JP4094249B2 - Gas detector - Google Patents

Gas detector Download PDF

Info

Publication number
JP4094249B2
JP4094249B2 JP2001177380A JP2001177380A JP4094249B2 JP 4094249 B2 JP4094249 B2 JP 4094249B2 JP 2001177380 A JP2001177380 A JP 2001177380A JP 2001177380 A JP2001177380 A JP 2001177380A JP 4094249 B2 JP4094249 B2 JP 4094249B2
Authority
JP
Japan
Prior art keywords
gas
solid electrolyte
detection
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001177380A
Other languages
Japanese (ja)
Other versions
JP2002365261A (en
Inventor
栄一 永尾
忠郎 皆川
牧子 川田
智恵子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001177380A priority Critical patent/JP4094249B2/en
Publication of JP2002365261A publication Critical patent/JP2002365261A/en
Application granted granted Critical
Publication of JP4094249B2 publication Critical patent/JP4094249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス検出装置に関し、特に絶縁ガスとして六フッ化硫黄ガスを封入した絶縁電気機器の内部で放電などの異常が発生した際などに、六フッ化硫黄ガスの分解により生成する分解ガスを検出するガス検出装置に関するものである。
【0002】
【従来の技術】
GISなどの高電圧の電気機器では、六フッ化硫黄ガスあるいは六フッ化硫黄ガスと窒素ガスとの混合ガスが絶縁媒体として一般的に使用されており、その安全運転のために定期的な保守管理がなされている。この保守管理においては、六フッ化硫黄ガスは放電によりその一部が分解して4フッ化硫黄ガスやフッ化水素ガスなどの含フッ素ガスを発生する事実に基づいて、上記絶縁媒体中におけるかかる含フッ素ガスの有無、あるいは発生した含フッ素ガスの量を検出することが行われている。
【0003】
特開2000−105216号公報には、上記の含フッ素ガスを検出するガスセンサが提案されており、図4はその概略説明図である。図4において、1は検出電極、2はフッ化物固体電解などのフッ素イオン導電性の固体電解質、3は対向電極、4はリード線、5は直流電源、6は電流計である。検出電極1と対向電極3とは、固体電解質2を間に挟んで互いに対向するように固体電解質2の表面に密着して設けられている。リード線4は、検出電極1と電流計6とを接続するリード線部分41と、対向電極3と直流電源5と電流計6とを順次接続するリード線部分42とからなる。上記のガスセンサは、その使用に際しては、検出電極1が含フッ素ガスと接触するように被検出ガスの雰囲気中に設置される。
【0004】
直流電源5は、リード線部分41、42を介して、検出電極1と対向電極3の間に直流電圧を印加する機能をなし、この直流電圧の印加により検出電極1で電極反応が生じて上記の含フッ素ガスが電気分解され、このときの電気分解電流は電流計6によりセンサ出力として取り出される。従って、電流計6で検出される電流値から含フッ素ガスの量を知ることができる。なお図4では、含フッ素ガスの一例としてフッ化水素ガス(HF)を対象とした例が示されている。
【0005】
ところで図5は、従来のガスセンサにおける電流値の経時変化を示したグラフであって、縦軸は電流計6に現れた電流値、横軸は通電時間を示す。図5から明らかな通り、直流電圧の印加直後に非常に大きな電流が流れ、その後、電流量は漸次減少して一定値に落ちつく。直流電圧印加直後に大きな電流が流れる現象は、固体電解質2に電荷が蓄積されることによる。即ち固体電解質2は、電気回路要素的にはコンデンサと抵抗が並列に接続された如き性質を示し、直流電圧を印加した場合、上記コンデンサに一定の電荷が蓄積されるまで回路には充電電流が流れる。なお固体電解質2への電荷蓄積には、数分程度の比較的長い時間を要する。
【0006】
しかして従来のガスセンサは、上記のように直流電圧を印加しているため、固体電解質2に一定の電荷が蓄積されるまで正確な測定ができない問題点があった。図5には含フッ素ガスの一例としてフッ化水素ガス(HF)が有る場合と無い場合の両方について各電流値の変化を示しているが、いずれの場合も電圧印加直後には回路に大きな充電電流が流れるため、正確な測定が実施できない。従って、従来のガスセンサでは、直流電圧を数分間印加して回路に流れる充電電流が十分に小さな値となった時点で電流値を計測し、分解ガスの有無を調査していた。
【0007】
【発明が解決しようとする課題】
本発明は、従来技術における以上のような問題点を解決するためになされたものであって、電圧印加直後の充電電流の影響を排除して、含フッ素ガスの検出を短時間で行えるガス検出装置を提供することを課題とするものである。
【0008】
【問題を解決するための手段】
本発明のガス検出装置は、(1)固体電解質、上記固体電解質の一方の面に設けられて被検出ガスとしての六フッ化硫黄ガスの分解により生成した含フッ素ガスと接する検出電極、上記固体電解質の他方の面に設けられた対向電極、上記検出電極と上記対向電極とを含む閉回路に流れる電流値を計測する電流計、上記検出電極と上記対向電極との間に交流電圧を印加する交流電源を備えたものである。
【0009】
(2)上記(1)において、上記固体電解質は、フッ化物固体電解質である。
【0010】
(3)上記(1)または(2)において、上記検出電極は、この検出電極における電極反応を促進する反応促進金属により構成されているものである。
【0011】
(4)上記(1)において、上記交流電圧の周波数は、1〜1000Hzである。
【0012】
【発明の実施の形態】
以下の諸実施の形態において、図4の従来技術に示された部位と同じ部位については同符号を付し、各内容の説明は図4での説明を参照することとして以下では一部の説明を省略する。
【0013】
実施の形態1.
図1〜図2は、本発明のガス検出装置における実施の形態1を説明するものであって、図1は実施の形態1の概略説明図であり、図2は図1のガス検出装置を使用した場合における電流値の経時変化を示すグラフである。図1において、7は交流電源であって、実施の形態1では図4の従来技術における直流電源5に代えて交流電源7が用いられており、その他の点は従来技術と同じである。
【0014】
実施の形態1における検出電極1、固体電解質2、および対向電極3の形成材料や形成方法などについては、それぞれ斯界で従来から周知あるいは実用されている技術を制限なく採用することができるが、以下では従来技術のうちの好ましいものの若干例を説明する。
【0015】
検出電極1としては、可及的低電圧下にて前記含フッ素ガスを電極反応により電気分解し得る材料からなるものが好ましく、かかる材料としては、白金、パラジウム、イリジウム、ルテニウム、ロジウムなどの遷移金属類の少なくとも1種から形成されたもの、または上記金属材料を主成分とする、あるいは含有する金属材料から形成されたものが好ましい。対向電極3の形成材料については特に制限はなく、検出電極1と同一とすると実施の形態1の工業生産が容易となる。固体電解質2としては、フッ素イオン導電性の良好な固体電解質が一般的に好ましく、かかる固体電解質としては例えば0.3モル%程度のユーロビウムを添加したLaF3の単結晶を例示し得る。
【0016】
検出電極1と対向電極3とは、固体電解質2の表面に真空蒸着、スパッタ蒸着などにより形成可能であり、なお検出電極1をスリット状とする場合にはフォトリソグラフィおよびフォトエッチングにより形成可能である。
【0017】
図2では、実施の形態1の作用を図4に示す従来のガスセンサのそれと比較して示し、縦軸は電流計に現れた電流値、横軸は通電時間である。図2から明らかな通り、直流電圧を印加する従来のガスセンサでは電圧印加直後に非常に大きな充電電流が流れるのに対して、交流電圧を印加する実施の形態1では得られる電流は電圧印加直後から安定しており、経時変化はない。これは、直流電圧印加の場合に生じる固体電解質2への電荷蓄積が、交流電圧印加の際には発生しないためである。従って直流電圧を印加する従来のガスセンサでは、含フッ素ガスの検出に数分間の時間を要するのに対して、実施の形態1によれば充電電流の影響が発生しないために交流電圧印加の直後から正確な含フッ素ガスの検出が可能となる。
【0018】
実施の形態2.
図3は、本発明のガス検出方法における実施の形態2を説明する印加交流電圧の周波数−電流値の関係グラフである。実施の形態2では、前記実施の形態1のガス検出装置が用いられ、その検出電極1を含フッ素ガスの一例としてのフッ化水素ガス(HF)が存在する雰囲気に曝した状態で種々の周波数の交流電圧を印加した場合とフッ化水素ガス(HF)あるいはその他の含フッ素ガスがいっさい存在しない雰囲気に曝した状態で上記と同様の交流電圧を印加した場合とにおける電流値を比較している。
【0019】
図3から明らかな通り、フッ化水素ガスなどの含フッ素ガスが存在しない雰囲気では、得られる電流値は周波数に依らず一定であるが、フッ化水素ガスが存在する雰囲気では、電流値は周波数の増加とともに減少しており、1000Hz以上の高周波域では、フッ化水素ガスの有無に係わらず得られる電流値は同じである。この現象は、電流発生に寄与するフッ素イオンの移動度の周波数特性を示しており、1000Hzより高い高周波域下ではフッ素イオンの移動が起こり難いことが分かる。
【0020】
従って、本発明のガス検出方法において印加する交流電圧としては、殊に検出対象とするイオンがフッ素イオンの場合においては、周波数が1〜1000Hz程度、特に1〜500Hz程度、さらには1〜100Hz程度であることが好ましい。
