JP2014188456A - Method for operating ion exchange resin device, and ion exchange resin device - Google Patents

Method for operating ion exchange resin device, and ion exchange resin device Download PDF

Info

Publication number
JP2014188456A
JP2014188456A JP2013066784A JP2013066784A JP2014188456A JP 2014188456 A JP2014188456 A JP 2014188456A JP 2013066784 A JP2013066784 A JP 2013066784A JP 2013066784 A JP2013066784 A JP 2013066784A JP 2014188456 A JP2014188456 A JP 2014188456A
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
water
specific resistance
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013066784A
Other languages
Japanese (ja)
Other versions
JP6362299B2 (en
Inventor
Shigeki Horii
重希 堀井
Takaaki Chuma
高明 中馬
Hideaki Iino
秀章 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013066784A priority Critical patent/JP6362299B2/en
Publication of JP2014188456A publication Critical patent/JP2014188456A/en
Application granted granted Critical
Publication of JP6362299B2 publication Critical patent/JP6362299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating an ion exchange resin device, in which breakthrough of the ion exchange resin device is detected surely and at an early stage so that the amount of water to be collected can be made larger and the amounts (the total amount) of the silica and boron to be leaked from the ion exchange resin device can be made smaller.SOLUTION: The method for operating the ion exchange resin device comprises the steps of: making the water to be treated pass through an anion exchange resin layer to perform an anion exchange; measuring the specific resistance or electrical conductivity of the treated water; and regenerating or replacing an existing anion exchange resin on the basis of the measured result. An ascent of the specific resistance or a descent of the electrical conductivity is detected in a very early stage of the breakthrough of the boron and silica. When the specific resistance rises to a predetermined value or the electrical conductivity falls to another predetermined value, the existing anion exchange resin is regenerated or replaced.

Description

本発明はイオン交換樹脂装置の運転方法及びイオン交換樹脂装置に係り、特にアニオン交換樹脂から流出するホウ素、シリカ等の弱酸成分の量を減少させることができるイオン交換樹脂装置の運転方法及びイオン交換樹脂装置に関する。   The present invention relates to an ion exchange resin apparatus operation method and an ion exchange resin apparatus, and more particularly to an ion exchange resin apparatus operation method and an ion exchange capable of reducing the amount of weak acid components such as boron and silica flowing out from an anion exchange resin. The present invention relates to a resin device.

工業用水や水道水などを原水とする純水製造プロセスには、カチオン交換樹脂塔→(脱炭酸塔)→アニオン交換樹脂塔の順に通水する、いわゆる2床3塔方式のイオン交換樹脂装置が広く用いられている。このようなカチオン樹脂塔とアニオン交換樹脂塔の順に通水するイオン交換樹脂装置では、次のいずれかの運転方法を採用することが多い。
1)あらかじめ採水量を設定し、それに到達したら通水運転を停止してイオン交換樹脂を再生する運転方法。
2)処理水の電気伝導率を測定し、あらかじめ設定しておいた電気伝導率の許容値にまで上昇したときに、通水運転を停止して、イオン交換樹脂を再生する運転方法。
3)処理水にオンライン分析計(シリカ計算、ホウ素計)を設置し、シリカ、ホウ素などの測定濃度が許容値を超えたならば、通水運転を停止し、イオン交換樹脂を再生する運転方法。(例えば、特許文献1には、イオン交換樹脂装置の後段にシリカ計を設け、その測定値からイオン交換樹脂の交換時期を決定することが記載されている。)
In a pure water production process using industrial water or tap water as raw water, a so-called two-bed / three-column type ion exchange resin apparatus that passes water in the order of cation exchange resin tower → (decarbonation tower) → anion exchange resin tower is used. Widely used. In such an ion exchange resin apparatus that passes water in the order of the cation resin tower and the anion exchange resin tower, one of the following operation methods is often employed.
1) An operation method in which the amount of water sampled is set in advance, and when it reaches it, the water flow operation is stopped and the ion exchange resin is regenerated.
2) An operation method for measuring the electrical conductivity of treated water and stopping the water flow operation to regenerate the ion exchange resin when the electrical conductivity rises to a preset allowable value of electrical conductivity.
3) An operating method in which an on-line analyzer (silica calculation, boron meter) is installed in the treated water, and when the measured concentration of silica, boron, etc. exceeds the allowable value, the water flow operation is stopped and the ion exchange resin is regenerated. . (For example, Patent Document 1 describes that a silica meter is provided in the subsequent stage of the ion exchange resin device, and the replacement time of the ion exchange resin is determined from the measured value.)

上記従来の運転方法1)〜3)には、次のような問題点がある。   The conventional driving methods 1) to 3) have the following problems.

1)の方法では、設定採水量が大きいと、破過(ブレーク)が生じた場合に急激に処理水の水質が悪化(シリカやホウ素濃度が増加)し、後段プロセスに負荷を与える。そのため、設定採水量を小さく設定するのが通常であるが、設定採水量が小さすぎると、イオン交換樹脂のイオン交換能力を十分に使用しないまま再生を行うことになり、再生薬品コストが増加する。   In the method of 1), if the set water sampling amount is large, the quality of the treated water is abruptly deteriorated (silica or boron concentration is increased) when breakthrough occurs, and a load is imposed on the subsequent process. For this reason, it is normal to set the sampling volume to be small, but if the sampling volume is too small, regeneration will be performed without fully using the ion exchange capacity of the ion exchange resin, and the cost of regenerative chemicals will increase. .

