to be removed from being mixed into the pure water.

[発明の効果] 以上の通り本発明の純水製造装置は純水中へのシリカ等
の漏出が確実に防止され、装置の信頼性が極めて高い。
[Effects of the Invention] As described above, the pure water production apparatus of the present invention reliably prevents leakage of silica and the like into pure water, and the reliability of the apparatus is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第11’i!lは2床3塔型純水製造装置の系統図、第
2図は木g、明の実施例に係る純水製造装置の系統図、
第3図は制御器19のブロック図、第41)4は制御プ
ログラムの一例に係るフローチャート、第5図は採水量
と水質変動との関係を示すグラフである。 1・争Qカチオン未6、 2・・・脱カス塔、3II・
拳アニオン塔。 15.16.17・・・導電率計、 18・・・流h151、19・・・制御器。 特許出願人 栗IJJ工業株式会社 第1図 第2図 第3図 9 第5図 抹友量m3
11th'i! 1 is a system diagram of a 2-bed, 3-column type pure water production apparatus, FIG.
FIG. 3 is a block diagram of the controller 19, No. 41) is a flowchart relating to an example of the control program, and FIG. 5 is a graph showing the relationship between the amount of water sampled and water quality fluctuation. 1. Conflict Q cation not yet 6, 2... Removal tower, 3II.
fist anion tower. 15.16.17...Conductivity meter, 18...Flow h151, 19...Controller. Patent applicant Kuri IJJ Kogyo Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 9 Figure 5 Matcha amount m3

Claims (2)

【特許請求の範囲】[Claims] (1) 陽イオン交換樹脂、弱塩基性陰イオン交換樹脂
および強塩ノ、(外陰イオン交換樹JY1を備え、この
順に通水して純水を製造する装置において、陽イオン交
換樹+11iよりも上流側に設置された第1の導′屯率
計、弱11! )、%性陰イオン交換樹脂と強J1!基
性陰イオン交換樹脂との間の位置に設置された第2の導
電率d1、通水の流li(測定r段、第1の導電率if
fの検出値ど通水1k iii:とから負荷をめ、この
負荷と前記各1!基性陰イオン交換樹脂の交換台!i)
とから第2の導電率計の測定値が基準値を超える基ンI
Q値、tfl過時点及び強塩基性陰イオン交換樹脂出り
、I水が所定水質を超える採水終ri寺点をpinする
1段、予測される基準1fI超過時点と実測の基準if
(fil過時点とを比較し両時点の差異に応じて採水終
r時点を繰りI;げ又は遅延させる手段、を備えたこと
を特徴とする純水製造装置。
(1) In an apparatus that is equipped with a cation exchange resin, a weakly basic anion exchange resin, and a strong salt (external anion exchange tree JY1) and produces pure water by passing water in this order, The first conductivity meter installed on the upstream side, weak 11!), % anion exchange resin and strong J1! The second conductivity d1 installed between the base anion exchange resin and the water flow li (measurement r stage, the first conductivity if
Detected value of f water flow 1k iii: and the load from this load and each of the above 1! Exchange table for basic anion exchange resin! i)
and the measured value of the second conductivity meter exceeds the standard value I
Q value, the time when Tfl passes, strong basic anion exchange resin output, 1 step to pin the point at the end of water sampling where the I water exceeds the specified water quality, the predicted standard 1fI exceeds the time and the actual measurement standard if
A pure water production apparatus characterized by comprising: a means for comparing the end point of water sampling with the end point of fil and advancing or delaying the end point of water sampling according to the difference between the two points.
(2) −塔内に弱塩基性陰イオン交換樹脂と強塩基性
陰イオン交換樹脂が充填されていることを特徴とする特
許請求の範囲第1項記載の純水製造装置。
(2) - The pure water production apparatus according to claim 1, wherein the column is filled with a weakly basic anion exchange resin and a strongly basic anion exchange resin.
JP59029902A 1984-02-20 1984-02-20 Manufacturing apparatus of demineralized water Pending JPS60172391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59029902A JPS60172391A (en) 1984-02-20 1984-02-20 Manufacturing apparatus of demineralized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59029902A JPS60172391A (en) 1984-02-20 1984-02-20 Manufacturing apparatus of demineralized water

