JPS6017053A - Hot rolled steel sheet for electric welded steel pipe - Google Patents

Hot rolled steel sheet for electric welded steel pipe

Info

Publication number
JPS6017053A
JPS6017053A JP12508183A JP12508183A JPS6017053A JP S6017053 A JPS6017053 A JP S6017053A JP 12508183 A JP12508183 A JP 12508183A JP 12508183 A JP12508183 A JP 12508183A JP S6017053 A JPS6017053 A JP S6017053A
Authority
JP
Japan
Prior art keywords
less
steel
steel sheet
total
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12508183A
Other languages
Japanese (ja)
Inventor
Masatoshi Sudo
正俊 須藤
Shunichi Hashimoto
俊一 橋本
Akifumi Kanbe
神戸 章史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12508183A priority Critical patent/JPS6017053A/en
Publication of JPS6017053A publication Critical patent/JPS6017053A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the workability after welding and the strength as a base metal by adding prescribed percentages of C, Si, Mn, S, Al, P and Cr. CONSTITUTION:The titled steel sheet contains, by weight, 0.02-0.15% C, <=0.4% Si, 0.8-2% Mn, <=0.015% S, 0.01-0.06% Al, 0.02-0.12% P, 0.03-0.5% Cr and <=0.25% in total of one or more among 0.01-0.08% Nb, 0.01-0.15% Ti, 0.02- 0.2% V and 0.02-0.2% Zr. It has <=0.43Ceq [Ceq=C+(Si/24)+(Mn/6)+(Cr/5)] and contains 5-80% by area of ferrite and bainite. Though the steel sheet is of low carbon steel, it has high strength as a base metal and superior workability after welding.

Description

【発明の詳細な説明】 本発明は電1a鋼管用熱延#IIJ坂に関し、詳しくは
、溶接後の加工1j1゛にずぐれた電縫鋼管用フエライ
1−・ヘイナイト組織[01強度熱延鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot-rolled #IIJ slope for electric 1a steel pipes, and more specifically, a ferrite 1-/heinite structure [01 strength hot-rolled steel sheet Regarding.

?li縫鋼管と呼ばれる高周波抵抗溶接鋼管は自動車、
車輌等の機械構造用、配管用、油井管用等、多岐にわた
る用途に使用されている。このような電縫鋼管に要求さ
れる特性は、その用途によって必ずしも同一ではないが
、例えば、抗張力5〇−10kg/−の素板を用いて製
造される構造用鋼管において6才、溶接後に拡管や偏平
をして使用されることが多く、従って、溶接後に良好な
加工性を有することが最大の要求特性である。
? High-frequency resistance welded steel pipes called Li welded steel pipes are used in automobiles,
It is used in a wide variety of applications, including mechanical structures such as vehicles, piping, and oil country tubular goods. The characteristics required for such ERW steel pipes are not necessarily the same depending on the use, but for example, for structural steel pipes manufactured using blank plates with a tensile strength of 50-10 kg/-, the characteristics required for ERW steel pipes are 6 years old and expanded after welding. It is often used in a flat or flat shape, and therefore, the most required characteristic is good workability after welding.

本発明者ら4J、」1記のような要求に応える電縫鋼管
用高強度熱延鋼板を得るべく、鋭意研究した結果、3.
14における化学組成を所定の範囲とすると共に、特定
の元素については特定の関係を満足せしめ、更に、その
組織をフエライl−と所定量のベイナイトとすることに
よって、上記要求によく応える熱延鋼イ反を得ることが
できることを見出して、本発明に至ったものである。
The inventors of the present invention have conducted extensive research in order to obtain a high-strength hot-rolled steel sheet for ERW steel pipes that meets the requirements as described in 1.3.
A hot-rolled steel that satisfies the above-mentioned requirements by making the chemical composition in No. 14 within a predetermined range, satisfying specific relationships for specific elements, and making the structure contain ferrite and a predetermined amount of bainite. The present invention was developed based on the discovery that it is possible to obtain the following properties.