2)の方法では、シリカやホウ素が破過しても処理水の電気伝導率はほとんど増大しないため、電気伝導率が上昇し始めたときにはすでに処理水中にシリカ及びホウ素が高濃度に流出してしまっている。   In the method 2), even if silica or boron breaks through, the electrical conductivity of the treated water hardly increases. Therefore, when the electrical conductivity starts to rise, the silica and boron already flow out into the treated water to a high concentration. I'm stuck.

3)の方法では、オンラインシリカ計やオンラインホウ素計は非常に高価であるうえ、オンラインホウ素計は比抵抗値が15MΩcm以上といった制約条件があり、超純水製造プロセスの前処理としての運転方法としては採用が難しい。   In the method of 3), the online silica meter and the online boron meter are very expensive, and the online boron meter has a restriction condition that the specific resistance value is 15 MΩcm or more, and as an operation method as a pretreatment of the ultrapure water production process. Is difficult to adopt.

ホウ素分析機器を用いたイオン交換樹脂のブレーク検知方法として、特許文献2に記載の方法がある。図3に特許文献2の図2を示す。特許文献2には、イオン交換樹脂の処理水中のホウ素濃度及びシリカ濃度を測定する試験を行ったところ、図3の通り、シリカよりもホウ素の方が先にブレークすること;従って、イオン交換樹脂の処理水中のホウ素濃度を測定し、ホウ素ブレークを検知することにより、シリカのブレーク前にアニオンブレークポイントを検知することが記載されている。   As a break detection method of an ion exchange resin using a boron analyzer, there is a method described in Patent Document 2. FIG. 3 of FIG. In Patent Document 2, when a test for measuring the boron concentration and the silica concentration in the treated water of the ion exchange resin was performed, as shown in FIG. 3, boron breaks earlier than silica; It is described that an anionic break point is detected before a silica break by measuring a boron concentration in the treated water and detecting a boron break.

図3の通り、特許文献2には、アニオン交換樹脂に通水すると、まずホウ素がブレークし、その後シリカがブレークすること;ホウ素がブレークしてもシリカがブレークするまでは比抵抗は低下しないこと;シリカブレークが開始すると、比抵抗が徐々に低下することが示されている。   As shown in FIG. 3, Patent Document 2 states that when water is passed through an anion exchange resin, boron breaks first, and then silica breaks; even if boron breaks, the specific resistance does not decrease until silica breaks. It is shown that the specific resistance gradually decreases when the silica break begins.

特開平8−24852JP-A-8-24852 特開平8−117744JP-A-8-117744

特許文献2では、ホウ素濃度の測定に、高価な誘導結合プラズマ質量分析計(ICP−MS)を用いており(0010,0018段落)、通常のイオン交換樹脂装置に採用することは価格等の点からして好ましいことではない。   In Patent Document 2, an expensive inductively coupled plasma mass spectrometer (ICP-MS) is used for measuring the boron concentration (paragraphs 0010 and 0018). Therefore, it is not preferable.

本発明は、ホウ素分析装置を用いて実際にホウ素濃度を測定することなく、イオン交換樹脂装置のブレークを確実に且つ早期に検知し、採水量を多くし、且つイオン交換樹脂装置からのシリカ、ホウ素のリーク量(総量)を少ないものとすることができるイオン交換樹脂装置の運転方法を提供することを目的とする。   The present invention, without actually measuring the boron concentration using a boron analyzer, reliably and quickly detects a break in the ion exchange resin device, increases the amount of water collected, and silica from the ion exchange resin device, It aims at providing the operating method of the ion exchange resin apparatus which can make the leak amount (total amount) of boron small.

本発明のイオン交換樹脂装置の運転方法は、被処理水をアニオン交換樹脂層に通水してアニオン交換処理し、得られた処理水の比抵抗又は電気伝導率を測定し、該測定結果に基いてアニオン交換樹脂の再生又は交換を行うイオン交換樹脂装置の運転方法において、該処理水のホウ素及びシリカのブレーク最初期における比抵抗の上昇又は電気伝導率の低下を検知し、この検知結果に基づいてアニオン交換樹脂の再生、交換、アニオン交換樹脂への通水停止、又は通水条件変更を行うことを特徴とするものである。   The operation method of the ion exchange resin apparatus of the present invention is that the water to be treated is passed through the anion exchange resin layer and subjected to anion exchange treatment, the specific resistance or electrical conductivity of the obtained treated water is measured, and the measurement result is In the operation method of the ion exchange resin apparatus that regenerates or replaces the anion exchange resin based on this, an increase in specific resistance or a decrease in electrical conductivity in the initial break of boron and silica in the treated water is detected, and the detection result On the basis of this, regeneration, exchange of the anion exchange resin, stop of water flow to the anion exchange resin, or change of water flow conditions is performed.

本発明では、前記ブレーク最初期において、比抵抗又はその上昇率が所定値にまで上昇するか、又は電気伝導率又はその低下率が所定値にまで低下した場合にアニオン交換樹脂の再生、交換、アニオン交換樹脂への通水停止、又は通水条件変更を行うことが好ましい。   In the present invention, at the initial stage of the break, when the specific resistance or its increase rate is increased to a predetermined value, or when the electrical conductivity or its decrease rate is decreased to a predetermined value, regeneration and exchange of the anion exchange resin, It is preferable to stop water flow to the anion exchange resin or change the water flow conditions.

