JPS60169752A - Gas sensor for detecting sulfur hexafluoride decomposition gas - Google Patents

Gas sensor for detecting sulfur hexafluoride decomposition gas

Info

Publication number
JPS60169752A
JPS60169752A JP2583584A JP2583584A JPS60169752A JP S60169752 A JPS60169752 A JP S60169752A JP 2583584 A JP2583584 A JP 2583584A JP 2583584 A JP2583584 A JP 2583584A JP S60169752 A JPS60169752 A JP S60169752A
Authority
JP
Japan
Prior art keywords
gas
sulfur hexafluoride
film
decomposition gas
acetylene polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2583584A
Other languages
Japanese (ja)
Other versions
JPH0629870B2 (en
Inventor
Sadayoshi Mukai
向井 貞喜
Hidetoshi Kita
英敏 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2583584A priority Critical patent/JPH0629870B2/en
Publication of JPS60169752A publication Critical patent/JPS60169752A/en
Publication of JPH0629870B2 publication Critical patent/JPH0629870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To stably detect decomposition gas with good sensitivity, by using an acetylene polymer as a responsive film for detecting sulfur hexafluoride decomposition gas. CONSTITUTION:Both surfaces of a film 3 comprising an acetylene polymer (-CH=CH-)n are held between electrodes 2, 2' each formed in a comb-shape by the vapor deposition of silver to a support 1 as a responsive film to constitute a sensor for detecting sulfur hexafluoride decomposition gas. This sensor is provided in a sulfur hexafluoride gas insulating apparatus of a breaker or a switch. Sulfur hexafluoride is decomposed into sulfuryl fluoride or thionyl fluoride in the apparatus by arc discharge to dope the acetylene polymer film 3. Because of this, the conductivity of the film 3 changes and the specific resistance between both electrodes 2, 2' changes to detect decomposition gas. By using the acetylene polymer as the responsive film as mentioned above, even a minute amount of decomposition gas can be detected with good sensitivity.

Description

【発明の詳細な説明】 この発明は、六フッ化イオウ分解ガス検知用ガスセンサ
ーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas sensor for detecting sulfur hexafluoride decomposition gas.

近年、しゃ断器、開閉器等の内部で安全性等の面からそ
の内部に熱的にも化学的にも非常に安定で、耐熱性、不
燃性、非腐食性などの特長を有する六フッ化イオウガス
を電気絶縁用封入ガスとして使用している。しかし、幾
度もの開閉器等の使用によシ、その内部の接点でおこる
部分放電のため、六フッ化イオウガスが分解し、その結
果フッ化チオニル等の分解ガスが発生し、いわゆるガス
の劣化が起こるという欠点があった。
In recent years, hexafluoride has been used inside circuit breakers, switchgears, etc. for safety reasons, and has features such as being extremely stable both thermally and chemically, heat resistant, non-flammable, and non-corrosive. Sulfur gas is used as a filler gas for electrical insulation. However, due to repeated use of the switch, etc., the sulfur hexafluoride gas decomposes due to partial discharge that occurs at its internal contacts, and as a result, decomposed gases such as thionyl fluoride are generated, resulting in so-called gas deterioration. The downside was that it happened.

このため、六フッ化イオウガス絶縁機器の予防保全には
、六フッ化イオウガス分析が採用されているが、この分
析方法によれば、ガスのサンプリング後、別の分析機器
に付して、封入ガスの劣化を調べるため、非常に手間の
かかるものであった。
For this reason, sulfur hexafluoride gas analysis has been adopted for preventive maintenance of sulfur hexafluoride gas insulated equipment, but according to this analysis method, after sampling the gas, it is passed to another analytical device and the sealed gas is It was extremely time-consuming to investigate the deterioration of

一方、種々のガス検知用センサーとして高分子化合物を
用いる試みがなされている。たとえば、NASAのリポ
ート(NATIONAL AERONAUTIC8AN
D 5PA(J ADMINISTRATION CR
134885)によれば、SO□、NOx、HCN及び
NH3ガスに対して感応する高分子化合物として、ポリ
イミダゾール/チオフェン系、ポリイミダゾール/フェ
ロセン系、ポリエステル/鉄フタロシアニン系、ポリシ
ック塩基系等が検討されているが、いずれも感度、安定
性などの面で不充分な結果となっている。
On the other hand, attempts have been made to use polymer compounds as sensors for detecting various gases. For example, the NASA report (NATIONAL AERONAUTIC8AN
D 5PA (J ADMINISTRATION CR
134885), polyimidazole/thiophene-based, polyimidazole/ferrocene-based, polyester/iron phthalocyanine-based, polysic base-based, etc. have been studied as polymeric compounds sensitive to SO□, NOx, HCN, and NH3 gases. However, all of them yielded unsatisfactory results in terms of sensitivity, stability, etc.