本発明の方法による電縫鋼管用銅強度熱延鋼板は、工[
量%でC0,02〜0.15%、S i 0.4%以下
、M n 0.8〜2.0%、30.015%以下及び
ArO,01〜0.06%を含有すると共に、N b 
0゜01〜0.08%、”r’ i 0.0 1〜0.
] 55%Vo、02−0.2%及びZr0.02〜0
.2%から選ばれる1種又は2種以上を合itで0.2
5%以下の範囲で含有し、残部が鉄及び不可避的不純物
よりなり、Ceq−C+ (Si/24) −1−(M
n/ 6) +(Cr/ 5)が0.431a下であっ
て、フェライトと面積率で5〜80%のベイナイトとか
らなることを特徴とする。
The copper-strength hot-rolled steel sheet for ERW steel pipes produced by the method of the present invention can be manufactured by the method of the present invention.
Contains C0.02 to 0.15%, Si 0.4% or less, Mn 0.8 to 2.0%, 30.015% or less, and ArO, 01 to 0.06% in amount %, Nb
0°01-0.08%, "r' i 0.0 1-0.
] 55% Vo, 02-0.2% and Zr0.02-0
.. One or more types selected from 2% for a total of 0.2
Ceq-C+ (Si/24) -1-(M
n/6) +(Cr/5) is less than 0.431a, and is characterized by being composed of ferrite and bainite with an area ratio of 5 to 80%.

前記したように、電縫鋼管における最大の要求特性は、
溶接後にすぐれた加工性を有することであり、この加工
性が良好でないときは、大別して2種の割れとしてそれ
が露呈される。一つば、溶接接合部での割れであり、他
は溶接熱影響部での割れである。本発明は、鋼の化学組
成及び組織と上記割れとの関係を綿密に研究し1.鋼の
化学組成を所定の関係の下で所定の範囲の組成とすると
共に、鋼組織においてベイナイ1−を所定量生成させる
ことによって、上記割れを大幅に減少させ、かくして、
溶接後の加工性にすぐれる熱延鋼板を得たものである。
As mentioned above, the maximum required characteristics for ERW steel pipes are:
It has excellent workability after welding, and when this workability is not good, it can be roughly classified into two types of cracks. One is cracking at the weld joint, and the other is cracking at the weld heat affected zone. The present invention was developed by carefully researching the relationship between the chemical composition and structure of steel and the above-mentioned cracks.1. By setting the chemical composition of the steel to a predetermined range under a predetermined relationship and by generating a predetermined amount of Baini 1- in the steel structure, the above cracking can be significantly reduced, and thus,
A hot-rolled steel plate with excellent workability after welding was obtained.

先ず、本発明の鋼における化学組成について説明する。First, the chemical composition of the steel of the present invention will be explained.

Cは鋼の母材強度を高めるために最も有効な元素であり
、50kg/−以」二の引張強さを得るには、鋼ばCを
0.02%含有することが必要である。しかし、余りに
多量に含有するときは、溶接部が硬化しやすくなり、加
工時に割れが発生しやすくなるので、0.15%を」1
限とする。
C is the most effective element for increasing the strength of the steel base material, and in order to obtain a tensile strength of 50 kg/- or more, it is necessary to contain 0.02% C in the steel. However, if the content is too large, the welded part will harden easily and cracks will occur during processing, so 0.15%
limited.

Stば鋼に高強度、高靭性を与えるために添加されるが
、0.4%を越えると溶接部でペネトレーターを生じる
ので、これを−に限とする。
It is added to give high strength and high toughness to steel, but if it exceeds 0.4%, it will cause penetrators in the weld, so it is limited to -.

Mnは、本発明における低C鋼の強度低下を補償すると
共にベイナイト組織を得るために、必須成分として0.
8%以上添加される。しかし、その添加■が2.0%を
越えると、C量過剰の場合と同様に溶接部が硬化し、加
工時に割れが発生しやすくなるので、上限を2.0%と
する。
Mn is added as an essential component in order to compensate for the decrease in strength of the low C steel in the present invention and to obtain a bainitic structure.
8% or more is added. However, if the addition (2) exceeds 2.0%, the welded part will harden as in the case of an excessive amount of C, and cracks will easily occur during processing, so the upper limit is set at 2.0%.

Sは鋼における介在物量、従って、溶接熱影響部での割
れに関係するので、本発明の鋼においてはその含有量を
0.01.5%以下の範囲とすることが必要である。
Since S is related to the amount of inclusions in steel, and therefore to cracking in the weld heat affected zone, it is necessary to keep its content in the range of 0.01.5% or less in the steel of the present invention.

A7!は78製時の脱酸剤として添加され、0.01〜
0.06%の範囲で有効である。この範囲よりも少ない
ときは脱酸剤としての効果が乏しく、」1記範囲よりも
多いときはアルミナ系介在物が生じやすくなるので好ま
しくない。
A7! is added as a deoxidizing agent when manufacturing 78, and is 0.01~
It is effective within a range of 0.06%. When the amount is less than this range, the effect as a deoxidizing agent is poor, and when it is more than the range 1, alumina-based inclusions are likely to be formed, which is not preferable.