【0021】
【発明の効果】
本発明のガス検出装置は、以上説明した通り、(1)固体電解質、上記固体電解質の一方の面に設けられて被検出ガスとしての六フッ化硫黄ガスの分解により生成した含フッ素ガスと接する検出電極、上記固体電解質の他方の面に設けられた対向電極、上記検出電極と上記対向電極とを含む閉回路に流れる電流値を計測する電流計、上記検出電極と上記対向電極との間に交流電圧を印加する交流電源を備えたものであると、交流電圧印加の際には、直流電圧印加の場合に生じる固体電解質への電荷蓄積が発生しないので、交流電圧印加の直後から精度の高い含フッ素ガスの検出が可能となる効果がある。
【0022】
また(2)上記(1)において、上記固体電解質は、フッ化物固体電解質であり、(3)上記(2)において、上記検出電極は、この検出電極における電極反応を促進する反応促進金属により構成されているものであると、上記含フッ素ガスの検出速度や検出感度が一層向上する効果がある。
【0023】
また(4)上記(1)において、上記交流電圧の周波数は、1〜1000Hzとしたものであると、電流発生に寄与するフッ素イオンの移動度が良好であるので、交流電圧印加の直後から含フッ素ガスの精度の高い検出が可能となる効果がある。
【図面の簡単な説明】
【図1】 本発明のガス検出装置における実施の形態1の概略説明図。
【図2】 実施の形態1における電流値の経時変化を示すグラフ。
【図3】 本発明のガス検出方法での実施の形態2における印加交流電圧の周波数−電流値の関係グラフ。
【図4】 従来技術のガスセンサの概略説明図。
【図5】 従来技術における電流値の経時変化を示すグラフ。
【符号の説明】
1 検出電極、2 固体電解質、3 対向電極、4 リード線、6 電流計、
7 交流電源。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to gas detection equipment, especially such as when such internal discharge of insulated electrical devices sulfur hexafluoride gas is sealed as an insulating gas abnormality occurs, produced by decomposition of sulfur hexafluoride gas those concerning the gas detection equipment for detecting a decomposed gas.
[0002]
[Prior art]
In high-voltage electrical equipment such as GIS, sulfur hexafluoride gas or a mixed gas of sulfur hexafluoride gas and nitrogen gas is generally used as an insulating medium, and regular maintenance is performed for its safe operation. Management is done. In this maintenance and management, sulfur hexafluoride gas is partially decomposed by discharge and generates fluorine-containing gas such as sulfur tetrafluoride gas or hydrogen fluoride gas. The presence or absence of fluorine-containing gas or the amount of fluorine-containing gas generated is detected.
[0003]
Japanese Patent Laid-Open No. 2000-105216 proposes a gas sensor for detecting the above-mentioned fluorine-containing gas, and FIG. 4 is a schematic explanatory diagram thereof. In FIG. 4, 1 is a detection electrode, 2 is a fluorine ion conductive solid electrolyte such as fluoride solid electrolysis, 3 is a counter electrode, 4 is a lead wire, 5 is a DC power source, and 6 is an ammeter. The detection electrode 1 and the counter electrode 3 are provided in close contact with the surface of the solid electrolyte 2 so as to face each other with the solid electrolyte 2 interposed therebetween. The lead wire 4 includes a lead wire portion 41 that connects the detection electrode 1 and the ammeter 6, and a lead wire portion 42 that sequentially connects the counter electrode 3, the DC power source 5, and the ammeter 6. When the gas sensor is used, it is installed in the atmosphere of the gas to be detected so that the detection electrode 1 is in contact with the fluorine-containing gas.
[0004]
The DC power supply 5 has a function of applying a DC voltage between the detection electrode 1 and the counter electrode 3 via the lead wire portions 41 and 42, and an electrode reaction occurs in the detection electrode 1 by the application of the DC voltage, and the above described The fluorine-containing gas is electrolyzed, and the electrolysis current at this time is taken out as a sensor output by the ammeter 6. Therefore, the amount of fluorine-containing gas can be known from the current value detected by the ammeter 6. FIG. 4 shows an example of hydrogen fluoride gas (HF) as an example of the fluorine-containing gas.
[0005]
FIG. 5 is a graph showing the change over time of the current value in the conventional gas sensor, where the vertical axis shows the current value appearing on the ammeter 6 and the horizontal axis shows the energization time. As is apparent from FIG. 5, a very large current flows immediately after application of the DC voltage, and then the amount of current gradually decreases and settles to a constant value. A phenomenon in which a large current flows immediately after application of a DC voltage is due to the accumulation of charges in the solid electrolyte 2. That is, the solid electrolyte 2 has a property that a capacitor and a resistor are connected in parallel as an electric circuit element. When a DC voltage is applied, a charging current is charged in the circuit until a constant charge is accumulated in the capacitor. Flowing. The charge accumulation in the solid electrolyte 2 requires a relatively long time of about several minutes.
[0006]