この場合、次の変数A,B,Cに基づいて次のR2又はR1を演算し、R2又はR1が所定値以上となった場合にアニオン交換樹脂の再生、交換、アニオン交換樹脂への通水停止、又は通水条件変更を行うことが好ましい。
A:T分前〜現時点までの比抵抗値の時間平均
B:2T分前〜T分前までの比抵抗値の時間平均
C:3T分前〜2T分前までの比抵抗値の時間平均
R2=(A+C−2B)/T
R1=(A−B)/T
In this case, the next R2 or R1 is calculated based on the following variables A, B, and C, and when R2 or R1 becomes a predetermined value or more, regeneration and exchange of the anion exchange resin, water flow to the anion exchange resin It is preferable to stop or change the water flow conditions.
A: Time average of resistivity values from T minutes before to the present time B: Time average of resistivity values from 2T minutes to T minutes ago C: Time average of resistivity values from 3T minutes to 2T minutes before R2 = (A + C-2B) / T 2
R1 = (A−B) / T

本発明のイオン交換樹脂装置は、被処理水が通水されるアニオン交換樹脂層を備えるイオン交換樹脂装置において、該アニオン交換樹脂層の処理水の比抵抗を測定する手段と、該測定値から、次の変数A,B,Cに基づいて次のR2又はR1を演算し、R2又はR1が所定値以上となった場合に前記アニオン交換樹脂層への被処理水の通水を停止する手段とを備えることを特徴とする。
A:T分前〜現時点までの比抵抗値の時間平均
B:2T分前〜T分前までの比抵抗値の時間平均
C:3T分前〜2T分前までの比抵抗値の時間平均
R2=(A+C−2B)/T
R1=(A−B)/T
The ion exchange resin apparatus of the present invention is an ion exchange resin apparatus comprising an anion exchange resin layer through which water to be treated is passed, and means for measuring the specific resistance of treated water of the anion exchange resin layer, The means for calculating the next R2 or R1 based on the following variables A, B, and C, and stopping the flow of the treated water to the anion exchange resin layer when R2 or R1 exceeds a predetermined value It is characterized by providing.
A: Time average of resistivity values from T minutes before to the present time B: Time average of resistivity values from 2T minutes to T minutes ago C: Time average of resistivity values from 3T minutes to 2T minutes before R2 = (A + C-2B) / T 2
R1 = (A−B) / T

本発明者がアニオン交換樹脂のホウ素及びシリカのブレークと比抵抗(又は電気伝導率)とについて種々研究を重ねたところ、アニオン交換樹脂がブレークすると、アニオン交換樹脂処理水の比抵抗が低下する(又は電気伝導率が上昇する)が、ホウ素及びシリカのブレークの最初期には比抵抗が一時的に上昇し、その後比抵抗が急激に低下する(又は、電気伝導率が一時的に低下し、その後電気伝導率が急激に上昇する)ことが見出された。この知見は、特許文献2(添付図3)には全く示されていない新規な知見である。   When the inventor conducted various studies on the break and specific resistance (or electrical conductivity) of boron and silica of the anion exchange resin, when the anion exchange resin breaks, the specific resistance of the anion exchange resin-treated water decreases ( Or the electrical conductivity increases), the resistivity increases temporarily at the beginning of the boron and silica break, and then the resistivity decreases rapidly (or the electrical conductivity decreases temporarily, Thereafter, the electrical conductivity was found to increase rapidly). This finding is a novel finding which is not shown at all in Patent Document 2 (Attached FIG. 3).

本発明は、このホウ素及びシリカブレーク最初期における比抵抗の一時的上昇(又は電気伝導率の一時的低下)が検知された場合にアニオン交換樹脂からの採水を停止するようにしたものである。かかる本発明によると、ホウ素及びシリカの本格的ブレークの直前まで採水を行い、アニオン交換樹脂の交換容量を最大限に利用し、且つアニオン交換樹脂からのホウ素及びシリカの本格的ブレークが生じる前に確実に採水を停止し、アニオン交換樹脂の再生又は交換を行うことができる。そのため、本発明によると、アニオン交換樹脂の再生ないし交換コスト(非再生型のイオン交換装置の場合)及び純水製造コストを低減することができる。   In the present invention, when a temporary increase in specific resistance (or a temporary decrease in electrical conductivity) in the initial stage of boron and silica break is detected, water sampling from the anion exchange resin is stopped. . According to the present invention, water is collected until immediately before the full break of boron and silica, the exchange capacity of the anion exchange resin is utilized to the maximum, and before the full break of boron and silica from the anion exchange resin occurs. It is possible to reliably stop water collection and regenerate or replace the anion exchange resin. Therefore, according to the present invention, it is possible to reduce the regeneration or exchange cost of an anion exchange resin (in the case of a non-regenerative ion exchange apparatus) and the cost of producing pure water.

本発明を説明するグラフである。It is a graph explaining the present invention. 実施の形態に係るイオン交換樹脂装置の運転方法を採用した超純水製造システムのフロー図である。It is a flowchart of the ultrapure water manufacturing system which employ | adopted the operating method of the ion exchange resin apparatus which concerns on embodiment. 従来例を説明するグラフである。It is a graph explaining a prior art example.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明のイオン交換樹脂装置の運転方法を採用した超純水製造システムの一例を図2に示す。   An example of the ultrapure water production system that employs the operation method of the ion exchange resin apparatus of the present invention is shown in FIG.