Nb、■、Ti及びZrはいずれも析出強化元素として
作用するのみならず、C及びMnと共に熱延後の組織の
変態挙動に影響を与えて、ベイナイト組織を得るのに必
要な元素である。更に、溶接熱影響部でベイナイトが焼
戻されて、硬度が低下するのを防止するためにも有効で
ある。かかる効果を発揮させるために、本発明において
は、これら元素は単独で、又は2種以上が複合して添加
されるが、単独で添加するときは、前記したように、N
bは0.01〜0.08%、Tiは0.01〜0゜15
%、■は0.02〜0.2%及びZrは0.02〜0.
2%の範囲であり、また、複合して添加されるときは、
各元素は上記範囲内であると共に、合計で0.25%以
下とされる。各元素は上記範囲よりも少ない添加量では
析出強化の効果が乏しく、一方、単独にせよ、複合にせ
よ、上記範囲を越えて多量に添加し、でも効果が飽和し
、また、鋼の靭性を低下させるので好ましくない。
Nb, Ti, and Zr all act not only as precipitation-strengthening elements, but also affect the transformation behavior of the structure after hot rolling, together with C and Mn, and are elements necessary to obtain a bainite structure. Furthermore, it is effective to prevent bainite from being tempered in the weld heat affected zone and resulting in a decrease in hardness. In order to exhibit such effects, in the present invention, these elements are added alone or in combination of two or more, but when added alone, as described above, N
b is 0.01 to 0.08%, Ti is 0.01 to 0°15
%, ■ is 0.02 to 0.2%, and Zr is 0.02 to 0.
2% range, and when added in combination,
Each element is within the above range and the total content is 0.25% or less. If each element is added in an amount smaller than the above range, the effect of precipitation strengthening will be poor; on the other hand, if added in a large amount beyond the above range, whether singly or in combination, the effect will be saturated and the toughness of the steel will be reduced. This is not preferable because it lowers the temperature.

本発明の鋼においては、上記した元素以外に、更に、鋼
の強度に応じて高強度化するために、Pを0.02〜0
.12%の範囲で積極的に添加することができる。しか
し、0.12%を越えて添加するときは、溶接部で脆性
破壊が起こりやすくなるので避けるべきである。
In the steel of the present invention, in addition to the above-mentioned elements, in order to increase the strength according to the strength of the steel, P is added from 0.02 to 0.
.. It can be actively added within a range of 12%. However, when adding more than 0.12%, brittle fracture is likely to occur in the weld, so it should be avoided.

また、必要に応じてCrも0.03〜0.5%の範囲で
添加することができる。CrもMnと同様にベイナイト
組織を得るのに有効な元素であるが、0.03%よりも
少ない添加量ではこの効果が殆どなく、一方、0.5%
を越えて添加することは、溶接部の特性、特に偏平試験
値を劣化させるので好ましくない。
Further, Cr can also be added in a range of 0.03 to 0.5% if necessary. Like Mn, Cr is also an effective element for obtaining a bainite structure, but this effect is almost absent when the addition amount is less than 0.03%;
It is undesirable to add more than 100% of the total amount because it deteriorates the properties of the welded part, especially the flatness test value.

更に、本発明においては、必要に応じて、硫化物の形状
抑制効果によって介在物を無害化し、溶接熱影響部での
割れを防止するために、希土類元素、Ca及びMgから
選ばれる1種又は2種以上を添加することができる。そ
の添加量範囲は上記効果を有効に発現させるために、希
土類元素については0.005〜0.1%の範囲、Ca
及びMgについてはそれぞれ0. OO05〜0.01
%の範囲が好適である。これらの元素は単独で、又は複
合して添加されるが、後者の複合添加の場合、余りに多
量に添加すると鋼の清浄度を阻害し、却って延性を低下
させるので、合計の添加量を0.1%以下に抑えるのが
望ましい。
Furthermore, in the present invention, one selected from rare earth elements, Ca, and Mg, or Two or more kinds can be added. In order to effectively express the above effects, the addition amount range is 0.005 to 0.1% for rare earth elements, Ca
and 0.0 for Mg, respectively. OO05~0.01
A range of % is preferred. These elements may be added singly or in combination, but in the case of the latter combination, adding too much will impede the cleanliness of the steel and even reduce the ductility, so the total amount added should be 0. It is desirable to keep it below 1%.