更に、EPRI リポート(EPRI gl、 −22
49゜Re5earch Project 1360−
2 )によれば、六フッ化イオウガス絶縁機器の予防保
全のだめ、六フッ化イオウ分解ガス検知用ガスセンサー
として、ポリフェニレンオキサイド、ポリフェロセンイ
ミダゾール、ポリビニルカルバゾール、ポリアミノフェ
ニルアセチレン、ポリニトロフェニルアセチレン、ポリ
スチレン誘導体、ポリジメチルビニルピリジニウムクロ
ライド等が検討されているが、いずれにおいても感度が
低く、不充分なために実用化にはいたっていない。
Furthermore, the EPRI report (EPRI gl, -22
49゜Re5earch Project 1360-
According to 2), polyphenylene oxide, polyferrocene imidazole, polyvinyl carbazole, polyaminophenyl acetylene, polynitrophenylacetylene, and polystyrene derivatives are used as preventive maintenance for sulfur hexafluoride gas insulated equipment and as gas sensors for detecting sulfur hexafluoride decomposed gas. , polydimethylvinylpyridinium chloride, etc. have been studied, but all of them have low sensitivity and are insufficient, so they have not been put into practical use.

この発明は、かような状況に鑑みなされたものであり、
感度、安定性等の優れた六フッ化イオウ分解ガス検知用
ガスセンサー(以下、ガスセンサーという)を得ること
を目的とする。
This invention was made in view of the above situation,
The object of the present invention is to obtain a gas sensor for detecting sulfur hexafluoride decomposition gas (hereinafter referred to as a gas sensor) with excellent sensitivity and stability.

かくしてこの発明によれば、一対の電極間にガス感応膜
としてアセチレン重合体膜を形成してなる六フッ化イオ
ウ分解ガス検知用ガスセンサーが提供される。
Thus, according to the present invention, there is provided a gas sensor for detecting sulfur hexafluoride decomposition gas, which is formed by forming an acetylene polymer film as a gas-sensitive film between a pair of electrodes.

この発明におけるアセチレン重合体は、いわゆるアセチ
レンより得られる高重合体で、一般式:+CH= CH
+nの構造を有するもので、このアセチレン重合体社、
例えば白州らの方法(J。
The acetylene polymer in this invention is a high polymer obtained from so-called acetylene, and has the general formula: +CH=CH
+n structure, this acetylene polymer company,
For example, the method of Hakushu et al. (J.

Polym −Sci −PolY−Chern−Ed
−、12、11(1974)−)により、アセチレンを
チーグラー形の触媒を用いて製造することができる。
Polym-Sci-PolY-Chern-Ed
-, 12, 11 (1974)-), acetylene can be produced using a Ziegler type catalyst.

この発明のガスセンサーの好ましい一例を第1図に示す
。図に示すごとくこの発明のガスセンサーは、支持体(
1)上に銀を蒸着や塗布に19形成させて作製した一対
のくし形電極(2)及び(2′)間に、ガス感応膜とし
てアセチレン重合体感応膜(3)を形成してなる。なお
支持体は特に必要としないので、アセチレン重合体膜自
体に直接一対の電極を構成してもよく、少なくとも一対
の電極間にアセチレン重合体が介在する構成とすればよ
い。
A preferred example of the gas sensor of the present invention is shown in FIG. As shown in the figure, the gas sensor of the present invention has a support (
1) An acetylene polymer sensitive film (3) is formed as a gas sensitive film between a pair of comb-shaped electrodes (2) and (2') produced by depositing or coating silver 19 thereon. Note that since no support is particularly required, the pair of electrodes may be directly formed on the acetylene polymer membrane itself, or the acetylene polymer may be interposed between at least one pair of electrodes.

支持体を用いる場合には、たとえばガラス、アルミナ、
エポキシ樹脂、テフロン等を用いることができ、この際
該支持体に電極を作製した素子上に予め形成したアセチ
レン重合体感応膜を接合するか、その場でアセチレン重
合体感応膜を形成させることにより上記ガスセンサーを
得ることができる。
When using a support, for example, glass, alumina,
Epoxy resin, Teflon, etc. can be used, and in this case, an acetylene polymer sensitive film formed in advance may be bonded to the element with electrodes formed on the support, or an acetylene polymer sensitive film may be formed on the spot. The above gas sensor can be obtained.