工水、水道水などの原水がカチオン交換樹脂塔1、脱炭酸塔2、アニオン交換樹脂塔3、純水槽4、超純水製造プロセス5を経て処理され、超純水となり、ユースポイントに送水される。アニオン交換樹脂塔3の流出水の比抵抗を比抵抗計6で測定し、この比抵抗を演算装置7で演算する。そして、比抵抗が所定以上上昇した場合には、アニオン交換樹脂がブレークしたものと判定し、アニオン交換樹脂塔3のアニオン交換樹脂の再生を行う。図1は、図2のアニオン交換樹脂塔3の流出水のホウ素濃度、シリカ濃度及び比抵抗の測定値の経時変化を示すグラフである。図1の通り、通水開始から約25時間でホウ素ブレークが開始し、それから数時間遅れてシリカブレークが開始する。   Raw water such as industrial water and tap water is processed through the cation exchange resin tower 1, the decarbonation tower 2, the anion exchange resin tower 3, the pure water tank 4, and the ultrapure water production process 5 to become ultrapure water, which is sent to the use point. Is done. The specific resistance of the effluent water of the anion exchange resin tower 3 is measured by a specific resistance meter 6, and this specific resistance is calculated by a calculation device 7. When the specific resistance increases by a predetermined value or more, it is determined that the anion exchange resin is broken, and the anion exchange resin in the anion exchange resin tower 3 is regenerated. FIG. 1 is a graph showing changes over time in measured values of boron concentration, silica concentration, and specific resistance of effluent water from the anion exchange resin tower 3 of FIG. As shown in FIG. 1, a boron break starts about 25 hours after the start of water flow, and a silica break starts several hours later.

比抵抗は、処理水中のシリカ濃度が約0.1μg/L以下である間は約2.5MΩ・cmで一定である。比抵抗はホウ素及びシリカブレークが開始すると、まず上昇し、その後急激に低下する。なお、ホウ素及びシリカのブレーク最初期に比抵抗が一時的に上昇するのは、シリカが処理水中の溶存ナトリウムイオンと錯体などを形成し、ナトリウムによる電気伝導率への寄与を低下させるため、もしくはモル濃度あたり電気伝導率が大きい水酸化物イオンが、相対的に非常に小さいシリカに置きかわるためと推察される。   The specific resistance is constant at about 2.5 MΩ · cm while the silica concentration in the treated water is about 0.1 μg / L or less. The specific resistance increases first when boron and silica breaks start, and then decreases rapidly. Note that the specific resistance temporarily increases in the initial break of boron and silica because silica forms a complex with dissolved sodium ions in the treated water and reduces the contribution of sodium to electrical conductivity, or It is presumed that hydroxide ions having a high electrical conductivity per molar concentration are replaced by relatively very small silica.

ブレークがさらに進行すると、ブレークイオン量が多くなり、比抵抗が急激に低下する。   As the break progresses further, the amount of break ions increases and the specific resistance rapidly decreases.

そこで、本発明では、このホウ素及びシリカのブレーク最初期の一時的な比抵抗上昇(又は電気伝導率低下)が検知された時点でアニオン交換樹脂塔3からの採水を停止し、アニオン交換樹脂塔3の再生、交換、アニオン交換樹脂への通水停止、又は通水条件変更(好ましくは、再生又は交換(非再生型イオン交換装置の場合))を行う。これにより、アニオン交換樹脂塔3から純水槽4へ送水される純水の水質が大幅に低下する(即ち、比抵抗が著しく低下する又は電気伝導率が著しく上昇する)前に確実に採水停止・アニオン交換樹脂再生又は交換が行われる。また、アニオン交換樹脂の本格的ブレークの直前まで採水を行うので、アニオン交換樹脂の交換容量をほぼ飽和容量まで利用することができ、アニオン交換樹脂の再生又は交換頻度、及び再生又は交換コストを大幅に低減することができる。   Accordingly, in the present invention, when the temporary specific resistance increase (or electrical conductivity decrease) at the beginning of the break of boron and silica is detected, water sampling from the anion exchange resin tower 3 is stopped, and the anion exchange resin is stopped. The tower 3 is regenerated, exchanged, stopped to flow through the anion exchange resin, or changed in water flow conditions (preferably, regeneration or exchange (in the case of a non-regenerative ion exchange apparatus)). Thereby, the water sampling is reliably stopped before the quality of the pure water fed from the anion exchange resin tower 3 to the pure water tank 4 is significantly lowered (that is, the specific resistance is remarkably lowered or the electrical conductivity is remarkably raised). An anion exchange resin is regenerated or exchanged. In addition, since water is collected until immediately before the full-scale break of the anion exchange resin, the exchange capacity of the anion exchange resin can be utilized up to almost the saturation capacity, and the regeneration or exchange frequency of the anion exchange resin and the regeneration or exchange cost can be reduced. It can be greatly reduced.

アニオン交換樹脂のブレーク最初期における比抵抗の一時的上昇を精度よく検知するためには、アニオン交換樹脂塔の被処理水中にナトリウムイオンが5μg/L以上含まれることが望ましい。この場合、ナトリウムイオンは、アニオン交換樹脂塔で除去されず処理水中にそのまま流出し、処理水の比抵抗はおおむね10MΩ・cm以下となり比抵抗の一時的上昇を検知する精度が高くなる。   In order to accurately detect a temporary increase in the specific resistance at the initial break of the anion exchange resin, it is desirable that sodium ion is contained in an amount of 5 μg / L or more in the water to be treated in the anion exchange resin tower. In this case, sodium ions are not removed by the anion exchange resin tower, but flow out into the treated water as it is, and the specific resistance of the treated water is approximately 10 MΩ · cm or less, and the accuracy of detecting a temporary increase in specific resistance is increased.