Therefore, since the conventional gas sensor applies a DC voltage as described above, there is a problem that accurate measurement cannot be performed until a certain amount of electric charge is accumulated in the solid electrolyte 2. FIG. 5 shows changes in current values for both cases with and without hydrogen fluoride gas (HF) as an example of a fluorine-containing gas. In either case, a large charge is applied to the circuit immediately after voltage application. Since current flows, accurate measurement cannot be performed. Therefore, in the conventional gas sensor, when a DC voltage is applied for several minutes and the charging current flowing through the circuit becomes a sufficiently small value, the current value is measured and the presence or absence of cracked gas is investigated.
[0007]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems in the prior art, and eliminates the influence of the charging current immediately after the voltage application, and can detect the fluorine-containing gas in a short time. it is an object of the present invention to provide a equipment.
[0008]
[Means for solving problems]
The gas detection device of the present invention includes (1) a solid electrolyte, a detection electrode provided on one surface of the solid electrolyte and in contact with a fluorine-containing gas generated by decomposition of sulfur hexafluoride gas as a detection gas, the solid A counter electrode provided on the other surface of the electrolyte, an ammeter for measuring a current value flowing in a closed circuit including the detection electrode and the counter electrode, and applying an AC voltage between the detection electrode and the counter electrode An AC power supply is provided.
[0009]
(2) In the above (1), the solid electrolyte is a fluoride solid electrolyte.
[0010]
(3) In the above (1) or (2), the detection electrode is made of a reaction promoting metal that promotes an electrode reaction in the detection electrode .
[0011]
(4) In the above (1), the frequency of the AC voltage is 1-1000 Hz.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the following embodiments, the same parts as those shown in the prior art of FIG. 4 are denoted by the same reference numerals, and the description of each content is referred to the description in FIG. Is omitted.
[0013]
Embodiment 1.
1 to 2 are diagrams for explaining the first embodiment of the gas detection apparatus of the present invention. FIG. 1 is a schematic explanatory view of the first embodiment, and FIG. 2 shows the gas detection apparatus of FIG. It is a graph which shows a time-dependent change of the electric current value in the case of using. In FIG. 1, reference numeral 7 denotes an AC power source. In the first embodiment, an AC power source 7 is used instead of the DC power source 5 in the prior art of FIG. 4, and the other points are the same as those of the prior art.
[0014]
As the forming material and forming method of the detection electrode 1, the solid electrolyte 2, and the counter electrode 3 in the first embodiment, techniques that are conventionally known or practically used in this field can be adopted without limitation. Now, some examples of preferable ones in the prior art will be described.
[0015]
The detection electrode 1 is preferably made of a material that can electrolyze the fluorine-containing gas by an electrode reaction under as low a voltage as possible. Examples of such a material include transitions such as platinum, palladium, iridium, ruthenium, and rhodium. Those formed from at least one of metals or those formed from a metal material containing or containing the above metal material as a main component are preferable. The material for forming the counter electrode 3 is not particularly limited. If it is the same as that of the detection electrode 1, the industrial production of Embodiment 1 is facilitated. As the solid electrolyte 2, a solid electrolyte having good fluorine ion conductivity is generally preferable, and as such a solid electrolyte, for example, a single crystal of LaF 3 to which about 0.3 mol% of eurobium is added can be exemplified.
[0016]
The detection electrode 1 and the counter electrode 3 can be formed on the surface of the solid electrolyte 2 by vacuum vapor deposition, sputtering vapor deposition, or the like. If the detection electrode 1 is slit-shaped, it can be formed by photolithography and photoetching. .
[0017]