本発明においては、鋼は合金元素についての炭素当量、
即ち、 Ceq=C+ (St/24> + (Mn/ 6) 
+ (Cr/ 5)が0.43以下であることを要する
。Ceqが0.43を越えるときは、得られる鋼の溶接
部の硬度が高くなり、割れを生じやすいからである。
In the present invention, the steel has carbon equivalents for alloying elements,
That is, Ceq=C+ (St/24> + (Mn/6)
+ (Cr/5) is required to be 0.43 or less. This is because when Ceq exceeds 0.43, the hardness of the welded part of the resulting steel increases and cracks are likely to occur.

本発明による鋼は上記のような化学組成を有し、且つ、
所定のCeqを有すると共に、その組織がフェライトと
面積率で5〜80%のベイナイトとからなることを要す
る。このように鋼組織に所定量のベイナイトを有せしめ
ることによって、変態強化によって鋼が低Ceqである
にもかかわらずに、母材強度を高めることができ、また
、Nb、Ti等の析出強化元素の添加量を抑えることが
できるので、溶接部の良好な靭性を確保することができ
るのである。ベイナイト組織が5%よりも少ないときは
、」1記のような強度への寄与が殆どなく、また、80
%を越えると全伸びが低下するので好ましくない。
The steel according to the present invention has a chemical composition as described above, and
It is necessary to have a predetermined Ceq and to have a structure consisting of ferrite and bainite with an area ratio of 5 to 80%. By including a predetermined amount of bainite in the steel structure in this way, the strength of the base metal can be increased due to transformation strengthening even though the steel has a low Ceq. Since the amount of addition of Ni can be suppressed, good toughness of the welded part can be ensured. When the bainite structure is less than 5%, there is almost no contribution to the strength as described in 1.
% is not preferable because the total elongation decreases.

以上に説明したような組織を得るためには、鋼を熱延し
た後の冷却及び巻取り条件が重要であり、上記のような
組織を有する鋼は、本発明に従って、一つの方法として
、通常の均熱及び熱延後、750〜950℃の範囲の温
度で仕上げた後、平均20〜b することにより得ることができる。他の方法として、6
00〜750 ”cの温度範囲でフェライト変態を促進
するために、3〜b で2〜20秒間冷却する徐冷を行ない、その他の0 温度範囲では30〜b て巻取り温度まで冷却し、350〜575℃の温度範囲
で巻取ることによっても、上記した組織の鋼を得ること
ができる。
In order to obtain the structure described above, the cooling and coiling conditions after hot rolling the steel are important, and the steel having the above structure can be obtained by one method according to the present invention. It can be obtained by soaking and hot rolling, finishing at a temperature in the range of 750 to 950°C, and then rolling to an average of 20 to 950°C. As another method, 6
In order to promote the ferrite transformation in the temperature range of 00 to 750"c, slow cooling is performed at 3 to 20 seconds for 2 to 20 seconds. In other temperature ranges, the material is cooled to the coiling temperature at 30 to 350". Steel having the above-mentioned structure can also be obtained by winding in a temperature range of ~575°C.

以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 表に示す組成の鋼を1200℃で均熱し、厚み30mm
から2.8fiまで4パスの熱間圧延し、850℃で仕
上げた。
Steel with the composition shown in the example table was soaked at 1200°C, and the thickness was 30 mm.
It was hot-rolled for 4 passes from to 2.8fi and finished at 850°C.

この後、40℃/秒の等速冷却速度にて500℃まで冷
却し、500℃の炉中に装入、1時間保持後、炉冷した
。この方法を方法■とする。別に、850℃で仕上げた
後、40℃/秒の冷却速度で4秒間冷却し、その後、約
り℃/秒で10秒間徐冷し、再び60℃/秒の冷却速度
で500℃まで冷却する制御冷却を施し、次いで、50
0℃の炉中に1時間保持した後、炉冷した。この方法を
方法■とする。
Thereafter, it was cooled to 500°C at a constant cooling rate of 40°C/sec, charged into a 500°C furnace, held for 1 hour, and then cooled in the furnace. This method is referred to as method (■). Separately, after finishing at 850°C, cool at a cooling rate of 40°C/sec for 4 seconds, then slowly cool at a cooling rate of about 10°C/sec for 10 seconds, and then cool again at a cooling rate of 60°C/sec to 500°C. Controlled cooling was applied, then 50
After being kept in the oven at 0°C for 1 hour, it was cooled in the oven. This method is referred to as method (■).