アニオン交換樹脂のブレーク最初期における比抵抗の一時的上昇を判定する方法は、特に限定されないが、簡便には次の方法により行うことができる。
変数を次のように定義する。
A:T分前〜現時点までの比抵抗値の時間平均
B:2T分前〜T分前までの比抵抗値の時間平均
C:3T分前〜2T分前までの比抵抗値の時間平均
R2=(A+C−2B)/T
R1=(A−B)/T
The method for determining the temporary increase in the specific resistance at the initial break of the anion exchange resin is not particularly limited, but can be conveniently performed by the following method.
Define the variables as follows:
A: Time average of resistivity values from T minutes before to the present time B: Time average of resistivity values from 2T minutes to T minutes ago C: Time average of resistivity values from 3T minutes to 2T minutes before R2 = (A + C-2B) / T 2
R1 = (A−B) / T

なお、R2は、比抵抗値の時間による2階微分を簡易的に示したものであり、R1は、比抵抗値の時間による1階微分を簡易的に示したものである。   Note that R2 is a simple representation of the second order differentiation of the specific resistance value over time, and R1 is a simple representation of the first order differentiation of the specific resistance value over time.

比抵抗値そのものやR1やR2のいずれかが、それぞれの設定値よりも大きくなれば、比抵抗の一時的上昇が起こり、アニオンブレーク最初期の比抵抗上昇が生じたものと判定する。   If either the specific resistance value itself or any of R1 and R2 is larger than the respective set value, it is determined that the specific resistance has temporarily increased, and that the specific resistance increase has occurred at the initial stage of the anion break.

比抵抗の上昇を的確に検知するために、上記Tは5〜60分の間で設定することが好ましい。また、R2,R1の設定値については、原水の水質や当該イオン交換樹脂装置における要求水質等によっても異なるが、R2は0.1〜0.5MΩ・cm/hの間で、また、R1は0.2〜1.0MΩ・cm/hの間で設定することが好ましい。 In order to accurately detect an increase in specific resistance, it is preferable to set the T between 5 and 60 minutes. The set values of R2 and R1 vary depending on the quality of raw water and the required water quality of the ion exchange resin device, but R2 is between 0.1 and 0.5 MΩ · cm / h 2 , and R1 Is preferably set between 0.2 and 1.0 MΩ · cm / h.

上記説明は超純水製造システムのアニオン交換樹脂塔3のブレーク検知に関するものであるが、その他のアニオン交換樹脂塔のブレーク検知も同様に行うことができる。   The above description relates to break detection of the anion exchange resin tower 3 in the ultrapure water production system, but break detection of other anion exchange resin towers can be performed in the same manner.

また、上記説明は、アニオン交換樹脂塔の処理水であるアニオン交換樹脂塔流出水の比抵抗に基づいているが、比抵抗の代わりに電気伝導率に基づいてもよいことは明らかである。   Moreover, although the said description is based on the specific resistance of the anion exchange resin tower effluent which is a treated water of an anion exchange resin tower, it is clear that it may be based on electrical conductivity instead of a specific resistance.

本発明のイオン交換樹脂装置は、アニオン交換樹脂層の処理水の比抵抗を測定し、その結果に基いて、上記の通り、アニオンブレーク最初期の比抵抗上昇を検知した場合には、被処理水の通水を停止するものであり、例えば、図2における演算装置7に連動する開閉弁の操作で、自動的に被処理水の通水停止を行うことができる。また、アニオンブレーク最初期の比抵抗上昇を検知した場合において、被処理水の通水を停止すると共に警報を発するようにすることもできる。   The ion exchange resin apparatus of the present invention measures the specific resistance of the treated water of the anion exchange resin layer, and based on the results, as described above, when an increase in the specific resistance at the initial stage of anion break is detected, The water flow is stopped, and for example, the water to be treated can be automatically stopped by operating an on-off valve linked to the arithmetic unit 7 in FIG. In addition, when an increase in specific resistance at the initial stage of anion break is detected, the water to be treated can be stopped and an alarm can be issued.

[実施例1]
図2に示すシステムを用いて原水を処理した。主な条件は次の通りである。
カチオン交換樹脂:三菱化学株式会社製ダイヤイオンSKIB。2900L
アニオン交換樹脂:三菱化学株式会社製ダイヤイオンSA12A。2900L
脱炭酸塔:気液接触方式(充填材:ネットリング)
比抵抗計:東亜ディーケーケー株式会社製CM−31RW(純水用)
原水:工業用水。電気伝導率20mS/m
シリカ30mg/L、ホウ素5μg/L
アニオン交換樹脂塔入口のナトリウム濃度:0.02mg/L
[Example 1]
Raw water was treated using the system shown in FIG. The main conditions are as follows.
Cation exchange resin: Diaion SKIB manufactured by Mitsubishi Chemical Corporation. 2900L
Anion exchange resin: Diaion SA12A manufactured by Mitsubishi Chemical Corporation. 2900L
Decarbonation tower: Gas-liquid contact method (filler: net ring)
Specific resistance meter: CM-31RW (for pure water) manufactured by TOA DK Corporation
Raw water: Industrial water. Electrical conductivity 20mS / m
Silica 30mg / L, Boron 5μg / L
Sodium concentration at the inlet of the anion exchange resin tower: 0.02 mg / L

通水開始からの処理水の比抵抗、ホウ素濃度及びシリカ濃度の測定結果を図1に示した。ホウ素濃度及びシリカ濃度はICP−MSにより測定した。   The measurement results of the specific resistance, the boron concentration and the silica concentration of the treated water from the start of water flow are shown in FIG. Boron concentration and silica concentration were measured by ICP-MS.