Publications (1)

Publication Number Publication Date
JPS60172391A true JPS60172391A (en) 1985-09-05

Family

ID=12288906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59029902A Pending JPS60172391A (en) 1984-02-20 1984-02-20 Manufacturing apparatus of demineralized water

Country Status (1)

Country Link
JP (1) JPS60172391A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233698A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Operation control method for pure water production device
JP2016067976A (en) * 2014-09-26 2016-05-09 三浦工業株式会社 Water treatment system
JP2016067975A (en) * 2014-09-26 2016-05-09 三浦工業株式会社 Water treatment system
WO2016076409A1 (en) * 2014-11-13 2016-05-19 栗田工業株式会社 Method for operating regenerative ion exchange device
JP2020506794A (en) * 2017-02-07 2020-03-05 ビーダブリューティー アクティエンゲゼルシャフト Water softener and method of operating water softener
US11017344B2 (en) 2016-09-12 2021-05-25 Ecolab Usa Inc. Method and apparatus for predicting depletion of deionization tanks and optimizing delivery schedules

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233698A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Operation control method for pure water production device
JP2016067976A (en) * 2014-09-26 2016-05-09 三浦工業株式会社 Water treatment system
JP2016067975A (en) * 2014-09-26 2016-05-09 三浦工業株式会社 Water treatment system
WO2016076409A1 (en) * 2014-11-13 2016-05-19 栗田工業株式会社 Method for operating regenerative ion exchange device
US11017344B2 (en) 2016-09-12 2021-05-25 Ecolab Usa Inc. Method and apparatus for predicting depletion of deionization tanks and optimizing delivery schedules
JP2020506794A (en) * 2017-02-07 2020-03-05 ビーダブリューティー アクティエンゲゼルシャフト Water softener and method of operating water softener
US11130684B2 (en) 2017-02-07 2021-09-28 Bwt Aktiengesellschaft Water softening device and method of operating a water softening device

Similar Documents

Publication Publication Date Title
JP2951418B2 (en) Sample liquid component analyzer
CN106017611B (en) High tower method resin analysis method
CN103196518B (en) Transformer and respirator online monitor and operating method thereof
CN103816633B (en) Intelligent foam proportioning system
CN106659830B (en) Device for detecting the direction of flow of a fluid through a dialyzer
JPS60172391A (en) Manufacturing apparatus of demineralized water
CN103676864A (en) Intelligent control system of sea water desalination hyperfiltration reverse osmosis device
CN110332459A (en) A kind of automatic filling device and method of super-low liquid
CN107063413A (en) The static criteria weighing device and method of a kind of high-pressure sealed system fluid medium
JP2014188456A (en) Method for operating ion exchange resin device, and ion exchange resin device
CN104118839B (en) Redundancy loading system and method based on electronic scale and mass flowmenter
JPS63111994A (en) Pure water producing apparatus
JP7375882B2 (en) Control method for pure water production equipment
CN206670758U (en) Static criteria weighing device for fluid media (medium) in high-pressure sealed system
JP2008139205A (en) Water quality abnormality detecting device and method, and water treatment device
CN204422653U (en) The continuous on-line measurement device of hydrogen conductivity
CN209853816U (en) Automatic PH control device for deaerated water of catalytic device deaerator
CN110487850B (en) Degassing conductivity measurement system and method
CN109589632B (en) Recovery method of stripping liquid
CN206810235U (en) POCl3 automatic filling device
CN106653114A (en) Abnormity diagnosis device and method for pH value index of sewage discharge system in nuclear power plant
CN205401084U (en) Water pump detection device
CN219848164U (en) Side line type triethylene glycol electric heating device
CN110045060A (en) A kind of oxygen content detecting system and tetrafluoroethene production system
CN214585056U (en) Water-vapor-hydrogen conductivity measuring device