仁の発明のガスセンサーは、通常しゃ断器、開閉器等の
六フフ化イオウガス絶縁装置内部に設置して使用される
。そしてこれら装置の使用の際に、その装置内部の接点
でのアーク放電等によって発生する分解ガスすなわちフ
ッ化スルフリル、フッ化チオニル等の分解ガスは、アセ
チレン重合体感応膜中に拡散し、その結果、該感応膜が
分解ガスでドープされた形となυ導電性等のいわゆる電
気的変化が生じる。このような電気的変化を前記電極か
ら装置外部に引いたリード線と接続した抵抗計等により
測定して、六フッ化イオウ絶縁封入ガスの劣化を調べる
ことができる。
The gas sensor of Jin's invention is normally installed and used inside a sulfur hexafluoride gas insulation device such as a circuit breaker or a switch. When these devices are used, decomposed gases such as sulfuryl fluoride and thionyl fluoride generated by arc discharge at contacts inside the devices diffuse into the acetylene polymer sensitive membrane, resulting in When the sensitive film is doped with decomposition gas, so-called electrical changes such as υ conductivity occur. Deterioration of the sulfur hexafluoride insulating gas can be investigated by measuring such electrical changes with a resistance meter or the like connected to a lead wire drawn from the electrode to the outside of the device.

以下、との発明の実施例を示して詳説するが、この発明
はこれに限定されることはない。
Hereinafter, the invention will be described in detail by showing examples of the invention, but the invention is not limited thereto.

実施例 窒素ガス中、テトラブトキシチタニウム(Ti (液体
窒素で冷却、凝固させ窒素ガスを脱気し、再び室温にも
どし、溶解窒素ガスを脱気後、ドライアイス−メタノー
ルで冷却し、アセチレンガスを導入した。導入直後、触
媒溶液表面で重合が起こり、フィルム状のアセチレン重
合体が生成した。
Example In nitrogen gas, tetrabutoxytitanium (Ti) was cooled with liquid nitrogen, solidified, degassed the nitrogen gas, returned to room temperature, degassed the dissolved nitrogen gas, cooled with dry ice-methanol, and removed acetylene gas. Immediately after introduction, polymerization occurred on the surface of the catalyst solution, producing a film-like acetylene polymer.

生成したアセチレン重合体はトルエンで洗浄後、真空乾
燥した○このアセチレン重合体フィルムの膜厚は120
μm、比抵抗109Ωmであった。このようにして得ら
れたアセチレン重合体フィルムの両面に、銀ペイントに
よシミ極を形成させこの発明のガスセンサーを得た。こ
のガスセンサーを六フッ化イオウガスしゃ断器に2気圧
で封入し、アーク電圧400V、アーク電流11 KA
のしゃ新条件でアークを発生させ、素子の比抵抗を測定
した。
The produced acetylene polymer was washed with toluene and dried in vacuum. The thickness of this acetylene polymer film was 120.
μm, and the specific resistance was 109 Ωm. A gas sensor of the present invention was obtained by forming stain electrodes with silver paint on both sides of the acetylene polymer film thus obtained. This gas sensor was sealed in a sulfur hexafluoride gas breaker at 2 atm, and the arc voltage was 400 V and the arc current was 11 KA.
An arc was generated under the new conditions and the resistivity of the element was measured.

アーク発生前の比抵抗は3X109Ωαであるのに対し
アーク発生後の比抵抗はI X 10’Ω画となった。
The specific resistance before arcing was 3×10 9 Ωα, whereas the specific resistance after arcing was I×10′ Ω.

さらに連続的にアークを発生させたところ、素子の比抵
抗は6X103Ω傷まで減少した。
Further, when an arc was generated continuously, the resistivity of the element decreased to 6×10 3 Ω scratches.

この状態における六フッ化イオウの分解ガス成分を調べ
るため、封入ガスをサンプリングし、ガスク四マドグラ
フによシ調べたところ、分解ガスの主成分は、フッ化ス
ルフリル(SO□F2) カ1.9 容量バーセント、
フッ化チオニル(5OF2)が04容量パーセントであ
った。
In order to investigate the decomposed gas components of sulfur hexafluoride in this state, the sealed gas was sampled and examined using a gas quadrature graph, and it was found that the main component of the decomposed gas was sulfuryl fluoride (SO□F2). capacity percentage,
Thionyl fluoride (5OF2) was 0.4 volume percent.

ここで、分解ガスがアセチレン重合体フィルム中に拡散
していき、電導度が変化する点につき、分解ガス拡散直
後と時間をおいてからの電導度差は、はとんどなかった
Here, as the decomposition gas diffuses into the acetylene polymer film, the conductivity changes, and there was almost no difference in conductivity between immediately after the decomposition gas diffused and after some time had elapsed.