図1の通り、ホウ素及びシリカのブレーク最初期に比抵抗が当初の2.5MΩ・cmから一時的に約3.7MΩ・cmにまで上昇し、その後0.5MΩ・cm以下まで低下する。従って、比抵抗が3.0MΩ・cm以上にまで上昇した場合、あるいはそれまでの比抵抗よりも0.5MΩ・cm以上増大した場合にアニオン交換樹脂塔の採水を停止してアニオン交換樹脂の再生を行うように制御すると、効率よく純水を製造できることが認められた。   As shown in FIG. 1, at the initial break of boron and silica, the specific resistance temporarily increases from 2.5 MΩ · cm to about 3.7 MΩ · cm, and then decreases to 0.5 MΩ · cm or less. Therefore, when the specific resistance increases to 3.0 MΩ · cm or more, or when the specific resistance increases by 0.5 MΩ · cm or more than the specific resistance, water sampling of the anion exchange resin tower is stopped and the anion exchange resin It was recognized that pure water can be efficiently produced by controlling the regeneration.

なお、比抵抗の一時的上昇を判定するために、前記条件式
R2=(A+C−2B)/T
R1=(A−B)/T
において、T=10min=0.167hと設定した。また、比抵抗の判定基準値を3.0MΩ・cm、R1の判定基準値を0.3MΩ・cm/h、R2の判定基準値を0.3MΩ・cm/hと設定した。この結果、R1が最も早く判定基準値に到達し、比抵抗の上昇傾向をホウ素濃度が1μg/Lという低濃度の早い段階でとらえることができ、採水停止・アニオン交換樹脂再生を確実に実行することができた。また、1サイクルあたりの採水量(従来は、採水量を900m/cycleに設定し、設定採水量に到達したら再生を行うようにしていた。)を900mから1100mに伸ばすことができた。
In order to determine a temporary increase in specific resistance, the conditional expression R2 = (A + C−2B) / T 2
R1 = (A−B) / T
In this case, T = 10 min = 0.167 h. Further, the determination reference value for specific resistance was set to 3.0 MΩ · cm, the determination reference value for R1 was set to 0.3 MΩ · cm / h, and the determination reference value for R2 was set to 0.3 MΩ · cm / h 2 . As a result, R1 reaches the judgment reference value earliest, and the increasing tendency of the specific resistance can be caught at an early stage where the boron concentration is as low as 1 μg / L, and water sampling is stopped and anion exchange resin regeneration is reliably executed. We were able to. Further, the adoption water (Conventionally, sets the adopted water to 900 meters 3 / cycle, had to perform the reproduction when it reaches the setting adopted water.) Per cycle could be extended from 900 meters 3 to 1100 m 3 .

[比較例1]
実施例1において、試験的に比抵抗が1MΩ・cm以下になった時点で採水を停止するようにしたところ、処理水中のシリカ及びホウ素濃度が著しく高いものとなり、後段側の超純水製造プロセスの安定処理が損なわれることが推定された。
[Comparative Example 1]
In Example 1, when the resistivity was experimentally reduced to 1 MΩ · cm or less, the water sampling was stopped. As a result, the silica and boron concentrations in the treated water became extremely high, and the production of ultrapure water on the latter stage side. It was estimated that process stability was compromised.

[実施例2]
イオン交換樹脂量を次の通りとするとともに、入口電気伝導率12mS/m、入口ホウ素7μg/L、入口シリカ2.6mg/L、アニオン交換樹脂塔入口ナトリウム0.09mg/Lとしたこと以外は実施例1と同様の試験を行った。
カチオン交換樹脂:三菱化学株式会社製ダイヤイオンSKIB。200L
アニオン交換樹脂:三菱化学株式会社製ダイヤイオンSA10A。200L
その結果、処理水の比抵抗は次の通りとなった。
当初:1.8MΩ・cm
一時的上昇最大値(通水開始後20h):4.8MΩ・cm
また、比抵抗が1MΩ・cmとなるまでの通水時間は24hであった。
本実施例において、R1が最も早く比抵抗上昇を検知し、そのときのR1の値は0.3MΩ・cm/h、検知した時刻は通水開始後17.5hであった。
[Example 2]
Except that the amount of ion exchange resin is as follows, and the inlet conductivity is 12 mS / m, the inlet boron is 7 μg / L, the inlet silica is 2.6 mg / L, and the anion exchange resin tower inlet sodium is 0.09 mg / L. The same test as in Example 1 was performed.
Cation exchange resin: Diaion SKIB manufactured by Mitsubishi Chemical Corporation. 200L
Anion exchange resin: Diaion SA10A manufactured by Mitsubishi Chemical Corporation. 200L
As a result, the specific resistance of the treated water was as follows.
Initial: 1.8 MΩ · cm
Temporary increase maximum value (20 h after the start of water flow): 4.8 MΩ · cm
The water passage time until the specific resistance reached 1 MΩ · cm was 24 h.
In this example, R1 detected the specific resistance increase earliest, the value of R1 at that time was 0.3 MΩ · cm / h, and the detected time was 17.5 h after the start of water flow.

