JPS60171250A - Method for coating metal to optical fiber - Google Patents

Method for coating metal to optical fiber

Info

Publication number
JPS60171250A
JPS60171250A JP59024632A JP2463284A JPS60171250A JP S60171250 A JPS60171250 A JP S60171250A JP 59024632 A JP59024632 A JP 59024632A JP 2463284 A JP2463284 A JP 2463284A JP S60171250 A JPS60171250 A JP S60171250A
Authority
JP
Japan
Prior art keywords
metal
coating
fiber
optical fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59024632A
Other languages
Japanese (ja)
Inventor
Shingo Hirano
平野 慎吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokoku Steel Wire Ltd
Original Assignee
Kokoku Steel Wire Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokoku Steel Wire Ltd filed Critical Kokoku Steel Wire Ltd
Priority to JP59024632A priority Critical patent/JPS60171250A/en
Publication of JPS60171250A publication Critical patent/JPS60171250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To produce a metal-coated optical fiber which is free from fracture in the stage of producing and installing a cable and is prevented against intrusion of moisture for a long period by passing the fiber applied with a resin coating through a molten metal under specific conditions. CONSTITUTION:A resin-coated optical fiber (made of silica glass) 1 which is led out from an upper bobbin 10 and is traveled vertically so as to be taken up on a lower bobbin 10 is passed through a nozzle 11 (a symbol 11a is an aperture) to which a molten metal 3a is supplied through a spout 12 communicating with a crucible 13, thereby depositing and solidifying the molten metal 3a on the surface and forming further a metallic coating on the resin coating. A high polymer compd. having >=140 deg.C softening point is used as the resin to coat the fiber and on the other hand tin or a tin-lead alloy (about 100-240 deg.C melting temp.) having the melting temp. lower than the softening temp. of said resin is used as the metal. Said metal is used after the metal is melted to the temp. slightly higher than the melting temp. thereof.

Description

【発明の詳細な説明】 本発明は光ファイバの金属被覆方法に関する。[Detailed description of the invention] The present invention relates to a method of metal coating an optical fiber.

通信用ケーブル等に用いられる光ファイバは、そのケー
ブルの製造時或いは架設時における屈曲外力に対して、
その折損事故を防ぐため、又、長期に亘る使用に対して
水分の浸入を防止するための何等かの防護処置が必要で
ある。この点、従来はファイバ表面に高分子化合物の被
膜を被せて対処してはいるものの不満を残している。
Optical fibers used in communication cables, etc. are resistant to bending external forces during the manufacturing or installation of the cable.
Some kind of protective measures are required to prevent breakage accidents and to prevent moisture from entering during long-term use. Conventionally, this problem has been solved by coating the fiber surface with a polymeric compound coating, but this problem remains unsatisfactory.

斯る不満を解決するものとして、その被膜表面に金属膜
を被せたものが提案され°、折損事故の面では改善され
た案ではあるが、ファイバに被覆する有機重合物の耐熱
性には全く注目されていない。また、その被覆層に被せ
る金属も単に低融合金を示すのみである。一般に低融合
金は錫にビスマスを添加するもので 100度以下の融
点のものが多く、このビスマスの含有は延性を阻害する
ものである。この延性の問題はケーブル製造時および架
設時の条件に新たな制限を加えるものであり、好ましい
製造法ではない。
As a solution to this dissatisfaction, a method was proposed in which the surface of the fiber was coated with a metal film. Although this was an improvement in terms of breakage accidents, the heat resistance of the organic polymer coating the fiber was not at all satisfactory. Not getting attention. Further, the metal covered with the coating layer merely exhibits a low alloy metal. In general, low alloy alloys are made by adding bismuth to tin, and many have a melting point of 100 degrees or less, and the inclusion of bismuth inhibits ductility. This ductility problem imposes new restrictions on the conditions during cable manufacturing and installation, and is not a preferred manufacturing method.