In FIG. 2, the operation of the first embodiment is shown in comparison with that of the conventional gas sensor shown in FIG. 4, where the vertical axis represents the current value appearing on the ammeter and the horizontal axis represents the energization time. As is clear from FIG. 2, in the conventional gas sensor that applies a DC voltage, a very large charging current flows immediately after the voltage application, whereas in Embodiment 1 in which an AC voltage is applied, the current obtained is immediately after the voltage application. It is stable and does not change with time. This is because charge accumulation in the solid electrolyte 2 that occurs when a DC voltage is applied does not occur when an AC voltage is applied. Therefore, in the conventional gas sensor that applies a DC voltage, it takes several minutes to detect the fluorine-containing gas. However, according to the first embodiment, since the influence of the charging current does not occur, immediately after the AC voltage is applied. Accurate detection of fluorine-containing gas becomes possible.
[0018]
Embodiment 2.
FIG. 3 is a graph showing the relationship between the frequency and the current value of the applied AC voltage for explaining Embodiment 2 in the gas detection method of the present invention. In the second embodiment, the gas detection device of the first embodiment is used, and the detection electrode 1 is exposed to an atmosphere in which hydrogen fluoride gas (HF) as an example of a fluorine-containing gas is present and has various frequencies. The current value is compared between the case where the AC voltage is applied and the case where the AC voltage is applied in a state where the gas is exposed to an atmosphere where no hydrogen fluoride gas (HF) or other fluorine-containing gas exists. .
[0019]
As is clear from FIG. 3, the current value obtained is constant regardless of the frequency in an atmosphere in which no fluorine-containing gas such as hydrogen fluoride gas exists, but in the atmosphere in which hydrogen fluoride gas exists, the current value is the frequency. The current value obtained is the same regardless of the presence or absence of hydrogen fluoride gas in a high frequency range of 1000 Hz or higher. This phenomenon shows the frequency characteristics of the mobility of fluorine ions that contribute to the generation of current, and it can be seen that the movement of fluorine ions hardly occurs under a high frequency range higher than 1000 Hz.
[0020]
Therefore, the alternating voltage applied in the gas detection method of the present invention is about 1 to 1000 Hz, particularly about 1 to 500 Hz, and further about 1 to 100 Hz, particularly when the ions to be detected are fluorine ions. It is preferable that
[0021]
【The invention's effect】
As described above, the gas detection device of the present invention is in contact with (1) a solid electrolyte and a fluorine-containing gas that is provided on one surface of the solid electrolyte and generated by decomposition of sulfur hexafluoride gas as a detection gas. A detection electrode, a counter electrode provided on the other surface of the solid electrolyte, an ammeter for measuring a current value flowing in a closed circuit including the detection electrode and the counter electrode, and between the detection electrode and the counter electrode With an AC power supply that applies AC voltage, when ac voltage is applied, charge accumulation in the solid electrolyte that occurs when DC voltage is applied does not occur. This has the effect of enabling detection of fluorine-containing gas.
[0022]
(2) In (1), the solid electrolyte is a fluoride solid electrolyte. (3) In (2), the detection electrode is composed of a reaction promoting metal that promotes an electrode reaction in the detection electrode. In this case, the detection speed and detection sensitivity of the fluorine-containing gas are further improved.
[0023]
(4) In (1) above, if the frequency of the AC voltage is 1 to 1000 Hz, the mobility of fluorine ions contributing to current generation is good. There is an effect that the fluorine gas can be detected with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of Embodiment 1 in a gas detection device of the present invention.
FIG. 2 is a graph showing a change with time of a current value in the first embodiment.
FIG. 3 is a graph showing the relationship between frequency and current value of applied AC voltage in Embodiment 2 in the gas detection method of the present invention.
FIG. 4 is a schematic explanatory diagram of a conventional gas sensor.
FIG. 5 is a graph showing a change in current value with time in the prior art.
[Explanation of symbols]
1 detection electrode, 2 solid electrolyte, 3 counter electrode, 4 lead wire, 6 ammeter,
7 AC power supply.

Claims (4)

固体電解質、上記固体電解質の一方の面に設けられて被検出ガスとしての六フッ化硫黄ガスの分解により生成した含フッ素ガスと接する検出電極、上記固体電解質の他方の面に設けられた対向電極、上記検出電極と上記対向電極とを含む閉回路に流れる電流値を計測する電流計、上記検出電極と上記対向電極との間に交流電圧を印加する交流電源を備えたことを特徴とするガス検出装置。A solid electrolyte, a detection electrode provided on one surface of the solid electrolyte and in contact with a fluorine-containing gas generated by decomposition of sulfur hexafluoride gas as a gas to be detected; a counter electrode provided on the other surface of the solid electrolyte A gas comprising an ammeter for measuring a current value flowing in a closed circuit including the detection electrode and the counter electrode, and an AC power source for applying an AC voltage between the detection electrode and the counter electrode Detection device. 上記固体電解質は、フッ化物固体電解質であることを特徴とする請求項1記載のガス検出装置。The gas detection apparatus according to claim 1 , wherein the solid electrolyte is a fluoride solid electrolyte. 上記検出電極は、この検出電極における電極反応を促進する反応促進金属により構成されていることを特徴とする請求項1または請求項2記載のガス検出装置。 3. The gas detection device according to claim 1 , wherein the detection electrode is made of a reaction promoting metal that promotes an electrode reaction in the detection electrode. 上記交流電圧の周波数は、1〜1000Hzであることを特徴とする請求項1記載のガス検出装置。The gas detection device according to claim 1 , wherein the frequency of the AC voltage is 1-1000 Hz.
JP2001177380A 2001-06-12 2001-06-12 Gas detector Expired - Fee Related JP4094249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177380A JP4094249B2 (en) 2001-06-12 2001-06-12 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177380A JP4094249B2 (en) 2001-06-12 2001-06-12 Gas detector