[実施例3]
アクリルカラムを用いてアニオン交換樹脂を500mm充填した。樹脂はPA418(三菱化学株式会社製の強塩基性陰イオン交換樹脂(II型))である。原水として電気伝導率68mS/m、シリカ20mg/L、ホウ素10μg/Lのものを用い、アニオン交換樹脂塔入口ナトリウム0.17mg/Lとし、アニオン交換樹脂への通水試験を行ったところ、処理水の比抵抗は次の通りとなった。
当初:0.2MΩ・cm
一時的上昇最大値(通水開始後7.3h):0.52MΩ・cm
また、比抵抗が0.1MΩ・cmとなった通水時間は8.1hであった。
本実施例において、R2が最も早く比抵抗上昇を検知し、そのときのR2の値は0.1MΩ・cm/h、検知した時刻は通水開始後6.1hであった。
[Example 3]
Anion exchange resin was packed 500 mm using an acrylic column. The resin is PA418 (strongly basic anion exchange resin (type II) manufactured by Mitsubishi Chemical Corporation). Using raw water having an electrical conductivity of 68 mS / m, silica of 20 mg / L, and boron of 10 μg / L, an anion exchange resin tower inlet sodium of 0.17 mg / L, and a water passage test to the anion exchange resin were conducted. The specific resistance of water was as follows.
Initial: 0.2 MΩ · cm
Temporary increase maximum value (7.3 hours after the start of water flow): 0.52 MΩ · cm
Moreover, the water passing time when the specific resistance was 0.1 MΩ · cm was 8.1 h.
In this example, R2 detected the specific resistance increase earliest, the value of R2 at that time was 0.1 MΩ · cm / h 2 , and the detected time was 6.1 h after the start of water flow.

上記実施例2〜3の結果からも、比抵抗の一時的上昇を検知して通水を停止し、アニオン交換樹脂の再生を行うことにより、効率的な純水の製造を行えることが分かる。   From the results of Examples 2 and 3 above, it can be seen that efficient pure water can be produced by detecting a temporary increase in specific resistance, stopping water flow, and regenerating the anion exchange resin.

1 カチオン交換樹脂塔
2 脱炭酸塔
3 アニオン交換樹脂塔
4 純水槽
5 超純水製造プロセス
6 比抵抗計
7 演算装置
DESCRIPTION OF SYMBOLS 1 Cation exchange resin tower 2 Decarbonation tower 3 Anion exchange resin tower 4 Pure water tank 5 Ultrapure water production process 6 Specific resistance meter 7 Arithmetic unit

Claims (4)

被処理水をアニオン交換樹脂層に通水してアニオン交換処理し、得られた処理水の比抵抗又は電気伝導率を測定し、該測定結果に基いて該アニオン交換樹脂の再生又は交換を行うイオン交換樹脂装置の運転方法において、
該処理水のホウ素及びシリカのブレーク最初期における比抵抗の上昇又は電気伝導率の低下を検知し、この検知結果に基づいてアニオン交換樹脂の再生、交換、アニオン交換樹脂への通水停止、又は通水条件変更を行うことを特徴とするイオン交換樹脂装置の運転方法。
The water to be treated is passed through the anion exchange resin layer for anion exchange treatment, the specific resistance or electrical conductivity of the obtained treated water is measured, and the anion exchange resin is regenerated or exchanged based on the measurement result. In the operation method of the ion exchange resin device,
Detection of an increase in specific resistance or a decrease in electrical conductivity in the initial break of boron and silica in the treated water, and based on the detection result, regeneration of the anion exchange resin, exchange, suspension of water flow to the anion exchange resin, or A method for operating an ion exchange resin apparatus, wherein the water flow condition is changed.
請求項1において、比抵抗又はその上昇率が所定値にまで上昇するか、又は電気伝導率又はその低下率が所定値にまで低下した場合にアニオン交換樹脂の再生又は交換を行うことを特徴とするイオン交換樹脂装置の運転方法。   In claim 1, when the specific resistance or its increase rate is increased to a predetermined value, or when the electrical conductivity or its decrease rate is decreased to a predetermined value, the anion exchange resin is regenerated or replaced. To operate the ion exchange resin apparatus. 請求項2において、次の変数A,B,Cに基づいて次のR2又はR1を演算し、R2又はR1が所定値以上となった場合にアニオン交換樹脂の再生又は交換を行うことを特徴とするイオン交換樹脂装置の運転方法。
A:T分前〜現時点までの比抵抗値の時間平均
B:2T分前〜T分前までの比抵抗値の時間平均
C:3T分前〜2T分前までの比抵抗値の時間平均
R2=(A+C−2B)/T
R1=(A−B)/T
In claim 2, the next R2 or R1 is calculated based on the following variables A, B, C, and when R2 or R1 becomes a predetermined value or more, the anion exchange resin is regenerated or exchanged. To operate the ion exchange resin apparatus.
A: Time average of resistivity values from T minutes before to the present time B: Time average of resistivity values from 2T minutes to T minutes ago C: Time average of resistivity values from 3T minutes to 2T minutes before R2 = (A + C-2B) / T 2
R1 = (A−B) / T
被処理水が通水されるアニオン交換樹脂層を備えるイオン交換樹脂装置において、
該アニオン交換樹脂層の処理水の比抵抗を測定する手段と、該測定値から、次の変数A,B,Cに基づいて次のR2又はR1を演算し、R2又はR1が所定値以上となった場合に前記アニオン交換樹脂層への被処理水の通水を停止する手段とを備えることを特徴とするイオン交換樹脂装置。
A:T分前〜現時点までの比抵抗値の時間平均
B:2T分前〜T分前までの比抵抗値の時間平均
C:3T分前〜2T分前までの比抵抗値の時間平均
R2=(A+C−2B)/T
R1=(A−B)/T
In an ion exchange resin apparatus including an anion exchange resin layer through which water to be treated is passed,
A means for measuring the specific resistance of the treated water of the anion exchange resin layer, and from the measured value, the next R2 or R1 is calculated based on the following variables A, B, C, and R2 or R1 An ion exchange resin apparatus, comprising: means for stopping water flow of the treated water to the anion exchange resin layer.
A: Time average of resistivity values from T minutes before to the present time B: Time average of resistivity values from 2T minutes to T minutes ago C: Time average of resistivity values from 3T minutes to 2T minutes before R2 = (A + C-2B) / T 2
R1 = (A−B) / T
JP2013066784A 2013-03-27 2013-03-27 Operation method of ion exchange resin apparatus and ion exchange resin apparatus Active JP6362299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066784A JP6362299B2 (en) 2013-03-27 2013-03-27 Operation method of ion exchange resin apparatus and ion exchange resin apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066784A JP6362299B2 (en) 2013-03-27 2013-03-27 Operation method of ion exchange resin apparatus and ion exchange resin apparatus