本発明は軟土の問題点を一挙に解決して、折損事故がな
く且つケーブル製造時および架設時の条件を通常通り行
なうことのできる金属被覆される光ファイバの製造方法
を提案したもので、その基本的な構成は、ファイバ表面
を熱軟化温度が140度以上の高分子化合物製被覆で被
覆形成し、このファイバを、上記被膜の熱軟化温度より
低い溶融温度の金属をその溶融温度より僅かに高い温度
で溶融した状態で充したノズル内を鉛直状に通過ぜしめ
て、高分子化合物製被膜表向に上記金属製被膜を凝固形
成することを特徴とする。
The present invention proposes a method for manufacturing metal-coated optical fibers that solves the problems of soft soil at once, eliminates breakage accidents, and allows cable manufacturing and installation to be carried out under normal conditions. The basic structure is that the fiber surface is coated with a polymer compound coating with a heat softening temperature of 140 degrees or higher, and the fiber is coated with a metal whose melting temperature is slightly lower than the heat softening temperature of the coating. The metal coating is solidified on the surface of the polymer compound coating by vertically passing through a nozzle filled with the metal in a molten state at a high temperature.

さらに詳述すると、本発明における溶融金属はその溶融
温度より僅かに高い温度でノズル内に溶融充されていて
、ノズル内を通過するファイバがノズル内に侵入すると
同時に、その被膜表面に同金属が、溶融金属の温度より
低いファイバにより冷却、凝固して被着する現象を利用
して被覆形成するもので、その溶融金属は延性のある錫
又は錫と鉛を主体とするものとし、またファイバのノズ
ル内通過速度はきわめて高速であることが必要であるし
望ましい。またファイバを鉛直状に溶融金属中を通過せ
しめることは、ファイバの局面に同心円状に金属製被膜
を形成するために必要である。ざらに又、本発明製造方
法ではシリカ系ガラス製ファイバの紡糸から始めて一貫
した連続コニ程により製造する方法を含むものである。
More specifically, the molten metal in the present invention is melted and filled into the nozzle at a temperature slightly higher than its melting temperature, and at the same time as the fiber passing through the nozzle enters the nozzle, the metal is coated on the surface of the coating. The coating is formed by utilizing the phenomenon of cooling, solidifying and adhering with a fiber whose temperature is lower than that of the molten metal, and the molten metal is mainly composed of ductile tin or tin and lead. It is necessary and desirable that the passage speed through the nozzle be extremely high. Further, passing the fiber vertically through the molten metal is necessary in order to form a concentric metal coating on the curved surface of the fiber. Furthermore, the manufacturing method of the present invention includes a method of manufacturing by a continuous continuous process starting from spinning a silica-based glass fiber.

以下本発明について実施の一例を説明する。An example of implementation of the present invention will be described below.

図面は本発明方法に用いた装置の概略を示している。The drawings schematically show the apparatus used in the method of the invention.

ボビン(10) (10)の一方は熱軟化温度が140
度以上の被膜(2)で被覆されているシリカ系ガラス製
ファイバ(1)を巻回しており、他方はノズル(11)
を通過して被膜(2)表面に金属製被膜(3)を被覆さ
れたファイバ(1)の巻取り用である。
One of the bobbins (10) (10) has a heat softening temperature of 140
A silica-based glass fiber (1) coated with a coating (2) of 100% or higher is wound around the nozzle (11).
It is used for winding up the fiber (1) which passes through the coating (2) and is coated with a metal coating (3) on the surface thereof.