Publications (2)

Publication Number Publication Date
JP2002365261A JP2002365261A (en) 2002-12-18
JP4094249B2 true JP4094249B2 (en) 2008-06-04

Family

ID=19018232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177380A Expired - Fee Related JP4094249B2 (en) 2001-06-12 2001-06-12 Gas detector

Country Status (1)

Country Link
JP (1) JP4094249B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105910963B (en) * 2016-04-12 2018-12-04 西安交通大学 Metal particle research method and device based on addition of space charge by third electrode

Also Published As

Publication number Publication date
JP2002365261A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
US5420513A (en) Dielectric breakdown prediction and dielectric breakdown life-time prediction using iterative voltage step stressing
JP5265456B2 (en) Method and apparatus for measuring the conductivity of high purity or ultra high purity liquids
JPS62218878A (en) Method and apparatus for analyzing electrode impedance
JP2006308502A (en) Device for detecting moisture density in sf6 gas
JP2938514B2 (en) Gas sensor
JP4094249B2 (en) Gas detector
WO2005073702A1 (en) Decomposed gas sensor for gas-insulated apparatus, insulating gas decomposition detector, and decomposed gas detecting method
Conway et al. Significance of Nonsteady‐State A‐C and D‐C Measurements in Electrochemical Adsorption Kinetics: Applications to Galvanostatic and Voltage Sweep Methods
Tobias et al. The immersion potential of high surface electrodes
JP3340028B2 (en) Gas sensor
JPH0311978A (en) Gas-insulated water-cooled thyristor bulb
WO2003034053A3 (en) Method for detecting particles in a gas stream and detector
JP2002350394A (en) Electrochemical detecting device
JP4781205B2 (en) Test gas accumulation type gas sensor
Pajkossy et al. An impedance study of Ir (210) in HCl solutions
JP4141098B2 (en) Gas sensor
JPS613040A (en) Gas sensor
DE69127685D1 (en) Method and device for checking the electrical insulation status of an electrically conductive structure
JP6082882B1 (en) Deterioration diagnosis device
JPS6097247A (en) Continuous liquid-concentration measuring device
SU1177779A1 (en) Method of determining quality of non-conducting coatings on electric-conducting base
Bego et al. Measurement of electrode surface effects in air capacitors using a precise coulombmeter
JPH07181070A (en) Electrode and liquid level measuring apparatus
JPH06230067A (en) Insulation diagnosing device
JPH05291050A (en) Decomposed gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4094249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees