JP2006308502A - Device for detecting moisture density in sf6 gas - Google Patents

Device for detecting moisture density in sf6 gas Download PDF

Info

Publication number
JP2006308502A
JP2006308502A JP2005133775A JP2005133775A JP2006308502A JP 2006308502 A JP2006308502 A JP 2006308502A JP 2005133775 A JP2005133775 A JP 2005133775A JP 2005133775 A JP2005133775 A JP 2005133775A JP 2006308502 A JP2006308502 A JP 2006308502A
Authority
JP
Japan
Prior art keywords
gas
moisture concentration
solid electrolyte
moisture
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005133775A
Other languages
Japanese (ja)
Other versions
JP4616069B2 (en
Inventor
Eiichi Nagao
栄一 永尾
Tadao Minagawa
忠郎 皆川
Mitsuhito Kamei
光仁 亀井
Chieko Nishida
智恵子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005133775A priority Critical patent/JP4616069B2/en
Publication of JP2006308502A publication Critical patent/JP2006308502A/en
Application granted granted Critical
Publication of JP4616069B2 publication Critical patent/JP4616069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for detecting moisture density, capable of repeatedly carrying out measurements, without being affected by cracked gas. <P>SOLUTION: An AC voltage is applied across both the end electrodes of a solid electrolyte membrane, which has hydrogen-ion conductivity and is in an equilibrium state of the moisture density in SF6 gas, and then the electrical quantity, between the electrodes which varies in response to the moisture density in the SF6 gas, is measured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ガス絶縁電気機器に用いられている絶縁性ガス中の水分濃度を検出する装置に関するものであり、特に、SF6ガス絶縁機器のSF6ガス中の水分濃度検出に係るものである。   The present invention relates to an apparatus for detecting a moisture concentration in an insulating gas used in a gas-insulated electric apparatus, and more particularly to detection of a moisture concentration in SF6 gas of an SF6 gas insulating apparatus.

従来のSF6ガス中の水分量測定器であって電力業界で広く使用されるものの1つとして、センサ部の酸化アルミニウムキャパシタ(インピーダンス素子)中の細孔内に浸透した水分を蒸気圧の変化で検出し、このインピーダンスの変化量を電気量として捉え、水分量に換算するものが示されている(例えば、非特許文献1)。
また、水をイオン化して検出する第1、第2の多孔電極と、この第1、第2の多孔電極間に介在するイオン導電固体電解質からなる電気化学的素子を備え、第1、第2の多孔電極間に直流電圧を印加し、その電流信号によりガス中の水分濃度を測定するものが示されている(例えば、特許文献1)。
As one of the conventional moisture measuring instruments in SF6 gas, which is widely used in the electric power industry, the moisture permeated into the pores in the aluminum oxide capacitor (impedance element) of the sensor unit can be changed by changing the vapor pressure. A device that detects the amount of change in impedance as an electric amount and converts it into an amount of water is disclosed (for example, Non-Patent Document 1).
In addition, the first and second porous electrodes for ionizing and detecting water and an electrochemical element composed of an ion conductive solid electrolyte interposed between the first and second porous electrodes are provided. There is shown a technique in which a direct current voltage is applied between the porous electrodes and the moisture concentration in the gas is measured by the current signal (for example, Patent Document 1).

電気協同研究第54巻第3号電力用SF6ガス取扱基準P72第4−9−3表Electric Cooperative Research Vol. 54, No. 3, Electric Power SF6 Gas Handling Standard P72 Table 4-9-3 特開2002−350394号公報JP 2002-350394 A