ノズル(11)はファイバ(1)が鉛直状に通過する上
下の開口(11a ) (11a )を有していて、そ
の内部には溶融金属(3a)を充していて、ノズル内を
通過するファイバ(1)の被Fl(2)表面に金属製被
膜(3)を被覆する。またノズル(11)はスパウト(
12)を通じて坩堝(13)と連通していて、この坩堝
(13)は被膜(2)の熱軟化温度よりも低い溶融温度
の金属具体的にはたとえば錫又は錫゛と°鉛を主体とす
る延性を有するものを、その溶融温度より僅かに高い温
度(100乃至240度)に溶融し且つ同温度下の溶融
金属(3a)をスバウ1−(12)を通じてノズル(1
1)に供給し充している。ノズル(11)の間口(Il
a ) (11a )は非1114ビ性ガス室(14)
で囲まれており、この非酸化性ガス室(14)は注気口
(14a ) (14a )から送気される非酸化性ガ
ス(G)で溶融金属(3a)が充されたノズル(11)
の開口(Ila ) (11a >部分における溶融金
属(3a)の酸化を防いでいる。
The nozzle (11) has upper and lower openings (11a) (11a) through which the fiber (1) passes vertically, and the inside thereof is filled with molten metal (3a), which passes through the nozzle. A metal film (3) is coated on the surface of the fiber (1) to be coated with Fl (2). In addition, the nozzle (11) has a spout (
12) communicates with a crucible (13), which is made of a metal having a melting temperature lower than the thermal softening temperature of the coating (2), specifically, for example, mainly containing tin or tin and lead. A ductile material is melted at a temperature slightly higher than its melting temperature (100 to 240 degrees), and the molten metal (3a) at the same temperature is passed through the nozzle (1
1). Frontage (Il) of nozzle (11)
a) (11a) is a non-1114 gas chamber (14)
This non-oxidizing gas chamber (14) is surrounded by a nozzle (11) filled with molten metal (3a) with non-oxidizing gas (G) fed from the air inlet (14a) (14a). )
This prevents oxidation of the molten metal (3a) in the opening (Ila) (11a).

これにより、ボビン(10)から引出されて、高分子化
合物製被膜(2)で被覆されているファイバ(1)はガ
イドロール(15) (15)に導かれてノズル(11
)内を鉛直状に高速で通過し、その通過中に金属製被膜
(3)を被覆されて、ボビン(10)に巻取られ、この
製造されたファイバ(1)はその表面を内層の耐熱性高
分子化合物製被膜(2)と、外層の延性の有る金属製被
膜(3)とで内外二層状に被覆形成されて、折損事故が
なく且つ延性に優れ且つ水分の浸入を防ぐものであった
As a result, the fiber (1) pulled out from the bobbin (10) and coated with the polymer coating (2) is guided to the guide roll (15) (15) and is guided to the nozzle (11).
) is passed vertically at high speed, and during the passage, the manufactured fiber (1) is coated with a metal coating (3) and wound onto a bobbin (10). The coating is formed in two layers, the inner and outer layers, consisting of a flexible polymeric compound coating (2) and a ductile outer metal coating (3), which prevents breakage, has excellent ductility, and prevents moisture from entering. Ta.

したがって本発明によれば次の利点がある。Therefore, the present invention has the following advantages.

■ 折損事故のない且つ延性および屈曲性の良い金属被
覆した汎用性の高いファイバを、製造条件に新たな制限
を加えることなく製造することができる。
(2) A highly versatile metal-coated fiber that is free from breakage and has good ductility and flexibility can be manufactured without imposing new restrictions on manufacturing conditions.

■ 金属製被膜を、溶融金属が充されているノズル内を
鉛直状に通過させて凝固被覆するため、同金属製被膜を
同心円状に被覆形成でき、周囲均一な金属被覆のファイ
バを量産するのに好適な製造法である。
■ Since the metal coating is solidified by passing it vertically through a nozzle filled with molten metal, the metal coating can be formed concentrically, making it possible to mass-produce fibers with uniform metal coating around the circumference. This is a manufacturing method suitable for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐熱性高分子化合物製被膜で被覆されたファイ
バがボビンより引出されて、溶融金属で充されたノズル
内を鉛直状に通過し、被覆表面に金属製被膜を被覆形成
する過程を示す概略図。第2図は金属被覆したファイバ
の横断面図である。 図中 (1)はファイバ (2)は高分子化合物製被膜 (3)は金属製被膜 (3a)は溶融金属 (11)はノズル 特許出願人 興国鋼線索株式会社 第2図
Figure 1 shows the process in which a fiber coated with a heat-resistant polymer compound coating is pulled out from a bobbin, passes vertically through a nozzle filled with molten metal, and a metal coating is formed on the coated surface. Schematic diagram shown. FIG. 2 is a cross-sectional view of a metallized fiber. In the figure, (1) is the fiber (2) is the polymer compound coating (3) is the metal coating (3a) is the molten metal (11) is the nozzle Patent applicant: Kokoku Steel Wire & Cable Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】 ■ ファイバ表面を熱軟化温度が140度以上の高分子
化合物製被膜で被覆形成し1.このファイバを、上記被
膜の熱軟化温度より低い溶融温度の金属をその溶融温度
より僅かに高い温度で溶融した状態で充したノズル内を
鉛直状に通過せしめて、高分子化合物製被膜表面に上記
金属製被膜を凝固形成することを特徴とする光ファイバ
の金属被覆方法。 ■ 前記ファイバが、シリカ系ガラス製である特許請求
の範囲第1項記載の光ファイバの金属被覆方法。 ■ 前記金属が、錫又は錫と鉛を主体とする延性を有す
る材料で且つ溶融温度が100乃至240度である特許
請求の範囲第1項又は第2項記載の任意の光フ1イバの
金属被覆方法。
[Claims] ■ The fiber surface is coated with a coating made of a polymer compound having a heat softening temperature of 140 degrees or higher.1. This fiber is passed vertically through a nozzle filled with a metal whose melting temperature is lower than the thermal softening temperature of the coating at a temperature slightly higher than the melting temperature of the metal, and the above-mentioned fiber is applied to the surface of the polymer compound coating. A method for coating an optical fiber with metal, characterized by solidifying and forming a metal coating. (2) The method of metal coating an optical fiber according to claim 1, wherein the fiber is made of silica-based glass. (2) Any optical fiber metal according to claim 1 or 2, wherein the metal is a ductile material mainly consisting of tin or tin and lead, and has a melting temperature of 100 to 240 degrees. Coating method.
JP59024632A 1984-02-10 1984-02-10 Method for coating metal to optical fiber Pending JPS60171250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024632A JPS60171250A (en) 1984-02-10 1984-02-10 Method for coating metal to optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024632A JPS60171250A (en) 1984-02-10 1984-02-10 Method for coating metal to optical fiber

Publications (1)

Publication Number Publication Date
JPS60171250A true JPS60171250A (en) 1985-09-04

Family

ID=12143505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024632A Pending JPS60171250A (en) 1984-02-10 1984-02-10 Method for coating metal to optical fiber

Country Status (1)

Country Link
JP (1) JPS60171250A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124303A (en) * 1981-01-23 1982-08-03 Furukawa Electric Co Ltd:The Metal-coated optical fiber and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124303A (en) * 1981-01-23 1982-08-03 Furukawa Electric Co Ltd:The Metal-coated optical fiber and its manufacture

Similar Documents

Publication Publication Date Title
US2772518A (en) Method of coating glass filaments with metal
DE69634180T2 (en) Nanocrystalline magnetic glass coated wires and associated manufacturing process
CA1256398A (en) Optical fibres
DE19717607C2 (en) Device and method for producing a metal-coated glass fiber
US10203463B2 (en) Cored wire, method and device for the production of the same
JP2975642B2 (en) Hermetic coated fiber and manufacturing method thereof
JPS60171250A (en) Method for coating metal to optical fiber
US10295411B2 (en) Consumable optical fiber for measuring a temperature of a molten steel bath
EP1585708A2 (en) System and process for controllable preparation of glass-coated microwires
US2928716A (en) Method of producing glass fibers with metal coatings
JPS61136941A (en) Manufacture of metal-coated optical fiber
JPS57188429A (en) Coating method for optical fiber with metal
JPS63104671A (en) Metal coating nozzle
JPS6332741B2 (en)
JPS5935047A (en) Coating of optical fiber with metal
JPH02263742A (en) Production of metal-coated optical fiber
WO2001042851A1 (en) Metallic glass hermetic coating for an optical fiber and method of making an optical fiber hermetically coated with metallic glass
JPH03109240A (en) Production of metal coating optical fiber
JPS58185457A (en) Metal coater for optical fiber
JPS61155859A (en) Production of metal coated quartz column for chromatographic device
JPS5845133A (en) Coating method for optical fiber with metal
JPS5950613B2 (en) Method for manufacturing metal coated optical fiber
JPS63297250A (en) Production of metal-clad optical fiber
JPS58223641A (en) Method for coating light transmitting glass fiber
JPH03215332A (en) Production of metal-coated fluoride glass optical fiber