Publications (2)

Publication Number Publication Date
JP2014188456A true JP2014188456A (en) 2014-10-06
JP6362299B2 JP6362299B2 (en) 2018-07-25

Family

ID=51835344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066784A Active JP6362299B2 (en) 2013-03-27 2013-03-27 Operation method of ion exchange resin apparatus and ion exchange resin apparatus

Country Status (1)

Country Link
JP (1) JP6362299B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038989A (en) * 2016-09-09 2018-03-15 水ing株式会社 Device for producing pure water
JP2018089630A (en) * 2018-03-22 2018-06-14 水ing株式会社 Method for producing pure water
JP2018114499A (en) * 2018-03-22 2018-07-26 水ing株式会社 Pure water production apparatus
KR20180103964A (en) * 2016-01-28 2018-09-19 쿠리타 고교 가부시키가이샤 Operation method of ultrapure water producing apparatus and ultrapure water producing apparatus
JP2019155296A (en) * 2018-03-14 2019-09-19 水ing株式会社 Pure water production apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166081A (en) * 1984-02-03 1985-08-29 Kurita Water Ind Ltd Apparatus for detecting silica break in demineralized water producing equipment
JPH09220566A (en) * 1996-02-19 1997-08-26 Hitachi Ltd Pure water making apparatus
JP2012138388A (en) * 2010-12-24 2012-07-19 Toshiba Corp Abnormality detecting device, method, and program making computer execute method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166081A (en) * 1984-02-03 1985-08-29 Kurita Water Ind Ltd Apparatus for detecting silica break in demineralized water producing equipment
JPH09220566A (en) * 1996-02-19 1997-08-26 Hitachi Ltd Pure water making apparatus
JP2012138388A (en) * 2010-12-24 2012-07-19 Toshiba Corp Abnormality detecting device, method, and program making computer execute method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180103964A (en) * 2016-01-28 2018-09-19 쿠리타 고교 가부시키가이샤 Operation method of ultrapure water producing apparatus and ultrapure water producing apparatus
KR102602540B1 (en) * 2016-01-28 2023-11-15 쿠리타 고교 가부시키가이샤 Ultrapure water production device and method of operating the ultrapure water production device
JP2018038989A (en) * 2016-09-09 2018-03-15 水ing株式会社 Device for producing pure water
JP2019155296A (en) * 2018-03-14 2019-09-19 水ing株式会社 Pure water production apparatus
JP7193921B2 (en) 2018-03-14 2022-12-21 水ing株式会社 Pure water production equipment
JP2018089630A (en) * 2018-03-22 2018-06-14 水ing株式会社 Method for producing pure water
JP2018114499A (en) * 2018-03-22 2018-07-26 水ing株式会社 Pure water production apparatus

Also Published As

Publication number Publication date
JP6362299B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6362299B2 (en) Operation method of ion exchange resin apparatus and ion exchange resin apparatus
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
RU2727492C1 (en) Water softening device and operation method of water-softening device
JP5768959B2 (en) Water treatment equipment
JP6082192B2 (en) Pure water production equipment
JP5518433B2 (en) Pure water production system and pure water production method
CN104535698B (en) Measure the method for regeneration flue gas desulfurization solution anion component and the preparation of sample thereof
JP2016097335A (en) Method and apparatus for regeneration and evaluation of ion exchange resin
CN211206333U (en) Degassing conductivity measurement system
US20090319194A1 (en) Device for measuring the purity of ultrapure water
KR102453719B1 (en) How to operate a water treatment device
CN103395860B (en) Method and device for clarifying fluorine-containing wastewater
CN211179618U (en) Measuring system for electrical conductivity of degassed hydrogen
US20180028946A1 (en) Regeneration method for filtration apparatus, filtration apparatus and water treatment apparatus
JP4864671B2 (en) Water quality abnormality detection device, water quality abnormality detection method, and water treatment device
JP6315721B2 (en) Pure water production equipment
JP2005010057A (en) Method and device for detecting membrane damage in membrane filter
JP3614548B2 (en) Hydrogen peroxide purification method
JP2013184076A (en) Regeneration method of acid for regeneration of ion exchange resin, ion exchange resin regeneration device, and copper etching liquid regeneration apparatus using the same
JP4020372B2 (en) Condensate treatment method and apparatus
JP4622056B2 (en) Operation method of pure water production equipment
JP6205865B2 (en) Operation management method for pure water production equipment
TWI434725B (en) Method for purifying fluoride etching solution by using hydroxide compound and ion exchange resin absorption
KR102422847B1 (en) Waste water traetment monitoring apparatus and operation method thereof
CN208249948U (en) A kind of reverse osmosis concentrated water recovery device in purified water preparation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170627

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180626

R150 Certificate of patent or registration of utility model

Ref document number: 6362299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150