このようにして、異なる冷却パターン、方法I又は■に
よって得られた鋼板を厚み2.5fiに表面1 研削した後、JIS ]、 3号B引張試験片を調製し
、その機械的性質を測定し、また、30鶴径に電縫溶接
後、偏平試験及び拡管試験を行なった。結果を表及び第
1図乃至第5図に示す。尚、このようにして得た鋼の組
織はポリゴナルフエライトと面積率10〜70%の範囲
のベイナイトとからなるものであった。
In this way, after surface 1 grinding of the steel plates obtained by different cooling patterns, method I or method 1 to a thickness of 2.5 fi, JIS ], No. 3 B tensile test specimens were prepared and their mechanical properties were measured. In addition, after electrical resistance welding to a diameter of 30 mm, a flattening test and a tube expansion test were conducted. The results are shown in the table and FIGS. 1 to 5. The structure of the steel thus obtained was composed of polygonal ferrite and bainite having an area ratio of 10 to 70%.

以下に試験結果を詳細に説明する。The test results will be explained in detail below.

前記したように、電縫鋼管における最大の要求特性は溶
接後の加工性にすぐれることであるが、この加工性が良
好でないときは、溶接接合部での割れと溶接熱影響部で
の割れが発生し、これらの割れは実験的には前者は偏平
試験により、後者は拡管試験により再現することができ
る。偏平試験は溶接鋼管の溶接熱が頂点となるように内
壁が密着するまでプレスして行ない、生じた割れの長さ
から溶接後の加工性を評価する。ここではこの溶接後の
加工性を割れ長さ比D(%) D=(割れ長さの総和/素板の溶接長さ)X 100で
評価した。
As mentioned above, the most important characteristic required for ERW steel pipes is excellent workability after welding, but if this workability is not good, cracks in the weld joint and cracks in the weld heat affected zone may occur. These cracks can be reproduced experimentally by a flattening test for the former, and by an expansion test for the latter. The flattening test is performed by pressing the welded steel pipe until the inner wall is tightly attached so that the welding heat reaches the peak, and the workability after welding is evaluated from the length of the crack that occurs. Here, the workability after welding was evaluated using the crack length ratio D (%) D = (total of crack lengths/welded length of blank plate) x 100.

2 −90−二 また、拡管試験番11管開口端に径が管内径よりも大き
い円Mt、台物を強制的に挿入し、管径を拡大して割れ
を生じさ一ロるノ)ので、ここでは頂角60゜の円錐台
を管開口端に挿入し、拡管率FF−割れ発生時の管周長
/素管周に で評価した。
2 -90-2 Also, in tube expansion test No. 11, a circle Mt whose diameter is larger than the inner diameter of the tube is forcibly inserted into the open end of the tube to expand the tube diameter and cause cracks. Here, a truncated cone with an apex angle of 60° was inserted into the open end of the tube, and the tube expansion rate FF - tube circumference length at the time of crack occurrence/original tube circumference was evaluated.

第1図は偏平試験の結果を示す。Cが本発明で規定する
範囲内にあるとき(第1図においてO及び△で示す。×
はCが本発明で規定する範囲外にあることを示す。以1
゛においても同じ。)、Si量とDとはよく対応し7て
おり、Si口を0.4 !16以下とすることによって
Dを実用的に十分小さくすることができた。尚、割れ破
面には溶接過程で生じたとみられるSi、、Mn、0、
A7!からなるペネトレーターが認められ、Si量が増
すにつれてその存在量が著しく増加することが認められ
た。
Figure 1 shows the results of the flatness test. When C is within the range specified by the present invention (indicated by O and △ in Fig. 1. ×
indicates that C is outside the range defined by the present invention. Below 1
The same goes for ゛. ), the Si amount and D correspond well to 7, and the Si opening is 0.4! By setting it to 16 or less, D could be made sufficiently small for practical use. In addition, on the crack surface, Si, Mn, 0,
A7! Penetrators were observed, and their abundance was found to increase significantly as the amount of Si increased.