実施例からも明らかなように、この発明のガスセンサー
は分解ガスが微量でも生成すれば、ガスセンサーの比抵
抗が数桁も変化するほど高感度のガスセンサーであるこ
とがわかる。また、六フッ化イオウガス絶縁機器内部そ
の場において、装置の絶縁診断を即座に行なうことがで
きるため、安全点検等の面から非常に優れた効果をあら
れすものである。
As is clear from the examples, it can be seen that the gas sensor of the present invention has such high sensitivity that the specific resistance of the gas sensor changes by several orders of magnitude if even a small amount of decomposed gas is generated. Furthermore, since the insulation diagnosis of the device can be performed immediately inside the sulfur hexafluoride gas insulated device, it is extremely effective in terms of safety inspections, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の六フッ化イオウ分解ガス検知用ガス
センサーの一例を示す説明図である。 (1)・・・・・・・・・支持体、(2)及び(2・)
・・・・・・・・・くし形電量、(3)・・・・・・・
・・アセチレン重合体感応膜。
FIG. 1 is an explanatory view showing an example of a gas sensor for detecting sulfur hexafluoride decomposition gas of the present invention. (1)......Support, (2) and (2.)
・・・・・・・・・Comb electric power, (3)・・・・・・
...Acetylene polymer sensitive membrane.

Claims (1)

【特許請求の範囲】[Claims] l 一対の電極間にガス感応膜としてアセチレン重合体
膜を形成してなる六フッ化イオウ分解ガス検知用ガスセ
ンサー。
l A gas sensor for detecting sulfur hexafluoride decomposition gas, which is formed by forming an acetylene polymer film as a gas-sensitive film between a pair of electrodes.
JP2583584A 1984-02-13 1984-02-13 Gas sensor for detecting sulfur hexafluoride decomposition gas- Expired - Lifetime JPH0629870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2583584A JPH0629870B2 (en) 1984-02-13 1984-02-13 Gas sensor for detecting sulfur hexafluoride decomposition gas-

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2583584A JPH0629870B2 (en) 1984-02-13 1984-02-13 Gas sensor for detecting sulfur hexafluoride decomposition gas-

Publications (2)

Publication Number Publication Date
JPS60169752A true JPS60169752A (en) 1985-09-03
JPH0629870B2 JPH0629870B2 (en) 1994-04-20

Family

ID=12176912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2583584A Expired - Lifetime JPH0629870B2 (en) 1984-02-13 1984-02-13 Gas sensor for detecting sulfur hexafluoride decomposition gas-

Country Status (1)

Country Link
JP (1) JPH0629870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308576A (en) * 2013-06-07 2013-09-18 南京顺泰科技有限公司 Sulfur hexafluoride decomposer tester
CN114018989A (en) * 2021-11-05 2022-02-08 广东电网有限责任公司 Miniature array type gas sensor for detecting sulfur hexafluoride decomposition products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308576A (en) * 2013-06-07 2013-09-18 南京顺泰科技有限公司 Sulfur hexafluoride decomposer tester
CN114018989A (en) * 2021-11-05 2022-02-08 广东电网有限责任公司 Miniature array type gas sensor for detecting sulfur hexafluoride decomposition products

Also Published As

Publication number Publication date
JPH0629870B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US3540278A (en) Moisture sensor
Tsuboi et al. Specific heat of superconducting fine particles of tin. I. Fluctuations in zero magnetic field
JP2938514B2 (en) Gas sensor
Badwal et al. Electrode Kinetics at the Pt/Yttria‐Stabilized Zirconia Interface by Complex Impedance Dispersion Analysis
CA1286361C (en) Element and device for detecting internal faults in an insulating gas charged electrical apparatus
JPS60169752A (en) Gas sensor for detecting sulfur hexafluoride decomposition gas
US4481813A (en) Dew sensor
Yoshino et al. Electrical Transport and Breakdown of Poly-p-phenylenesulfide
Konig et al. Surface discharges on contaminated epoxy insulators
JPH1026602A (en) Gas sensor
JPS613040A (en) Gas sensor
JPH0311978A (en) Gas-insulated water-cooled thyristor bulb
CN109839589A (en) Tap switch performance on-line monitoring device
JPS613039A (en) Gas sensor
US6084414A (en) Testing for leakage currents in planar lambda probes
JPH0350977B2 (en)
JPS613038A (en) Gas sensor
Singh et al. Cross-Conductive Sensor for Humidity Measurement in Gas for Gas Insulated Switchgears Application
JPH07209163A (en) Sensor for detecting gas
JP4094249B2 (en) Gas detector
WO2020009491A1 (en) Measurement method for specific surface area of conductive material
Thomas et al. Intrinsic electric strength and conductivity of varnish films and their variation with temperature
Hart et al. Minimum surface leakage distances in DC power systems
JPH06118055A (en) Detecting sensor for sf6 cracked gas
JPS62207952A (en) Gas sensor