しかしながら、前記非特許文献1に示されたものは、インピーダンス素子である酸化アルミニウムキャパシタ中の細孔内に浸透した水分によるインピーダンスの変化を捉えるものであるので、SF6ガス機器中に吸着性の高い分解ガス成分(SF4,HF等)が発生した場合に、この分解ガス成分の影響を強く受ける。例えば、電流遮断、短絡事故等により機器内の分解ガスが発生した場合、機器内の水分濃度が発生しない場合であっても、酸化アルミニウムキャパシタ中の細孔内の浸透した分解ガスによって、インピーダンスが変化するために、機器内の水分濃度が増加したように出力し、正確な測定ができないという問題点を有している。   However, the non-patent document 1 captures a change in impedance due to moisture permeating into pores in an aluminum oxide capacitor, which is an impedance element, and therefore has high adsorptivity in SF6 gas equipment. When cracked gas components (SF4, HF, etc.) are generated, they are strongly influenced by the cracked gas components. For example, when cracked gas is generated in the device due to current interruption, short circuit accident, etc., even if no moisture concentration is generated in the device, the impedance may be reduced by the cracked cracked gas in the aluminum oxide capacitor. In order to change, there exists a problem that it outputs as the moisture concentration in an apparatus increased, and an exact measurement cannot be performed.

また、前記特許文献1に示されたものは、陽極表面に吸着した水分子が化学変化により電気分解され、電流として検出されるものであり、電気分解により陽極表面から消失した水分子は、気相と陽極表面の平衡定数により、気相から陽極表面に供給されるが、その水分供給は陽極表面の水分濃度勾配により決まる拡散速度に支配され、電気分解による陽極表面への水分供給速度よりもはるかに速い。従って、測定を繰り返すと陽極表面に吸着している水分子の数が徐々に減少し、結果として検出電流が徐々に低下して機器内の水分濃度を正確に測定できないという問題点を有している。   Further, the one disclosed in Patent Document 1 is one in which water molecules adsorbed on the anode surface are electrolyzed by a chemical change and detected as an electric current. Due to the equilibrium constant between the phase and the anode surface, it is supplied from the gas phase to the anode surface, but its moisture supply is governed by the diffusion rate determined by the moisture concentration gradient on the anode surface, rather than the rate of moisture supply to the anode surface by electrolysis Much faster. Therefore, when the measurement is repeated, the number of water molecules adsorbed on the anode surface gradually decreases, and as a result, the detected current gradually decreases, and the moisture concentration in the instrument cannot be measured accurately. Yes.

この発明は、前記のような課題を解決するためになされたものであって、繰り返し測定が可能で分解ガス存在下でもSF6ガス中の水分濃度が測定可能な水分濃度検出装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and provides a moisture concentration detection device that can repeatedly measure and can measure the moisture concentration in SF6 gas even in the presence of cracked gas. It is aimed.

この発明に係るSF6ガス中の水分濃度検出装置は、SF6ガス絶縁機器内に設置され対向して設けられた多孔性電極と、該多孔性電極間に設けられ、SF6ガス中の水分濃度と平衡状態にある水素イオン導電性の固体電解質膜と、多孔性電極に交流電圧を印加することにより、SF6ガス中の水分濃度に対応して変化する電極間電気量を計測する計測手段とを備えたものである。   The apparatus for detecting moisture concentration in SF6 gas according to the present invention comprises a porous electrode installed in and opposite to an SF6 gas insulating device, and provided between the porous electrodes, in equilibrium with the moisture concentration in SF6 gas. A hydrogen ion conductive solid electrolyte membrane in a state, and a measuring means for measuring an inter-electrode electric quantity that changes corresponding to the moisture concentration in the SF6 gas by applying an alternating voltage to the porous electrode. Is.

この発明に係るSF6ガス中の水分濃度検出装置は、対向する多孔性電極間に設けられたSF6ガス中の水分濃度と平衡状態にある水素イオン導電性の固体電解質膜が電極間に印加される交流電圧により、SF6ガス中の水分濃度に対応して変化する電気量を計測するので、繰り返し測定でも出力変動しない検出が可能となり、また、分解ガスの影響を受けることがなく、機器内の水分を測定でき、さらに分解ガスによって固体電解質膜が損傷を受けることがないという効果がある。   In the apparatus for detecting moisture concentration in SF6 gas according to the present invention, a hydrogen ion conductive solid electrolyte membrane in equilibrium with the moisture concentration in SF6 gas provided between opposing porous electrodes is applied between the electrodes. Since the amount of electricity that changes according to the moisture concentration in the SF6 gas is measured by the AC voltage, detection that does not fluctuate in output is possible even in repeated measurements, and there is no influence of decomposition gas, and moisture in the equipment Further, there is an effect that the solid electrolyte membrane is not damaged by the decomposition gas.

実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1において、SF6ガス中の水分濃度検出器100は、対向して設けられた多孔性電極1間に、この電極1に固着された固体電解質膜2が設けられている。この多孔性電極1と固体電解質膜2とによってインピーダンス素子50が構成され、SF6ガス絶縁機器3内に設置される。SF6ガス絶縁機器3の外部には、交流電源4、電圧計5、分担抵抗6によって構成される計測手段60が設けられ、リード線7で多孔性電極1に接続されている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
In FIG. 1, a moisture concentration detector 100 in SF6 gas is provided with a solid electrolyte membrane 2 fixed to an electrode 1 between porous electrodes 1 provided facing each other. The porous electrode 1 and the solid electrolyte membrane 2 constitute an impedance element 50, which is installed in the SF6 gas insulating device 3. Outside the SF 6 gas insulation device 3, a measuring means 60 including an AC power source 4, a voltmeter 5, and a shared resistor 6 is provided, and is connected to the porous electrode 1 by a lead wire 7.

多孔性電極1は、固体電解質膜2の両端に、例えば白金を無電解メッキによって形成されていて、微視的には多孔性である。固体電解質膜2は水素イオン導電性ポリマで構成され、その含水率はSF6ガス中の水分濃度と平衡状態にある。すなわち、SF6ガス中の水分濃度が高くなると含水率が増大し、逆にSF6ガス中の水分濃度が低くなると含水率が低下する。この固体電解質膜2は、デュポン社の登録商標であるNafionで呼ばれるケースが多い。
交流電源4は、例えば50Hz、60Hzの商用電源あるいはそれ以上で1KHz程度の交流電源を使用する。この交流電源4から多孔性電極1に交流電圧を印加して固体電解質膜2の交流インピーダンスを測定する。
なお、交流電圧値は、水の電気分解が生じない程度の低電圧(約10mv〜約1V)とする。固体電解質膜2の交流インピーダンスは、SF6ガス絶縁機器3の外部に設けられた分担抵抗6の両端電圧が電圧計5で計測されることにより算出される。ここで電極1を多孔性としているのは、SF6ガス中の水分が固体電解質膜2に浸透し易くするためである。
The porous electrode 1 is formed on both ends of the solid electrolyte membrane 2 by, for example, platinum by electroless plating, and is microscopically porous. The solid electrolyte membrane 2 is composed of a hydrogen ion conductive polymer, and its moisture content is in equilibrium with the moisture concentration in the SF6 gas. That is, when the moisture concentration in the SF6 gas increases, the moisture content increases. Conversely, when the moisture concentration in the SF6 gas decreases, the moisture content decreases. This solid electrolyte membrane 2 is often called Nafion, a registered trademark of DuPont.
As the AC power source 4, for example, a commercial power source of 50 Hz or 60 Hz or an AC power source of about 1 KHz is used. An AC voltage is applied to the porous electrode 1 from the AC power source 4 to measure the AC impedance of the solid electrolyte membrane 2.
The AC voltage value is a low voltage (about 10 mv to about 1 V) that does not cause electrolysis of water. The AC impedance of the solid electrolyte membrane 2 is calculated by measuring the voltage across the shared resistor 6 provided outside the SF 6 gas insulating device 3 with the voltmeter 5. Here, the reason why the electrode 1 is porous is to make it easy for water in the SF 6 gas to penetrate into the solid electrolyte membrane 2.