第2図Bat:St量が0.4%以下である鋼について
、溶接接合部の最高硬度とDとの関係を示す。最高硬度
+1vの上昇と共に割れが多く発生するので、最高硬度
11vが350以下であることが必要であ5 る。本発明においては、第3図に示したように、Ceq
を0.43以下に抑えることによりこの溶接接合部の最
高硬度を350以下に設計することができると共に、鋼
組織をフェライトと面積率で5〜80%のヘイナイトと
することにより、母材の強度を高め、また、Nb、Ti
等の析出強化元素の添加量を抑制できるので、溶接部の
靭性が損なわれない。更に、伸びフランジ性をはじめと
する延性特性にもすぐれている。
Fig. 2 Bat: shows the relationship between the maximum hardness of the welded joint and D for steel with an St content of 0.4% or less. Since more cracks occur as the maximum hardness +1v increases, it is necessary that the maximum hardness 11v is 350 or less. In the present invention, as shown in FIG.
By suppressing the hardness to 0.43 or less, the maximum hardness of this welded joint can be designed to be 350 or less, and by making the steel structure ferrite and haynite with an area ratio of 5 to 80%, the strength of the base metal can be increased. It also increases Nb, Ti
Since the amount of addition of precipitation-strengthening elements such as steel can be suppressed, the toughness of the welded part is not impaired. Furthermore, it has excellent ductility properties including stretch flangeability.

また、第4図は母材強度と拡管率との関係を示す。破断
ば溶接熱影響部と母材とに生じ、溶接熱影響部における
破断は介在物に起因する割れと硬度低下による優先変形
による割れとに大別され、拡管率Fは介在物による割れ
が生しるときが最も小さく、硬度低下によって溶接熱影
響部で破断が生じるときは、拡管率自体は小さくないが
、少量の変形で板厚減少が生じるので好ましくない。拡
管率は母材の引張強さ及びこれと対応する全伸びとの関
連で変動する。本発明によれば、鋼組織をフェライトと
所定のへイナイトとしたので、伸び6 の劣化を極力抑えて、しかも、強度を高めることができ
るた。
Moreover, FIG. 4 shows the relationship between base material strength and pipe expansion rate. Fractures occur in the weld heat-affected zone and the base metal. Fractures in the weld heat-affected zone are broadly classified into cracks caused by inclusions and cracks due to preferential deformation due to decreased hardness. When the cracking is at its minimum and rupture occurs in the weld heat-affected zone due to a decrease in hardness, the tube expansion ratio itself is not small, but a small amount of deformation causes a decrease in the plate thickness, which is not preferable. The expansion rate varies in relation to the tensile strength of the base material and the corresponding total elongation. According to the present invention, since the steel structure is made of ferrite and a predetermined amount of henite, deterioration in elongation 6 can be suppressed as much as possible and strength can be increased.

以上のように、本発明による鋼ば、低炭素当量鋼であり
ながら、大きい母材強度を有し、しかも、溶接後の加工
性にすぐれることが明らかである。
As described above, it is clear that the steel sheet according to the present invention has high base metal strength even though it is a low carbon equivalent steel, and has excellent workability after welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼におけるSi量と溶接後の割れ長さ比りとの
関係を示すグラフ、第2図は溶接部の最高硬度とDとの
関係を示すグラフ、第3図は炭素当量と溶接部の最高硬
度との関係を示すグラフ第4図は母材の引張強さと拡管
率との関係を示すグラフである。 285− 第1図 希量(1量2) 瘍橙塑I4俊(〃V)
Figure 1 is a graph showing the relationship between the amount of Si in steel and the crack length ratio after welding, Figure 2 is a graph showing the relationship between the maximum hardness of the weld and D, and Figure 3 is the graph showing the relationship between carbon equivalent and welding. Figure 4 is a graph showing the relationship between the tensile strength of the base material and the expansion ratio. 285- Figure 1 Rare quantity (1 quantity 2) Tumor orange plastic I4 shun (〃V)

Claims (4)

【特許請求の範囲】[Claims] (1)重量%でC0,02〜0.15%、S i O,
4%以下、M n 0.8〜2.09i、So、015
%以下及びAl1.01〜0.06%を含有すると共に
、N b 0゜01〜0.08%、T i 0.01〜
0.15 %、V O,O2〜0.2%及びZr0.0
2〜0.2%から選ばれる1種又は2種以上を合計で0
.25%以下の範囲で含有し、残部が鉄及び不可避的不
純物よりなり、Ceq= C+ (Si/24) +(
Mn/ 6) + (Cr/ 5)が0.43以下であ
って、フェライトと面積率で5〜80%のベイナイトと
からなることを特徴とする電縫鋼管用熱延鋼板。
(1) C0.02-0.15% by weight, S i O,
4% or less, M n 0.8-2.09i, So, 015
% or less and Al 1.01-0.06%, Nb 0°01-0.08%, Ti 0.01-0.01%
0.15%, VO, O2~0.2% and Zr0.0
One or more types selected from 2 to 0.2% total of 0
.. Ceq=C+ (Si/24) + (
A hot-rolled steel sheet for electric resistance welded steel pipes, characterized in that Mn/6) + (Cr/5) is 0.43 or less and is composed of ferrite and bainite with an area ratio of 5 to 80%.
(2)重量%でC0,02〜0.15%、S i 0.
4%以下、M n 0.8〜2.0%、SO,015%
以下、A10.01〜0.06%、Po、02〜0.1
2%及びCr0.03〜0.5%を含有すると共に、N
bO,01〜0.08%、TiO,01〜0.15%、
Vo、02〜0゜2%及びZ r O,02〜0.2%
から選ばれる1種又t;I: 2種以上を合計で0.2
5%以下の範囲で含有し、残部が鉄及び不可避的不純物
よりなり、Ceq=C+ (Si/24) + (Mn
/ 6) + (Cr/ 5)が0.43以下であって
、フェライトと面積率で5〜80%のベイナイ1〜とか
らなることを特徴とする電縫鋼管用熱延鋼板。
(2) C0.02-0.15% by weight, Si 0.
4% or less, Mn 0.8-2.0%, SO, 015%
Below, A10.01~0.06%, Po, 02~0.1
2% and Cr0.03-0.5%, and N
bO, 01-0.08%, TiO, 01-0.15%,
Vo, 02~0°2% and ZrO, 02~0.2%
One type or t selected from; I: 2 or more types in total 0.2
Ceq=C+ (Si/24) + (Mn
/6) + (Cr/5) is 0.43 or less, and a hot rolled steel sheet for electric resistance welded steel pipes is characterized by comprising ferrite and Baini 1 or more having an area ratio of 5 to 80%.
(3)重量%でC0,02〜0.15%、Si0.4%
以下、M n 0.8〜2.0%、So、015%以下
及びAり0.01〜0.06%を含有すると共に、N 
b 0゜01〜0.08%、TiO,01〜0.15%
、V O,O2〜0.2%及びZ r 0.02〜0.
2%から選ばれる1種又は2種以−ヒを合計で0.25
%以下、並びに希土類元素0.005〜0.1%及びC
aO,0O05〜0.01%から選ばれる1種又は2種
以上を合計で0.1%以下の範囲で含有し、残部が鉄及
び不可避的不純物よりなり、 Ceq=C+ (s+/24) + (Mn/6) +
 (Cr15)が0.43以下であって、フェライトと
面積率で5〜80%のベイナイトとからなることを特徴
とする電縫鋼管用熱延鋼板。
(3) C0.02-0.15%, Si0.4% in weight%
Below, while containing Mn 0.8-2.0%, So, 0.015% or less, and Al 0.01-0.06%, N
b 0゜01~0.08%, TiO, 01~0.15%
, VO,O2~0.2% and Zr 0.02~0.
A total of 0.25 of one or two types selected from 2%
% or less, and rare earth elements 0.005-0.1% and C
Contains one or more selected from aO, 0O05 to 0.01% in a total amount of 0.1% or less, and the remainder consists of iron and inevitable impurities, Ceq=C+ (s+/24) + (Mn/6) +
A hot-rolled steel sheet for electric resistance welded steel pipes, characterized in that (Cr15) is 0.43 or less and is composed of ferrite and bainite with an area ratio of 5 to 80%.
(4) 重量%でC0,02〜(1,15%、S i 
0.4%以下、M n 0.8〜2.0%、So、01
5%以下、ArO,01〜0.06%、I)0.02〜
0.12%及びCr0003〜0.5%を含有すると共
に、N l)0.01〜0.08%、’piQ、01〜
0.15%、V O,(12〜0゜2%及びZ r 0
.02〜0.2%から選ばれる1種又は2種以−にを合
計で0.25%以下、並びに希土う゛n元素0.005
−0.1%及びCa O,0005〜0.01%から選
ばれる1種又聞2種以」二を合δ1で0.1%以下の範
囲で含有し、残部が鉄及び不可避的不純物よりなり、 Ceq=C−l−(Si/24) + (Mn/6) 
+(Cr15)が0.41J下であって、フエライ1−
と面411率で5〜80%のヘイナイトとからなること
を特徴とする電縫鋼管用熱延鋼板。
(4) C0,02~(1,15%, Si
0.4% or less, Mn 0.8-2.0%, So, 01
5% or less, ArO, 01-0.06%, I) 0.02-
Contains 0.12% and Cr0003~0.5%, and Nl) 0.01~0.08%, 'piQ, 01~
0.15%, V O, (12~0°2% and Z r 0
.. 0.25% or less in total of one or more selected from 0.02 to 0.2%, and 0.005% of rare earth elements.
-0.1% and one or two or more selected from CaO, 0005 to 0.01% in a total δ1 of 0.1% or less, with the remainder being less than iron and unavoidable impurities. So, Ceq=Cl-(Si/24) + (Mn/6)
+(Cr15) is below 0.41J, and Ferrai 1-
A hot-rolled steel sheet for electric resistance welded steel pipes, comprising: and haynite having a surface 411 ratio of 5 to 80%.
JP12508183A 1983-07-08 1983-07-08 Hot rolled steel sheet for electric welded steel pipe Pending JPS6017053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12508183A JPS6017053A (en) 1983-07-08 1983-07-08 Hot rolled steel sheet for electric welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12508183A JPS6017053A (en) 1983-07-08 1983-07-08 Hot rolled steel sheet for electric welded steel pipe

Publications (1)

Publication Number Publication Date
JPS6017053A true JPS6017053A (en) 1985-01-28

Family

ID=14901357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12508183A Pending JPS6017053A (en) 1983-07-08 1983-07-08 Hot rolled steel sheet for electric welded steel pipe

Country Status (1)

Country Link
JP (1) JPS6017053A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207548A (en) * 1985-03-13 1986-09-13 Nisshin Steel Co Ltd High strength electric welded steel pipe having satisfactory expandability
JPS62260040A (en) * 1986-05-06 1987-11-12 Daido Steel Co Ltd High-strength non-heattreated tough and hard steel
JPS62260042A (en) * 1986-05-02 1987-11-12 Daido Steel Co Ltd High strength unrefined tough steel
CN111455270A (en) * 2020-03-23 2020-07-28 首钢集团有限公司 High-frequency induction welding steel pipe raw material steel with high wear resistance, and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207548A (en) * 1985-03-13 1986-09-13 Nisshin Steel Co Ltd High strength electric welded steel pipe having satisfactory expandability
JPS62260042A (en) * 1986-05-02 1987-11-12 Daido Steel Co Ltd High strength unrefined tough steel
JPS62260040A (en) * 1986-05-06 1987-11-12 Daido Steel Co Ltd High-strength non-heattreated tough and hard steel
CN111455270A (en) * 2020-03-23 2020-07-28 首钢集团有限公司 High-frequency induction welding steel pipe raw material steel with high wear resistance, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
RU2623551C2 (en) High strength sheet steel having low ratio of yield strength to tensile strength, excellent as of resistance to post-deformation aging, method of its production and high strength welded steel pipe made thereof
JP5069863B2 (en) 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
KR100515399B1 (en) Steel pipe having high formability and method for producing the same
JP4358900B1 (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them
JP4510680B2 (en) High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same
KR102119561B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
WO2017163987A1 (en) Electric resistance welded steel tube for line pipe
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP2006299415A (en) Method for producing hot-rolled steel sheet for low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP2007254797A (en) Thick electric resistance welded pipe having excellent toughness in base metal part and electric resistance weld zone and its production method
JP2010084171A (en) High toughness welded steel pipe having high crushing strength and method for producing the same
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
CA2566425A1 (en) Ultrahigh strength uoe steel pipe and a process for its manufacture
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP3846246B2 (en) Steel pipe manufacturing method
JP2009030081A (en) High-tension cold-rolled steel sheet and producing method therefor
JP4336294B2 (en) Manufacturing method of high strength steel pipe for pipelines with excellent deformation characteristics after aging
JPS6017053A (en) Hot rolled steel sheet for electric welded steel pipe
JP7010418B1 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP3790087B2 (en) High-strength hot-rolled steel sheet with excellent workability
WO2020218244A1 (en) Hot-rolled steel strip for cold-rolled square steel pipe, method for manufacturing same, and method for manufacturing cold-rolled square steel pipe
JP2005325454A (en) Thin steel sheet having excellent impact characteristic after quenching and its producing method
JP7276641B1 (en) Electric resistance welded steel pipe and its manufacturing method
JPS6013025A (en) Production of electric welded steel pipe having low yield point and high strength
JP7396552B1 (en) Hot-rolled steel plates, square steel pipes, their manufacturing methods, and architectural structures