このように構成されたSF6ガス中の水分濃度検出装置の動作原理を説明する。固体電解質膜2はSF6ガス中の水分と平衡状態にあり、その含水率はSF6ガス中の水分濃度と平衡状態にある。一方、固体電解質膜2の交流インピーダンスは含水率に依存して変化する。図2は、SF6ガス中の水分濃度とインピーダンス素子50の固体電解質膜2の交流インピーダンスとの関係を示したグラフである。ここで、固体電解質膜としては、25mm×25mmの素子を用い、電源周波数が50Hzの時の交流インピーダンスを測定した。水分濃度が減少するに従い、交流インピーダンスが単調に増加することがわかる。
この交流インピーダンスの変化を捉えるため、外部に設けた分担抵抗6の両端電圧を電圧計5で測定する。分担抵抗6の電気抵抗は一定であり、固体電解質膜2の交流インピーダンスがSF6ガス機器3内の水分濃度に対応して変化することから、分担抵抗6の両端電圧がSF6ガス中の水分濃度に応じて変化する。図3はこの両端電圧とSF6ガス中の水分濃度との関係を示したグラフである。SF6ガス中の水分が低下すると、固体電解質膜2の交流インピーダンスが増加するので、分担抵抗6の両端電圧は逆に低下する。一方、SF6ガス中の水分が増加すると、固体電解質膜2の交流インピーダンスが低下するので、分担抵抗6の両端電圧は逆に増加する。結果として、SF6ガス中の水分濃度に応じて、分担抵抗6の両端電圧が変化するので、この関係を利用して、SF6ガス中の水分濃度を測定することができる。図3の縦軸は、分担抵抗6の両端電圧と交流電源4の印加電圧との比をプロットしており、分担抵抗6として10Ωの抵抗素子を用いている。例えば、SF6ガス中の水分濃度が100ppmの低濃度である場合、固体電解質膜2の交流インピーダンスが大きくなり大部分の交流電圧が固体電解質膜2に分担されるので、縦軸に示す前記比は0.1以下となる。一方、SF6ガス中の水分濃度が1000ppmの高濃度である場合、固体電解質膜2の交流インピーダンスが逆に小さくなり大部分の交流電圧が分担抵抗6に分担されるので、比は0.8以上となる。
The operation principle of the moisture concentration detection apparatus in SF6 gas configured as described above will be described. The solid electrolyte membrane 2 is in equilibrium with moisture in the SF6 gas, and its moisture content is in equilibrium with the moisture concentration in the SF6 gas. On the other hand, the AC impedance of the solid electrolyte membrane 2 changes depending on the moisture content. FIG. 2 is a graph showing the relationship between the moisture concentration in the SF 6 gas and the AC impedance of the solid electrolyte membrane 2 of the impedance element 50. Here, as the solid electrolyte membrane, an element of 25 mm × 25 mm was used, and the alternating current impedance when the power supply frequency was 50 Hz was measured. It can be seen that the AC impedance monotonously increases as the water concentration decreases.
In order to capture this change in AC impedance, the voltage across the shared resistor 6 provided outside is measured with a voltmeter 5. Since the electric resistance of the sharing resistor 6 is constant and the AC impedance of the solid electrolyte membrane 2 changes corresponding to the moisture concentration in the SF6 gas device 3, the voltage across the sharing resistor 6 becomes the moisture concentration in the SF6 gas. Will change accordingly. FIG. 3 is a graph showing the relationship between the both-end voltage and the moisture concentration in the SF6 gas. When the moisture in the SF6 gas decreases, the AC impedance of the solid electrolyte membrane 2 increases, so that the voltage across the sharing resistor 6 decreases conversely. On the other hand, when the moisture in the SF6 gas increases, the AC impedance of the solid electrolyte membrane 2 decreases, so the voltage across the shared resistor 6 increases conversely. As a result, the voltage at both ends of the sharing resistor 6 changes according to the moisture concentration in the SF6 gas. Therefore, the moisture concentration in the SF6 gas can be measured using this relationship. The vertical axis in FIG. 3 plots the ratio between the voltage across the shared resistor 6 and the voltage applied to the AC power supply 4, and a resistive element of 10Ω is used as the shared resistor 6. For example, when the moisture concentration in SF6 gas is a low concentration of 100 ppm, the AC impedance of the solid electrolyte membrane 2 becomes large and most of the AC voltage is shared by the solid electrolyte membrane 2, so the ratio shown on the vertical axis is 0.1 or less. On the other hand, when the moisture concentration in the SF6 gas is a high concentration of 1000 ppm, the AC impedance of the solid electrolyte membrane 2 is conversely reduced and most of the AC voltage is shared by the sharing resistor 6, so the ratio is 0.8 or more. It becomes.

以上のように、図1に示した計測手段60によりインピーダンス素子50の電極間電気量として、電極両端電圧を測定し、SF6ガス中の水分と平衡状態にある固体電解質膜2の交流インピーダンスを算出した結果が図2に示されており、この図2の曲線からSF6ガス絶縁機器3のSF6ガス中の水分濃度を知ることが可能である。
SF6ガス絶縁機器3内の水分濃度測定は、通常定期点検時に行われているが、その水分濃度の管理値は、1例として電流を切らない機器では500ppm、電流を切る機器では150ppmを目途として定められている。
この実施の形態1によるSF6ガス中の水分濃度測定装置100では、図2において前記所定の管理値150〜500ppm付近では、水分濃度に対する固体電解質膜2の交流インピーダンスの変化率が大きい特性を有していることから、SF6ガス中の水分濃度の増分変化を把握し易いという効果がある。また固体電解質膜2は強酸性膜であり、分解ガス(強酸性)によるダメージがなく、繰り返し使用可能である。
As described above, the voltage across the electrode is measured as the amount of electricity between the electrodes of the impedance element 50 by the measuring means 60 shown in FIG. 1, and the AC impedance of the solid electrolyte membrane 2 in equilibrium with the moisture in the SF6 gas is calculated. The result is shown in FIG. 2, and it is possible to know the moisture concentration in the SF6 gas of the SF6 gas insulation apparatus 3 from the curve of FIG.
The moisture concentration in the SF6 gas insulated device 3 is usually measured at the time of periodic inspection. As an example, the control value of the moisture concentration is 500 ppm for a device that does not cut off the current, and 150 ppm for a device that cuts off the current. It has been established.
The moisture concentration measuring apparatus 100 in SF6 gas according to the first embodiment has a characteristic that the rate of change of the AC impedance of the solid electrolyte membrane 2 with respect to the moisture concentration is large near the predetermined control value 150 to 500 ppm in FIG. Therefore, there is an effect that it is easy to grasp the incremental change of the moisture concentration in the SF6 gas. Further, the solid electrolyte membrane 2 is a strong acid membrane, which is not damaged by the decomposition gas (strong acidity) and can be used repeatedly.

実施の形態2.
実施の形態2を図に基づいて説明する。
図4に示すように、この実施の形態2の計測手段60aには前記実施の形態1の計測手段60に判定手段8を追加して設けたものである。
この判定手段8には、前記したSF6ガス中の水分濃度の所定の管理値に相当する電極間電気量としての所定の電極両端電圧値が定められており、電圧計5によって測定される電圧値が前記所定の管理値を越えている場合に、音声や表示等を行うための信号を出力するものである。
このような判定手段8を設けることにより、定期点検時の保守管理基準が明確となり、かつ点検作業の単純化、効率化がはかれる。
Embodiment 2. FIG.
The second embodiment will be described with reference to the drawings.
As shown in FIG. 4, the measuring means 60a of the second embodiment is provided by adding a determining means 8 to the measuring means 60 of the first embodiment.
In this determination means 8, a predetermined electrode end-to-electrode voltage value as an inter-electrode electric quantity corresponding to a predetermined control value of the moisture concentration in the SF 6 gas is determined, and a voltage value measured by the voltmeter 5 When the value exceeds the predetermined management value, a signal for performing voice, display, or the like is output.
By providing such a determination means 8, the maintenance management standard at the time of periodic inspection becomes clear, and the inspection work is simplified and efficient.

前記計測手段6では、電圧計5と分担抵抗6により電極間電気量として電圧値を測定することを示したが、これに限らず固体電解質膜2の特性に合わせたC、R回路を構成し、所定のSF6ガス中の水分濃度管理値、例えば150、500ppmに対して共鳴、出力させるようにしてもよい。   In the measurement means 6, it has been shown that the voltage value is measured as the amount of electricity between the electrodes by the voltmeter 5 and the sharing resistor 6. However, the present invention is not limited to this, and a C and R circuit adapted to the characteristics of the solid electrolyte membrane 2 is configured. Alternatively, resonance may be output with respect to a moisture concentration management value in a predetermined SF6 gas, for example, 150 or 500 ppm.

またさらに、多孔性電極は固体電解質膜2に白金無電解メッキを施す例を示したが、これに限らず、固体電解質膜2に炭素粉末体を塗布、固着させてもよい。   Furthermore, the porous electrode has been shown as an example in which the solid electrolyte membrane 2 is subjected to platinum electroless plating. However, the present invention is not limited thereto, and a carbon powder body may be applied and fixed to the solid electrolyte membrane 2.

この発明の実施の形態1、2は、SF6ガスを絶縁媒体として用いるガス開閉機器(GIS、GCB)、ガス変圧器のSF6ガス中の水分濃度測定に利用可能である。   Embodiments 1 and 2 of the present invention can be used for measuring the moisture concentration in SF6 gas of gas switching devices (GIS, GCB) and gas transformers using SF6 gas as an insulating medium.

この発明の実施の形態1によるSF6ガス中の水分濃度検出装置を示す図である。It is a figure which shows the moisture concentration detection apparatus in SF6 gas by Embodiment 1 of this invention. この発明の実施の形態1、2による固体電解質膜の特性を示す図である。It is a figure which shows the characteristic of the solid electrolyte membrane by Embodiment 1, 2 of this invention. この発明の実施の形態1によるSF6ガス中の水分濃度検出装置の出力特性を示す図である。It is a figure which shows the output characteristic of the moisture concentration detection apparatus in SF6 gas by Embodiment 1 of this invention. この発明の実施の形態2によるSF6ガス中の水分濃度検出装置を示す図である。It is a figure which shows the moisture concentration detection apparatus in SF6 gas by Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 多孔性電極、2 固体電解質膜、4 交流電源、5 電圧計、8 判定手段、
60,60a 計測手段、100 水分濃度検出装置。
1 porous electrode, 2 solid electrolyte membrane, 4 AC power supply, 5 voltmeter, 8 judging means,
60, 60a Measuring means, 100 moisture concentration detecting device.

Claims (5)

SF6ガス絶縁機器内に設置され、対向して設けられた多孔性電極と、該多孔性電極間に設けられ、SF6ガス中の水分濃度と平衡状態にある水素イオン導電性の固体電解質膜と、前記多孔性電極に交流電圧を印加するとともに、SF6ガス中の水分濃度に対応して変化する電極間電気量を計測する計測手段とを備えたことを特徴とするSF6ガス中の水分濃度検出装置。 A porous electrode installed in and opposed to the SF6 gas insulation device, a hydrogen ion conductive solid electrolyte membrane provided between the porous electrodes and in equilibrium with the moisture concentration in the SF6 gas; An apparatus for detecting moisture concentration in SF6 gas, comprising: an AC voltage applied to the porous electrode; and a measuring means for measuring an inter-electrode electric quantity that changes in accordance with the moisture concentration in SF6 gas. . 前記計測手段には判定手段が設けられており、該判定手段は前記電極間電気量が所定値以上の場合に、信号を出力することを特徴とする請求項1に記載のSF6ガス中の水分濃度検出装置。 The moisture in the SF6 gas according to claim 1, wherein the measuring means is provided with a determining means, and the determining means outputs a signal when the amount of electricity between the electrodes is a predetermined value or more. Concentration detector. 前記多孔性電極に印加する交流電圧値は、水の電気分解が生じない電圧値とすることを特徴とする請求項1に記載のSF6ガス中の水分濃度検出装置。 The apparatus for detecting moisture concentration in SF6 gas according to claim 1, wherein the AC voltage value applied to the porous electrode is a voltage value at which water electrolysis does not occur. 前記電極間電気量が電極間電圧値であることを特徴とする請求項1に記載のSF6ガス中の水分濃度検出装置。 The apparatus for detecting a moisture concentration in SF6 gas according to claim 1, wherein the amount of electricity between the electrodes is a voltage value between the electrodes. 前記多孔性電極は、前記固体電解質膜に白金の無電解メッキまたは炭素粉末体が塗布されることによって形成されていることを特徴とする請求項1に記載のSF6ガス中の水分濃度検出装置。
The said porous electrode is formed by apply | coating platinum electroless plating or a carbon powder body to the said solid electrolyte membrane, The moisture concentration detection apparatus in SF6 gas of Claim 1 characterized by the above-mentioned.
JP2005133775A 2005-05-02 2005-05-02 Device for detecting moisture concentration in SF6 gas Expired - Fee Related JP4616069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133775A JP4616069B2 (en) 2005-05-02 2005-05-02 Device for detecting moisture concentration in SF6 gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133775A JP4616069B2 (en) 2005-05-02 2005-05-02 Device for detecting moisture concentration in SF6 gas

Publications (2)

Publication Number Publication Date
JP2006308502A true JP2006308502A (en) 2006-11-09
JP4616069B2 JP4616069B2 (en) 2011-01-19

Family

ID=37475545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133775A Expired - Fee Related JP4616069B2 (en) 2005-05-02 2005-05-02 Device for detecting moisture concentration in SF6 gas

Country Status (1)

Country Link
JP (1) JP4616069B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130149A1 (en) * 2007-04-19 2008-10-30 Se Yeol Seo Sensor for humidity and management system therefor
JP4769333B1 (en) * 2010-11-02 2011-09-07 大陽日酸東関東株式会社 Purity estimation device for recovered liquefied SF6 gas and purity estimation method thereof
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
JP2011252847A (en) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp Moisture concentration detector
WO2012137745A1 (en) * 2011-04-07 2012-10-11 三菱電機株式会社 Moisture content detection device
WO2012157349A1 (en) * 2011-05-18 2012-11-22 三菱電機株式会社 Water concentration detecting device
JP5122034B1 (en) * 2011-11-18 2013-01-16 三菱電機株式会社 Moisture concentration detector
WO2013073213A1 (en) * 2011-11-18 2013-05-23 三菱電機株式会社 Water concentration detection device
CN104062326A (en) * 2013-03-22 2014-09-24 联想(北京)有限公司 Environment detection method and device
CN104897749A (en) * 2015-06-11 2015-09-09 国网四川省电力公司泸州供电公司 SF6 concentration detection method for electric system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200257A (en) * 1986-02-27 1987-09-03 Figaro Eng Inc Proton conductor atmosphere detector
JPH06288974A (en) * 1993-04-01 1994-10-18 Mitsubishi Electric Corp Gas sensor
JP2002350394A (en) * 2001-05-29 2002-12-04 Mitsubishi Electric Corp Electrochemical detecting device
JP2003019416A (en) * 2001-07-10 2003-01-21 Mitsubishi Electric Corp Adsorption apparatus
JP2004163254A (en) * 2002-11-13 2004-06-10 Mitsubishi Electric Corp Moisture detection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200257A (en) * 1986-02-27 1987-09-03 Figaro Eng Inc Proton conductor atmosphere detector
JPH06288974A (en) * 1993-04-01 1994-10-18 Mitsubishi Electric Corp Gas sensor
JP2002350394A (en) * 2001-05-29 2002-12-04 Mitsubishi Electric Corp Electrochemical detecting device
JP2003019416A (en) * 2001-07-10 2003-01-21 Mitsubishi Electric Corp Adsorption apparatus
JP2004163254A (en) * 2002-11-13 2004-06-10 Mitsubishi Electric Corp Moisture detection apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8381575B2 (en) 2007-04-19 2013-02-26 Se Yeol Seo Sensor for humidity and management system therefor
KR100886814B1 (en) * 2007-04-19 2009-03-04 서세열 Humidity sensor for diaper and management system therefor
CN101960299A (en) * 2007-04-19 2011-01-26 徐世烈 Sensor for humidity and management system therefor
WO2008130149A1 (en) * 2007-04-19 2008-10-30 Se Yeol Seo Sensor for humidity and management system therefor
US9097688B2 (en) 2010-03-01 2015-08-04 Central Glass Company, Limited Method and device for measuring water content in hydrogen fluoride-containing fluoride salt compounds
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
JP2011179951A (en) * 2010-03-01 2011-09-15 Central Glass Co Ltd Method and instrument for measuring amount of moisture in hydrogen fluoride-containing compound
KR101469668B1 (en) * 2010-03-01 2014-12-05 샌트랄 글래스 컴퍼니 리미티드 Method and device for measuring water content in hydrogen fluoride-containing compound
CN102782491A (en) * 2010-03-01 2012-11-14 中央硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
JP2011252847A (en) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp Moisture concentration detector
JP4769333B1 (en) * 2010-11-02 2011-09-07 大陽日酸東関東株式会社 Purity estimation device for recovered liquefied SF6 gas and purity estimation method thereof
WO2012137745A1 (en) * 2011-04-07 2012-10-11 三菱電機株式会社 Moisture content detection device
JP5214067B2 (en) * 2011-04-07 2013-06-19 三菱電機株式会社 Moisture concentration detector
WO2012157349A1 (en) * 2011-05-18 2012-11-22 三菱電機株式会社 Water concentration detecting device
JP5159992B2 (en) * 2011-05-18 2013-03-13 三菱電機株式会社 Moisture concentration detector
US9201033B2 (en) 2011-05-18 2015-12-01 Mitsubishi Electric Corporation Water-concentration detection device
CN103430015A (en) * 2011-05-18 2013-12-04 三菱电机株式会社 Water concentration detecting device
WO2013073213A1 (en) * 2011-11-18 2013-05-23 三菱電機株式会社 Water concentration detection device
CN103946695A (en) * 2011-11-18 2014-07-23 三菱电机株式会社 Water concentration detection device
JP5122034B1 (en) * 2011-11-18 2013-01-16 三菱電機株式会社 Moisture concentration detector
CN103946695B (en) * 2011-11-18 2016-03-30 三菱电机株式会社 Moisture content detection device
US9417200B2 (en) 2011-11-18 2016-08-16 Mitsubishi Electric Corporation Moisture concentration detecting device
CN104062326A (en) * 2013-03-22 2014-09-24 联想(北京)有限公司 Environment detection method and device
CN104897749A (en) * 2015-06-11 2015-09-09 国网四川省电力公司泸州供电公司 SF6 concentration detection method for electric system

Also Published As

Publication number Publication date
JP4616069B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4616069B2 (en) Device for detecting moisture concentration in SF6 gas
US6428684B1 (en) Method and apparatus for diagnosing the condition of a gas sensor
US4549134A (en) Moisture probe and technique
JP3868419B2 (en) Gas sensor
CN103380367B (en) Moisture content detection device
Kumar et al. Condition monitoring of transformer breather using a capacitive moisture sensor
Arakelian et al. Water in oil-filled high-voltage equipment part II: water content as physicochemical tools for insulation condition diagnostic
US20100109651A1 (en) Device for conductivity measurement in a controlled environment and method thereof
KR0173140B1 (en) Method and apparatus for measuring insulation oil degradation
JP5274515B2 (en) Moisture concentration detector
CN107219400A (en) Solid electrolyte ion conductivity test jig, system and method
JP6952578B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
Okabe et al. Detecting characteristics of SF 6 decomposed gas sensor for insulation diagnosis on gas insulated switchgears
Minagawa et al. Development of SF6 decomposition gas sensor
RU90204U1 (en) DEVICE FOR CONTROL OF SECURITY OF UNDERGROUND METAL STRUCTURES
CN102409359A (en) Device and method for measuring alumina concentration in aluminum electrolysis cell on line
JP4781205B2 (en) Test gas accumulation type gas sensor
US8736274B2 (en) Method and apparatus for diagnosing electrochemical sensor
CA1336707C (en) Electrode assembly for in-situ measurement of electrolytic conductivity of boiler water
GB2042184A (en) Electrode-active oxygen monitor
CN219830933U (en) Electrochemical composite sensor
KR101646183B1 (en) The sensor device for measurement of dissolved carbon monoxide in the liquid and the sensing method
CN105629134B (en) A kind of method that state is insulated between detection dissimilar metal
JP4912968B2 (en) Non-methane hydrocarbon gas detector
RU2053506C1 (en) Solid electrolyte sensor for gas analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Ref document number: 4616069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees