WO2005073702A1 - Decomposed gas sensor for gas-insulated apparatus, insulating gas decomposition detector, and decomposed gas detecting method - Google Patents

Decomposed gas sensor for gas-insulated apparatus, insulating gas decomposition detector, and decomposed gas detecting method Download PDF

Info

Publication number
WO2005073702A1
WO2005073702A1 PCT/JP2005/001234 JP2005001234W WO2005073702A1 WO 2005073702 A1 WO2005073702 A1 WO 2005073702A1 JP 2005001234 W JP2005001234 W JP 2005001234W WO 2005073702 A1 WO2005073702 A1 WO 2005073702A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
decomposition
decomposed
sensor
insulating
Prior art date
Application number
PCT/JP2005/001234
Other languages
French (fr)
Japanese (ja)
Inventor
Junya Suehiro
Original Assignee
Kyushu Tlo Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Tlo Company, Limited filed Critical Kyushu Tlo Company, Limited
Publication of WO2005073702A1 publication Critical patent/WO2005073702A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/186Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators

Definitions

  • Decomposition gas sensor for gas insulation equipment, insulation gas decomposition detection device, and decomposition gas detection method
  • the present invention provides an inexpensive, high-speed response, high-accuracy detection, and easy-to-manufacture decomposition gas sensor for gas-insulated equipment of a carbon nano material, and installing the decomposition gas sensor at a plurality of locations to determine the generation position of the decomposition gas.
  • the present invention relates to an insulation gas decomposition detection device capable of detection and a method for detecting a decomposition gas of an insulating gas.
  • SF gas sulfur hexafluoride gas
  • GIS Gas-insulated switchgear
  • GCB gas circuit breaker
  • This substation equipment needs to be subjected to equipment diagnosis, for example, equipment diagnosis for partial discharge and ground fault, etc. This diagnosis is indispensable especially for equipment that has been used for a long time after introduction.
  • equipment diagnosis for example, equipment diagnosis for partial discharge and ground fault, etc.
  • This diagnosis is indispensable especially for equipment that has been used for a long time after introduction.
  • a detection tube gas checker that can detect the decomposition gas in which SF has been decomposed by discharge has been used.
  • This SF decomposition gas sensor has a detection electrode, a fluorine ion conductive solid electrolyte, a counter electrode,
  • both electrodes are provided in close contact with a solid electrolyte interposed therebetween.
  • a DC voltage is applied between the output electrode and the counter electrode.
  • the application of this DC voltage causes an electrode reaction at the detection electrode to electrolyze the fluorine-containing gas, which is generated by the electrolysis at this time.
  • the current based on the electromotive voltage is detected as a signal output by an ammeter, and the concentration of fluorine-containing gas is known from the current value.
  • this SF decomposition gas sensor has a large variation in reaction sensitivity.
  • CNT carbon nanotubes
  • the present inventor has conventionally proposed a DEPIM (Dielectrophoretic Impedance Measurement Method) method for producing a minute object such as a microorganism (Patent Document 4).
  • DEPIM Dielectrophoretic Impedance Measurement Method
  • a minute object polarized by an uneven electric field is collected on a microelectrode by electrophoretic force.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-66001
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-116235
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-227808
  • Patent Document 4 JP-A-2003-224
  • the SF decomposition gas sensor uses raw materials and raw materials in the production process.
  • the semiconductor CNT can detect the decomposition gas of the insulating gas and whether or not the semiconductor CNT can output at a higher sensitivity than other gas sensors.
  • conventional CNT gas sensors are not easy to manufacture and costly.
  • the CNT gas sensor in which CNTs generated in advance are dispersed and applied in a solvent has a problem that the directions of the CNTs are random and uneven, so that there is much variation and accurate detection cannot be performed.
  • an object of the present invention is to provide a low-cost, easy-to-manufacture decomposed gas sensor for gas-insulated equipment that responds to decomposed gas of insulating gas with high sensitivity and high speed.
  • Another object of the present invention is to provide a highly sensitive and inexpensive insulating gas decomposition detection device that can immediately identify the position of an insulating gas when the insulating gas is decomposed by partial discharge or the like in a high-voltage electric device. I do.
  • An object of the present invention is to provide a method for detecting a decomposition gas that responds to a decomposition gas of an insulating gas with high sensitivity and high speed.
  • the present invention is a decomposed gas sensor for a gas insulated device capable of detecting a decomposed gas of an insulated gas sealed in a high-voltage electric device, comprising: a detection unit made of a semiconductor carbon nano material;
  • the main feature is that the detector outputs impedance change by adsorbing and reacting with the semiconductor carbon nanomaterial.
  • the decomposed gas sensor for a gas insulated device of the present invention responds to the decomposed gas of the insulating gas with high sensitivity and high speed, is inexpensive, and is easy to manufacture. Further, according to the insulating gas decomposition detection device of the present invention, when the insulating gas is decomposed in the high-voltage electric device, the position can be immediately specified. According to the decomposition gas detection method of the present invention, it is possible to respond with high sensitivity and high speed.
  • FIG. 1 is an explanatory view of a decomposed gas sensor for a gas insulated device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view of a carbon nanomaterial integrated between electrodes by dielectrophoresis in the present invention observed by scanning electron microscope (SEM).
  • FIG. 3 is a graph showing the temperature dependence of the conductance of the integrated carbon nanomaterial according to the present invention.
  • FIG. 4 A gas was installed by mounting the decomposition gas sensor for gas-insulated equipment in Example 1 of the present invention. Configuration diagram of the gas measurement device to be detected, (b) Explanatory diagram in which a plurality of decomposition gas sensors for gas insulation equipment are installed in the gas measurement device in (a)
  • FIG. 5 is an explanatory view of a cracked gas generation simulation device according to Embodiment 1 of the present invention.
  • FIG. 6 shows a change with time of conductance with respect to discharge generated in SF in the present invention.
  • FIG. 7 (a) shows a change in conductance of the carbon nanomaterial according to the present invention with respect to NH.
  • FIG. 8 (a) shows a change in conductance of carbon nanomaterial to NO in the present invention.
  • FIG. 9 (a) Relationship between NH conductance change and concentration of carbon nanomaterial in the present invention
  • FIG. 10 Comparison of response between the cracked gas sensor for gas insulation equipment and the HF detector tube according to the present invention.
  • FIG. 11 A response comparison between a decomposition gas sensor for gas insulation equipment and an SO detection tube according to the present invention.
  • FIG. 12 The emission of carbon nanomaterials in the present invention in SF gas, N gas and air
  • FIG. 13 is a graph of a change with time during discharge measured at each point from the electrode of the present invention.
  • FIG. 14 is a configuration diagram of a gas sensor manufacturing apparatus according to Embodiment 1 of the present invention.
  • a first aspect of the present invention is a decomposition gas sensor for a gas insulating device capable of detecting a decomposition gas of an insulating gas sealed in a high-voltage electric device, wherein the detection unit comprises a semiconductor carbon nano material.
  • This is a decomposed gas sensor for gas insulated equipment that outputs the change in impedance of the detection unit resulting from the reaction of the decomposed gas to the semiconductor carbon nanomaterial as it reacts.It can be used at room temperature, has high sensitivity, and has extremely fast response. It is easy, inexpensive, small, easily obtains electrical output, and can be used repeatedly.
  • a second aspect of the present invention is the decomposition gas sensor for gas insulated equipment according to the first aspect, wherein the insulating gas is any one of (1) SF gas, (2) nitrogen gas, and (3) air.
  • the insulating gas is any one of (1) SF gas, (2) nitrogen gas, and (3) air.
  • a gas detection gas sensor for insulating equipment that can detect gas, which is not normally generated, locally and with high sensitivity.
  • a third mode of the present invention is a mode subordinate to the first mode or the second mode, and is a decomposition gas sensor for gas insulated equipment that outputs a change in conductance as a change in impedance, and has a high sensitivity and extremely high response. It can be a fast sensor.
  • a fourth mode of the present invention is a mode dependent on the first mode or the second mode, and is a decomposition gas sensor for a gas insulated device that outputs a capacitance change as an impedance change, and is similar to an output of a conductance change.
  • a highly sensitive and extremely fast sensor can be obtained.
  • a fifth aspect of the present invention is a form dependent on any one of the first to fourteenth aspects, wherein the semiconductor carbon nanomaterial has a pair of electrodes, and a detection unit is bridged between the electrodes.
  • This is a decomposition gas sensor for gas insulated equipment, which responds at high speed by the cross-linked structure of carbon nanomaterial, and has high detection accuracy. It can be used at room temperature, is highly sensitive, has a fast response, is easy to manufacture and is inexpensive, can easily obtain an electrical output, and can be used repeatedly.
  • a sixth aspect of the present invention is a form subordinate to the fifth aspect, wherein the electrode is provided with an electric field concentration edge for generating an uneven electric field when an AC voltage is applied, and the detection unit is a dielectrophoretic device.
  • This is a decomposed gas sensor for gas insulation equipment formed by the method described above.Electrodynamically operated by dielectrophoresis by providing an electric field concentration edge on the electrode, it can be manufactured at low cost, and the carbon nanomaterial is oriented in the direction of the electric field. Basically, this cross-linked structure provides a high-speed response and high detection accuracy.
  • a seventh aspect of the present invention is a form subordinate to the sixth aspect, wherein the electrode is a thin-film electrode provided on an insulating substrate, and an edge for electric field concentration is provided on each of the electrodes.
  • This is a decomposition gas sensor for gas insulated equipment, which is the edge of the formed protrusion. Can be manufactured easily.
  • An eighth aspect of the present invention is a decomposition gas sensor for a gas insulated device, which is a form subordinate to any one of the first to seventeenth aspects, and is a semiconductor carbon nanomaterial ⁇ type semiconductor.
  • the conductance decreases for reducing gases and increases for oxidizing gases.
  • a ninth aspect of the present invention is a decomposition gas sensor for a gas-insulated device, wherein the semiconductor carbon nanomaterial is an n-type semiconductor, which is a form subordinate to any one of the first to seventeenth aspects.
  • the conductance increases for reducing gases and decreases for oxidizing gases.
  • a tenth aspect of the present invention is a decomposition gas sensor for a gas insulated equipment, which is disposed in an insulating gas of a high-voltage electric device in a plurality of positions, and a decomposed gas sensor for a gas insulated equipment.
  • a power supply for applying a voltage to each of the sensors, a measuring unit for detecting a change in impedance of each of the decomposition gas sensors for each gas-insulated device when the voltage is applied, and a change in the impedance detected by the measuring unit to a predetermined reference value.
  • a control section for comparing, and the control section determines the position of the cracked gas sensor for gas insulation equipment that has output an impedance change equal to or greater than the reference value as the position at which the cracked gas is generated. It is a device that can respond to cracked gas with high sensitivity and high speed, and can be installed at multiple locations to detect the location of cracked gas generation, and to detect abnormalities in high-voltage electrical equipment. The ability to discover in advance S
  • a decomposed gas sensor for a gas insulated device including a detection unit made of a semiconductor carbon nano material is disposed in an insulating gas of a high-voltage electric device, and a decomposed gas generated from the insulating gas is provided.
  • a method for detecting cracked gas by changing the impedance of the detection section to detect cracked gas. The method can respond to cracked gas with high sensitivity and high speed. Output can be obtained, and the power can be repeatedly used.
  • This decomposition gas sensor for gas insulation equipment, Insulating gas decomposition detection equipment can detect unusual decomposition gas as soon as it is generated, and can detect abnormalities that have occurred locally in GIS etc. before they spread to the whole. Since a plurality of decomposed gas sensors for gas-insulated equipment are distributed and arranged in the GIS, decomposed gas sensors for gas-insulated equipment installed near partial discharges etc. can detect them and detect partial discharges etc. at an early stage. It is.
  • FIG. 1 is an explanatory view of a decomposed gas sensor for a gas-insulated device in Example 1 of the present invention
  • FIG. 2 is an SEM photograph of carbon nanomaterials integrated between electrodes by dielectrophoresis in the present invention
  • FIG. FIG. 4A is a graph showing the temperature dependence of the conductance of the integrated carbon nanomaterial according to the present invention
  • FIG. 4A is a configuration of a gas measuring apparatus for detecting a gas by mounting the decomposition gas sensor for a gas insulating device according to the first embodiment of the present invention.
  • Fig. 4 (b) is an explanatory view of installing a plurality of decomposed gas sensors for gas insulating equipment in the gas measuring apparatus of (a)
  • Fig. 5 is an explanatory view of a decomposed gas generation simulating apparatus in Example 1 of the present invention.
  • Fig. 6 shows the results in SF in the present invention.
  • FIG. 6 A graph showing the change over time in the conductance with respect to the generated discharge
  • FIG. 7 (a) is a graph showing the change in the conductance of the carbon nanomaterial to NH in the present invention
  • FIG. 7 (a) is a graph showing the change in the conductance of the carbon nanomaterial to NH in the present invention
  • Fig. 4 shows the change in capacitance of integrated carbon nanomaterial with respect to NH in the invention.
  • Fig. 8 (a) shows the conductance of carbon nanomaterial to NO in the present invention.
  • FIG. 8 (b) is a graph showing the change
  • FIG. 9 (a) is a graph showing the change in pacitance
  • FIG. 9 (b) is a graph showing the relationship between the change in the conductance of NO in the carbon nanomaterial and the concentration in the present invention.
  • FIG. 11 is a response ratio of the cracked gas sensor for gas-insulated equipment and the s ⁇ gas sensor of the present invention.
  • FIG. 12 shows the carbon nanomaterial of the present invention in SF gas, N gas, and air.
  • FIG. 13 is a graph showing the change in conductance with respect to the generated discharge
  • FIG. 13 is a graph showing the change over time during discharge measured at each point from the electrode of the present invention
  • FIG. 14 is a configuration diagram of the gas sensor manufacturing apparatus in Example 1 of the present invention. It is.
  • reference numeral 1 denotes SF gas, N gas, and air enclosed in high-voltage electrical equipment such as GIS.
  • Semiconductor carbon nanomaterial hereinafter, carbon nanomaterial
  • 3a and 3b are electric field concentration edges such as bent edges (hereinafter, edges) that generate uneven electric fields that enable dielectrophoresis
  • 4 is insulating
  • the substrates 5a and 5b are connection terminals for the electrodes la and lb.
  • the carbon nanomaterial 2 corresponds to the detection unit in the first embodiment of the present invention.
  • the insulating gas is SF gas in Example 1, but is used in GIS and the like.
  • Gases such as N2 and CO gas, such as gas, can be used as insulating gas.
  • the first is the gas generated by the reaction between SF gas and metal
  • the second is the reaction with moisture
  • Is the gas generated by The first reaction varies depending on the metal of the partner, but for example, SF + Cu ⁇ SF + CuF, 3SF + W ⁇ WF + 3SF, etc. can be considered.
  • the decomposition gas of SF gas includes gases such as SOF, HF, SF, SO, etc.
  • the insulating gas is N gas or air
  • the force nanomaterial 2 used in the present invention is a general term for carbon nanotubes (CNT), carbon nanohorns, carbon nano onions, carbon nanofibers, fullerenes, etc., and various carbon atoms including spherical, cylindrical, conical, etc. It refers to all substances that combine in shape to form a structure on the nanometer ( ⁇ ) scale. Note that “nano” is simply This is a name when attention is paid to the position, and even if a plurality of these are in a micron scale ( 10_b m) state due to aggregation or the like, they can be included in the carbon nanomaterial 2.
  • CNT carbon nanotubes
  • 10_b m micron scale
  • the main constituent element is carbon, but a substance containing an element other than carbon is also included in the carbon nanomaterial for the purpose of controlling its structure and physical properties.
  • the carbon nanomaterial 2 is mixed with a solvent such as ethanol, and an alternating voltage is applied to the electrodes la and lb in the suspension, and the electric field intensity is the highest among the uneven electric fields generated by this. It is integrated by electrophoresis between the growing electric field concentration edges 3a and 3b. The production method by dielectrophoresis will be described later in detail. After the accumulation, the solvent is evaporated and physically adsorbed on the insulating substrate 4 in a crosslinked state (see the photograph in FIG. 2). According to the experiment, the carbon nanomaterial 2 shows temperature dependence as shown in FIG.
  • the voltage-current characteristic also has non-linearity, and has properties as a semiconductor.
  • the carbon nanomaterial 2 exhibiting semiconductivity has a p-type in which a main current carrier is a hole and an n-type in which an electron is an electron, similarly to a silicon semiconductor. Which type is used can be controlled by the structure of the carbon nanomaterial and the doping of other elements. For example, an n-type semiconductor can be obtained by doping with K or Rb.
  • the carbon nanomaterial 2 may be manufactured by any manufacturing method such as a CVD method and a thermal decomposition method. When carbon nanomaterials can be grown directly on electrodes la and lb by these methods, integration by dielectrophoresis is not always necessary. Decomposed gas such as SF gas is placed on the surface of the aggregate of such carbon nanomaterials 2.
  • the castle wall type electrode shown in Fig. 1 has a large number of rectangular projections formed at every other pitch (for example, 50 ⁇ m-100 ⁇ m) on the sides of the electrodes la and lb facing each other. They are arranged at a distance of one pitch from each other, for example, at a distance of 5 xm-10 zm.
  • the edges of the protruding portions of the electrodes la and lb are the electric field concentration edges 3a and 3b, and the electric field is particularly concentrated between the electric field concentration edges 3a and 3b.
  • Many shapes, such as a comb shape and a saw-tooth shape are not limited to a rectangular shape.
  • a comb-shaped comb-shaped electrode has a pair of electrodes having teeth (for example, 30 ⁇ - ⁇ m width) formed like a comb and nested in a groove and combined with each other to form a narrow gap ( For example, electrodes facing each other at 5 xm—10 zm width).
  • teeth for example, 30 ⁇ - ⁇ m width
  • An unequal electric field is mainly formed between edges in the thickness direction, whereby a large number of carbon nanomaterials 2 are integrated.
  • the electrodes la and lb are formed as thin-film electrodes of chromium, platinum, or the like, formed on an insulating substrate 4 of glass, plastic, silicon oxide, or the like by sputtering, vapor deposition, plating, or the like, and then etched by photolithography or the like. Formed. It is desirable that the thickness of the thin film be about 50 nm to 200 nm.
  • the materials of the electrodes la and lb are not limited to chromium and platinum. Electrolytic decomposition does not occur when an AC voltage is applied, and metals with a low ionization tendency can be used. When a large number of identical gas sensors are installed as in the insulated gas decomposition detection device of the present invention, it is preferable to provide a dedicated connection terminal that can be connected to the connection terminals 5a and 5b.
  • the decomposition position can be immediately specified by using a plurality of the above-mentioned decomposed gas sensors 1 for gas insulating equipment.
  • the gas decomposition detection device will be described with reference to FIGS.
  • Fig. 4 (a) 6 is a gas measuring device of an isolated gas decomposition detection device that detects a decomposition gas by installing a decomposition gas sensor 1 for gas insulation equipment
  • 7 is a gas detector that detects the decomposition gas with a gas measurement device 6.
  • AC or DC high-voltage electrical equipment such as AC and GCB.
  • the decomposition gas sensor 1 for gas insulated equipment includes a large number of decomposition gas sensors 1 for gas insulated equipment.
  • the gas measuring device 6 of Example 1 can be used as it is for a carbon nano material swimming device that performs dielectrophoresis of the carbon nano material 2 at the time of producing the decomposition gas sensor 1 for gas insulation equipment that can be used only at the time of measurement. It is.
  • Reference numeral 11 denotes a power supply unit that applies an AC voltage for measurement between the electrodes la and lb
  • 12 denotes a measurement unit that can measure the impedance between the electrodes la and lb
  • 13 includes a microprocessor and the like, and includes a program.
  • Control unit (control unit of the present invention) that functions by reading data and data and controls at least the power supply unit 11 and the measurement unit 12, 14 is a display unit, 15 is a memory unit that stores programs and data
  • Reference numeral 15a denotes a calibration data section storing calibration data of the change in conductance of the decomposition gas
  • 16 denotes a clock section.
  • the power supply unit 11 is a DC or AC power supply, and the voltage and frequency are controlled by the arithmetic and control unit 13.
  • the voltage amplitude IV can be adjusted to 10 V, and in the case of AC, the frequency can be further adjusted to 1 kHz to 10 MHz.
  • a sine wave is applied as an AC voltage, but is substantially constant. Means the voltage of the triangular wave, square wave, etc., which changes the direction of the flow in the cycle of, and the average value of the current on both the positive and negative sides is equal.
  • the measuring unit 12 is provided with a current detecting resistor of about lk Q, and is connected in series to the voltage application circuit shown in FIG. 4 (a).
  • the impedance between electrodes la and lb is calculated in real time by measuring the phase difference between the two.
  • the conductance component the reciprocal of resistance
  • the capacitance component of the impedance change generated by the reaction of the carbon nanomaterial 2 with the decomposition gas are calculated.
  • either the conductance or the capacitance may be used to detect the decomposition gas.In Example 1, however, the case where the capacitance is not used and the detection by the conductance is performed will be described. .
  • the gas concentration is obtained from the calibration data in the calibration data section 15a.
  • the measured value of the conductance detected by the measuring unit 12 fluctuates, and a fluctuation exceeding the limit means generation of a decomposition gas. Therefore, a reference value which is a limit of the impedance change (in this case, the conductance change) when partial discharge can be confirmed is obtained in advance and stored in the memory unit 15. The detected impedance change is compared with the reference value, and when the reference value is exceeded, it is determined that decomposition gas has been generated.
  • a plurality of decomposition gas sensors 1 for gas insulation equipment are arranged at predetermined intervals in a container of a high-voltage electric equipment as shown in FIG. 4 (b).
  • decomposition gas sensors 1 for gas insulation equipment are arranged at several points, such as points A, B, C,. Decomposition gas detection is continued at points A, B, C, etc., and at some point, the deviation force, the impedance change measured at one point, for example, point A, exceeds the reference value.
  • the arithmetic and control unit 13 determines that a partial discharge or the like has occurred in the vicinity of the point A, and notifies the display unit 14 or a notifying means such as a buzzer (not shown) of the abnormality. As a result, abnormalities such as partial discharge occurring in high-voltage electrical equipment can be immediately avoided.
  • the above description relates to the configuration of the decomposition gas sensor 1 for gas insulation equipment and the configuration of the insulation gas decomposition detection device.
  • the operation when the decomposition gas sensor 1 for gas insulation equipment detects the decomposition gas will be described. Since the measurement of cracked gas is difficult with an actual machine, the measurement is performed using the cracked gas generation simulator shown in Fig. 5.
  • 7a is a gas-filled tank
  • 41 is a corona discharge electrode that simulates partial discharge, discharge due to ground fault or short circuit
  • 42 is a 60Hz high voltage power supply for discharging from electrode 41. Department.
  • Decomposed gas sensors 1 for gas insulation equipment are provided at points A, B, and C at different distances from the corona discharge electrode.
  • the high-voltage power supply unit 42 can adjust the voltage between 10 kV and 50 kV.
  • Fig. 6 shows the force S, which is the time-dependent change in conductance at point A when discharging at the electrode 41, and the period (period) A is the period during which the voltage supplied from the high-voltage power supply 42 to the electrode 41 is ⁇ N, and the period (period) ) B represents a period in which the voltage supplied to the electrode 41 is turned off, and period (period) C represents a period in which the voltage supplied to the electrode 41 is ⁇ N. It can be seen that the higher the discharge voltage is, the higher the conductance of the disassembled gas sensor 1 for each gas insulating device is.
  • a decomposed gas containing various oxidizing or reducing gases is generated.
  • the composition differs for each insulating gas. Therefore, if at least a gas showing oxidizing or reducing properties can be detected, the decomposed gas sensor 1 for gas insulated equipment can detect the generation of decomposed gas. Therefore, in order to measure the decomposition gas whose composition is not clear, the oxidizing gas and the reducing gas whose properties are clearly measured are measured in advance, and the response and output as a reference for determining the power of the oxidizing gas or the reducing gas. You have to know.
  • a high frequency sine wave voltage with a frequency of 100 kHz and an amplitude of 4 V was applied to the decomposition gas sensor 1 for gas insulation equipment.
  • Ar is housed in the chamber as an initial state, and NH is used for measurement.
  • the carbon nanomaterial 2 is a p-type semiconductor. That is, when the reducing NH molecules are adsorbed on the carbon nanomaterial 2,
  • the conductance increases when the decomposition gas is an oxidizing gas, and the conductance decreases when the decomposition gas is a reducing gas.
  • a change in capacitance can be used, it is preferable to measure a change in conductance because of the presence of stray capacitance and the like. Therefore, although both are described as impedance changes, the following description focuses on conductance changes.
  • the decomposition gas when the decomposition gas is detected with the carbon nanomaterial 2 of the p-type semiconductor, if the conductance decreases, it indicates that the reducing gas is strong and the decomposition gas is generated, and if the conductance increases. Indicates that a decomposition gas having a strong oxidizing power was generated. Also, by measuring the conductance change at a predetermined time such as saturation, it can be seen that the gas concentration can be calculated from the calibration curve in FIG.
  • Each insulating gas was sealed at room temperature, and discharged by the electrode 41 to detect a decomposed gas.
  • the HF detector tube gas checker
  • the S ⁇ detector tube are used to detect HF and S ⁇ in the decomposition gas.
  • Fig. 10 shows the results of both the decomposition gas sensor 1 for gas insulation equipment and the HF detector tube. It is. As shown in FIG. 10, the decomposed gas sensor 1 for gas insulated equipment immediately responds to a weak discharge near the corona start voltage (effective value: 9 kV). Power that continued to discharge for about 1.2 hours thereafter The HF detector tube did not respond. After that, once lower the voltage, SF gas
  • the decomposition gas sensor 1 for gas-insulated equipment When the applied voltage was increased to 30 kV to promote the decomposition of 6, the decomposition gas sensor 1 for gas-insulated equipment immediately started the reaction and changed to about 10 times the initial conductance change. In response to this discharge, the HF detector tube remained unresponsive for a long time, and responded only after 2 hours, when the decomposition gas increased considerably.
  • the decomposition gas sensor 1 for gas insulation equipment immediately reacts near the corona start voltage (effective value: 9 kV). 1. SO detection even when discharging for about 5 hours
  • the SO concentration detected by the Shiretoko was about 1.2 ppm. Since the measurement accuracy is l S,
  • Fig. 12 shows the change in conductance for (1) SF gas, (2) N gas, and (3) air.
  • the conductance change is the lowest, but the conductance change of N gas and air decomposition gas is also a positive change. It has a similar shape. Therefore, it is generated by discharge in N gas and air.
  • the decomposed gas is oxidizing, just like the decomposed gas generated by the discharge in SF gas.
  • the gas concentration can be calculated by measuring the change in conductance. Similarly, (1) SF gas, (2) N gas, (3) air insulation
  • the insulation gas decomposition detection device has a plurality of decomposition gas sensors 1 for gas insulation equipment arranged in the insulation gas of a high-pressure electric equipment.
  • the response of the cracked gas sensor for gas-insulated equipment 1 changes as the distance from the position of partial discharge, etc., was measured using the cracked gas generation simulation device shown in Fig. 5.
  • the decomposition gas sensors 1 for gas insulation equipment of the insulation gas decomposition detection device when a large number of the decomposition gas sensors 1 for gas insulation equipment of the insulation gas decomposition detection device are arranged, the one having the shortest distance reacts to the partial discharge. If the position is determined, abnormality diagnosis of high-voltage electrical equipment such as GIS can be performed quickly. In addition, when the conductance of the decomposition gas sensor 1 for gas-insulated equipment at two locations sequentially exceeds the reference value using diffusion, it can be determined that partial discharge has occurred somewhere between the two locations. In this case, it is also possible to reduce the number of decomposed gas sensors 1 for gas insulation equipment by utilizing the time difference.
  • reference numeral 21 denotes a power supply unit for dielectrophoresis that applies an AC voltage to generate dielectrophoresis between the electrodes la and lb, and 22 can measure the impedance between the electrodes la and lb.
  • the measurement unit 23 comprises a microprocessor or the like, reads and operates programs and data, controls the power supply unit 21 and the measurement unit 22 and performs calculations at the same time, 24 denotes a display unit, and 25 denotes a program And 25a is a data section that stores the amount of integration and time, and 26 is a clock section.
  • the power supply section 21 must be an AC power supply for performing dielectrophoresis.
  • the control configuration of the carbon nano material migration apparatus described above is basically the same as that of the gas measurement apparatus 6, and in the first embodiment, the gas measurement apparatus 6 is shared as the gas measurement / dielectrophoresis control apparatus 6a. I have.
  • reference numeral 27 denotes an electrophoresis chamber for introducing a suspension solvent in which the carbon nanomaterial 2 is suspended in a solvent such as ethanol for electrophoresis.
  • 28 is a container containing the suspended suspension solvent
  • 29 is a pump that sends the suspension solvent to the electrophoresis chamber
  • 30 is ultrasonic vibration provided to suspend the force nanomaterial 2 in the solvent
  • a stirring device 31 for supplying the container 28 to the container 28, and electromagnetic valves 31 and 32.
  • a process for producing the decomposition gas sensor 1 for gas insulation equipment using this carbon nanomaterial migration apparatus will be described.
  • the electrodes la and lb of the thin-film electrode are formed on the insulating substrate 4, and the carbon nanomaterial 2 previously prepared in, for example, ethanol having a concentration of about 1 ⁇ g / ml in a container 28, for example, a diameter of 20 nm and a length of 5 nm— Pour 20nm multi-walled CNT (purity 95%).
  • the arithmetic control unit 23 operates the stirrer 30 for about 60 minutes to disperse the carbon nanomaterial 2.
  • the data section opens the solenoid valves 31 and 32 and operates the pump 29 to send the suspension into the electrophoresis chamber 27 having a volume of about 15 / il.
  • a high-frequency voltage is applied between the electrodes la and lb, and dielectrophoresis is started by the generated uneven electric field.
  • the timer 26 starts counting.
  • the current is measured by the measuring unit 22 together with the time measurement by the timer unit 26.
  • the arithmetic control unit 23 reads out a predetermined time corresponding to the planned accumulation amount of the decomposition gas sensor 1 for gas insulation equipment from the data unit 25a, stops the power supply unit 21 after counting out, stops the pump 29, and Close solenoid valves 31 and 32.
  • Air is circulated in the electrophoresis chamber 27 at room temperature to evaporate ethanol in a relatively short time.
  • the decomposition gas sensor for gas-insulated equipment 1 in which carbon nanomaterials 2 are integrated and cross-linked Take out.
  • the time of dielectrophoresis in this way, the amount of accumulation of the carbon nanomaterial 2 can be controlled, and the highly sensitive decomposition gas sensor 1 for gas insulating equipment can be easily manufactured.
  • dielectric constant of the suspension
  • a half of the carbon nanomaterial when approximated by a sphere
  • Diameter, Re [K] a parameter that depends on the complex permittivity of the minute object and suspension, E: electric field strength.
  • This Re [K] changes to positive or negative as the frequency i3 ⁇ 4r parameter of the electric field used for dielectrophoresis.
  • Positive dielectrophoretic force works in a specific frequency range, for example, 10 kHz and 1 MHz, and negative dielectrophoretic force works in other cases. Therefore, it is necessary to select the frequency and apply the maximum positive dielectrophoretic force F to accumulate the carbon nanomaterial 2.
  • the carbon nanomaterial 2 has a force that can approximate a sphere such as fullerene.
  • the force is generally a nano-sized and long fibrous material.
  • all can be operated in the same manner, and the carbon nanomaterial migration apparatus can move the polarized object to the region where the electric field is maximized by using the positive dielectrophoretic force.
  • the frequency may be determined experimentally.
  • dielectrophoresis was performed at a frequency of 100 kHz and a voltage amplitude of 5 V.
  • such a frequency and a voltage amplitude are set for each carbon nanomaterial 2, and the relationship between the dielectrophoresis time and the accumulation amount is stored in the data section 25a.
  • the decomposed gas sensor 1 for gas-insulated equipment of Example 1 easily integrates the carbon nanomaterial 2 on the microelectrode using electrophoresis, which is an electrodynamic phenomenon, so that the electrode la, lb
  • the crosslinked gas sensor 1 for gas-insulated equipment can be easily manufactured at low cost.
  • the decomposition gas sensor 1 for gas-insulated equipment of Example 1 can detect a gas of 10 ppb or less at a high speed and a high accuracy at a normal temperature.
  • the decomposed gas sensor 1 for gas-insulated equipment can detect a decomposed gas that does not normally exist in a GIS or the like as soon as it is generated, and can detect an abnormality in the GIS or the like in advance. is there.
  • Conventional gas sensors using solid electrolytes must be used by heating to about 400 ° C with a heater that has poor detection sensitivity at room temperature, and the response is very slow.
  • the gas decomposition equipment sensor 1 for gas-insulated equipment can be used at room temperature, is highly sensitive, has a very fast response, is easy to manufacture, is inexpensive, and is small and can easily obtain an electrical output. It can be used repeatedly.
  • the insulating gas decomposition detection device of the present invention can immediately specify the position where the insulating gas is decomposed when the insulating gas is decomposed in the high-voltage electrical equipment.
  • the present invention can be applied to a gas sensor that is inexpensive, responds at high speed, has high detection accuracy, and is easy to manufacture, and is particularly applicable to a decomposition gas sensor for gas insulated equipment that detects an abnormality in a substation facility in advance. It can be applied to an insulation gas decomposition detection device that can use it to diagnose abnormalities in high voltage electrical equipment such as GIS.

Abstract

A decomposed gas sensor for gas-insulated apparatuses responds to a decomposed gas of an insulating gas with high sensitivity and at high speed and is easily produced at low cost. An insulating gas decomposition detector for detecting decomposition and a decomposed gas detecting method are also disclosed. A decomposed gas sensor (1) for gas-insulated apparatuses for detecting a decomposed gas of the insulating gas sealed in a high-voltage electric apparatus. The decomposed gas sensor (1) is characterized mainly in that it comprises a detecting unit made of a semiconductor carbon nano material (2), and when a decomposed gas is adsorbed on the semiconductor carbon nano material (2) and reacts, the detection unit outputs an impedance variation.

Description

明 細 書  Specification
ガス絶縁機器用分解ガスセンサ、絶縁ガス分解検出装置及び分解ガス 検出方法  Decomposition gas sensor for gas insulation equipment, insulation gas decomposition detection device, and decomposition gas detection method
技術分野  Technical field
[0001] 本発明は、安価で高速に応答し、検出精度が高ぐ製造が容易なカーボンナノ材 料のガス絶縁機器用分解ガスセンサと、それを複数箇所に設置して分解ガスの発生 位置を検出できる絶縁ガス分解検出装置、さらに絶縁用ガスの分解ガス検出方法に 関する。  The present invention provides an inexpensive, high-speed response, high-accuracy detection, and easy-to-manufacture decomposition gas sensor for gas-insulated equipment of a carbon nano material, and installing the decomposition gas sensor at a plurality of locations to determine the generation position of the decomposition gas. The present invention relates to an insulation gas decomposition detection device capable of detection and a method for detecting a decomposition gas of an insulating gas.
背景技術  Background art
[0002] 1960年代末から、変電設備として絶縁性に優れた六フッ化硫黄ガス(以下、 SFガ  [0002] Since the late 1960s, sulfur hexafluoride gas (hereinafter referred to as SF gas) with excellent insulation properties has been used as substation equipment.
6 ス)が封入されたガス絶縁開閉装置(Gas Insulated Switchgear、以下 GIS)、ガス遮断 器(Gas Circuit Breaker,以下 GCB)等の導入が進んでいる。なお、 SFガスは平等  6) Gas-insulated switchgear (GIS), gas circuit breaker (GCB), etc. in which gas-filled switches are enclosed are being introduced. SF gas is equal
6  6
電界中同一圧力の空気と比較して約 3倍の絶縁耐カをもつ無毒、無臭、不活性の気 体である。この変電設備には設備診断、例えば部分放電や地絡等に対する設備診 断がなされる必要があり、とくに導入後長く使用されている設備ではこの診断が欠か せない。こうした設備診断で部分放電等が生じているのを検出するため、従来、放電 で SFが分解された分解ガスを検出できる検知管(ガスチェッカー)が使用されている It is a non-toxic, odorless, and inert gas that has insulation resistance about three times that of air at the same pressure in an electric field. This substation equipment needs to be subjected to equipment diagnosis, for example, equipment diagnosis for partial discharge and ground fault, etc. This diagnosis is indispensable especially for equipment that has been used for a long time after introduction. In order to detect the occurrence of partial discharge, etc. in such equipment diagnosis, a detection tube (gas checker) that can detect the decomposition gas in which SF has been decomposed by discharge has been used.
6 6
。しかし、検知管は定量性や感度が悪ぐこれを使って部分放電をリアルタイムに検 出するのは困難であった。オンラインの制御には利用できなレ、。部分放電が広がった 時点で始めて検出可能になるものである。管理も冷蔵庫によって保管しなければなら ず、使い捨てで費用力 Sかかるものであった。そこで、固体電解質を利用した SF分解  . However, it is difficult to detect partial discharges in real time using detector tubes, which have poor quantitativeness and sensitivity. Not available for online control. It becomes detectable only when the partial discharge spreads. The management had to be kept in the refrigerator, which was disposable and costly. Therefore, SF decomposition using solid electrolyte
6 ガスセンサが提案された (特許文献 1参照)。  6 A gas sensor has been proposed (see Patent Document 1).
[0003] この SF分解ガスセンサは、検出電極、フッ素イオン導電性の固体電解質、対向電 [0003] This SF decomposition gas sensor has a detection electrode, a fluorine ion conductive solid electrolyte, a counter electrode,
6  6
極からなり、両電極は固体電解質を間に挟んで密着して設けられる。検出を行うとき は、検出電極が SF分解ガスと接触するように被検出ガスの雰囲気中に設置し、検  It consists of electrodes, and both electrodes are provided in close contact with a solid electrolyte interposed therebetween. When performing detection, install in the atmosphere of the gas to be detected so that the detection electrode contacts the SF decomposition gas, and perform the detection.
6  6
出電極と対向電極の間に直流電圧を印加する。この直流電圧の印加により検出電極 で電極反応が生じて含フッ素ガスが電気分解され、このときの電気分解により生じる 起電圧に基づく電流を、信号出力として電流計で検出し、この電流値から含フッ素ガ ス濃度を知るものである。しかし、この SF分解ガスセンサは反応感度に大きなバラッ A DC voltage is applied between the output electrode and the counter electrode. The application of this DC voltage causes an electrode reaction at the detection electrode to electrolyze the fluorine-containing gas, which is generated by the electrolysis at this time. The current based on the electromotive voltage is detected as a signal output by an ammeter, and the concentration of fluorine-containing gas is known from the current value. However, this SF decomposition gas sensor has a large variation in reaction sensitivity.
6  6
キがあって信頼性に欠け、感度は 0. 2ppm程度が限界であった。し力も応答が遅い という弱点もあった。従って、この固体電解質を利用したガス検出装置によって部分 放電を初期の段階で検知するのは、難しレ、ものであった。  Due to lack of reliability, the sensitivity was limited to about 0.2 ppm. There was also a weak point that force and response were slow. Therefore, it was difficult to detect partial discharge at an early stage by the gas detector using the solid electrolyte.
[0004] このほか、 GIS内で部分放電が発生したときに、外部に電磁波が漏れるのを利用し て部分放電を検知する技術も提案されている(特許文献 2参照)。これは、漏れた電 磁波をアンテナで検出し、バンドパスフィルタを通し、増幅後にコンパレータで比較し 、基準レベルを越えたときブザー等を鳴動させるものである。し力 ながら、変電設備 ではノイズが発生し易ぐ誤判定を起こす可能性が高かった。  [0004] In addition, there has been proposed a technique for detecting a partial discharge by utilizing leakage of an electromagnetic wave to the outside when a partial discharge occurs in a GIS (see Patent Document 2). In this method, a leaked electromagnetic wave is detected by an antenna, passed through a bandpass filter, compared with a comparator after amplification, and a buzzer or the like is sounded when the reference level is exceeded. However, there was a high possibility that erroneous judgments would occur in substation equipment because noise was likely to occur.
[0005] このように、高電圧電気機器の絶縁ガスの分解を検知するセンサとして多くの種類 が提案されているが、高感度で信頼性の高いセンサは未だ提案されていない。また、 このような高感度のセンサが存在していないこともあり、 GIS内で微量にしか発生しな い分解ガスが、実際にどのような組成を有し、部分放電等でどのような反応が起こつ てレ、るの力、あまり解明されてレ、なレ、状況にある。  [0005] As described above, many types of sensors for detecting the decomposition of insulating gas of high-voltage electrical equipment have been proposed, but a sensor with high sensitivity and high reliability has not yet been proposed. In addition, since such high-sensitivity sensors do not exist, the decomposition gas generated only in a very small amount in the GIS actually has what composition and what kind of reaction occurs in partial discharge etc. There is a situation in which the power has risen and the power of the power has been poorly understood.
[0006] ところで、近年のカーボンナノチューブの研究から、カーボンナノチューブ(以下、 C NT)をガスセンサに応用することが注目されている。ガス分子が半導体 CNTに吸着 すると両者間で電荷移動を起こし、半導体 CNTの電気的特性 (コンダクタンス、キヤ パシタンス)が変化するため、 CNTガスセンサはこの現象を利用してガスを検知する ものである。しかし、ガスの中でも、半導体 CNTとの間で電荷移動が大きいガスだけ 力 実際にセンサとして有効となる。現在、 CNTで検出可能性ありと報告されている のは、 NH、 N〇、水蒸気、エタノール、 C〇、 CO、 C H等の数種類のガスにすぎ  [0006] In recent years, research on carbon nanotubes has attracted attention for applying carbon nanotubes (hereinafter, CNT) to gas sensors. When gas molecules are adsorbed on semiconductor CNTs, charge transfer occurs between them and the electrical characteristics (conductance, capacitance) of the semiconductor CNTs change. The CNT gas sensor detects gas using this phenomenon. However, among the gases, only the gas that transfers a large amount of charge to and from the semiconductor CNT is actually effective as a sensor. Currently, only a few types of gases, such as NH, N〇, steam, ethanol, C〇, CO, and CH, have been reported to be detectable by CNT.
3 2 2 6 6  3 2 2 6 6
ない。  Absent.
[0007] ただ CNTセンサの構造については、こうした困難が比較的少ないためカ 例えば 多数の半導体 CNTを直接センサ電極上で成長させた CNTセンサや、予め生成した 多数の半導体 CNTを溶媒に分散して電極間に塗布、乾燥させてランダムに集積し た CNTセンサ等が提案されている(特許文献 3参照)。しかし、両センサとも、ナノサ ィズの半導体 CNTを自在に操れないために、直接電極で成長させ、また塗布を行つ ている。 [0007] However, regarding the structure of the CNT sensor, since such difficulties are relatively small, for example, a CNT sensor in which a large number of semiconductor CNTs are directly grown on a sensor electrode or a large number of semiconductor CNTs generated in advance are dispersed in a solvent. There has been proposed a CNT sensor or the like which is applied between electrodes, dried and randomly integrated (see Patent Document 3). However, since both sensors cannot freely manipulate nanosized semiconductor CNTs, they are directly grown on electrodes and coated. ing.
[0008] なお、このような微小な物体の操作方法として、本発明者は、従来微生物等の微小 物体を 作する DEPIM(Dielectrophoretic Impedance Measurement Method)法 ί是 案している(特許文献 4)。この DEPIM法は、不平等電界で分極した微小物体を誘 電泳動力によりマイクロ電極に捕集するものである。  [0008] As a method of operating such a minute object, the present inventor has conventionally proposed a DEPIM (Dielectrophoretic Impedance Measurement Method) method for producing a minute object such as a microorganism (Patent Document 4). In the DEPIM method, a minute object polarized by an uneven electric field is collected on a microelectrode by electrophoretic force.
[0009] 特許文献 1 :特開 2003— 66001号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-66001
特許文献 2:特開 2002 - 116235号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-116235
特許文献 3:特開 2003 - 227808号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2003-227808
特許文献 4 :特開 2003— 224号公報  Patent Document 4: JP-A-2003-224
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 以上説明したように、高電圧電気機器の絶縁ガスの分解を検知するセンサとしてい くつかのセンサが提案されているが、高感度で信頼性が高ぐ製造の容易なガスセン サは未だ提案されていなレ、。そして、このようなセンサが存在していない以上、微量 にしか発生しない分解ガスが、実際にどのような組成を有し、それ故高電圧電気機器 内で部分放電等によりどのような反応が起こっているの力、、十分に解明されていない 状況にある。 [0010] As described above, some sensors have been proposed as sensors for detecting the decomposition of insulating gas in high-voltage electrical equipment. However, gas sensors with high sensitivity and high reliability that are easy to manufacture are proposed. Not yet proposed. Since such a sensor does not exist, the composition of the decomposed gas, which is generated only in a very small amount, is actually what kind of reaction occurs due to partial discharge in high-voltage electrical equipment. The power of the power is not fully understood.
[0011] 提案の 1つである SF分解ガスセンサは、その生産過程において使用原材料や生  [0011] The SF decomposition gas sensor, one of the proposals, uses raw materials and raw materials in the production process.
6  6
産工程に十分な管理を施しても、性能とくに一定濃度のフッ素水素ガスに対する反 応感度に大きなバラツキが生じる。このバラツキが製造上避けられないため、そのま まではフッ素ガス量を正確に測定することができず、規格に合格する反応感度を得る ため製造上の歩留まりがきわめて低いという問題があった。それ故、部分放電の発生 箇所の検出など難しぐ応答も遅ぐシステム制御することはできない。また、電磁波 を検出するセンサもノイズで誤判定を起こし、高感度、高信頼性のセンサを得るには どうしても限界がある。  Even if the production process is adequately controlled, large variations occur in performance, especially in the sensitivity to hydrogen fluoride gas at a certain concentration. Since this variation is unavoidable in production, the amount of fluorine gas cannot be accurately measured until that time, and the production yield is extremely low in order to obtain a reaction sensitivity that passes the standard. Therefore, it is not possible to perform system control that delays difficult responses such as detection of the location where partial discharge occurs. In addition, sensors that detect electromagnetic waves also make erroneous decisions due to noise, and there is a limit to obtaining a sensor with high sensitivity and high reliability.
[0012] また、半導体 CNTが絶縁ガスの分解ガスを検出可能か否力、他のガスセンサと比 較してさらに高感度の出力が可能か否か、等の点は解明されていない。半導体 CNT センサの製造に関しても、従来の CNTガスセンサは、製造が容易でなく高コストとな る。また、予め生成した CNTを溶媒に分散して塗布する CNTガスセンサは、 CNTの 向きがランダムで不揃いのためバラツキが多ぐ正確な検出ができない、という問題が あった。 [0012] Further, it is not clear whether or not the semiconductor CNT can detect the decomposition gas of the insulating gas and whether or not the semiconductor CNT can output at a higher sensitivity than other gas sensors. Regarding the manufacture of semiconductor CNT sensors, conventional CNT gas sensors are not easy to manufacture and costly. The In addition, the CNT gas sensor in which CNTs generated in advance are dispersed and applied in a solvent has a problem that the directions of the CNTs are random and uneven, so that there is much variation and accurate detection cannot be performed.
[0013] そこで本発明は、絶縁ガスの分解ガスに対して、高感度で高速に応答し、安価で、 製造が容易なガス絶縁機器用分解ガスセンサを提供することを目的とする。  [0013] Accordingly, an object of the present invention is to provide a low-cost, easy-to-manufacture decomposed gas sensor for gas-insulated equipment that responds to decomposed gas of insulating gas with high sensitivity and high speed.
[0014] また、本発明は、高圧電気機器内で部分放電等によって絶縁ガスが分解したときに 、その位置を直ちに特定できる高感度で安価な絶縁ガス分解検出装置を提供するこ とを目的とする。  [0014] Another object of the present invention is to provide a highly sensitive and inexpensive insulating gas decomposition detection device that can immediately identify the position of an insulating gas when the insulating gas is decomposed by partial discharge or the like in a high-voltage electric device. I do.
[0015] そして、本発明は、絶縁ガスの分解ガスに対して、高感度で高速に応答する分解ガ ス検出方法を提供することを目的とする。  [0015] An object of the present invention is to provide a method for detecting a decomposition gas that responds to a decomposition gas of an insulating gas with high sensitivity and high speed.
課題を解決するための手段  Means for solving the problem
[0016] 本発明は、高電圧電気機器に封入された絶縁ガスの分解ガスを検出することがで きるガス絶縁機器用分解ガスセンサであって、半導体カーボンナノ材料からなる検出 部を備え、分解ガスが半導体カーボンナノ材料に吸着して反応することにより、検出 部がインピーダンス変化を出力することを主要な特徴とする。 [0016] The present invention is a decomposed gas sensor for a gas insulated device capable of detecting a decomposed gas of an insulated gas sealed in a high-voltage electric device, comprising: a detection unit made of a semiconductor carbon nano material; The main feature is that the detector outputs impedance change by adsorbing and reacting with the semiconductor carbon nanomaterial.
発明の効果  The invention's effect
[0017] 本発明のガス絶縁機器用分解ガスセンサによれば、絶縁ガスの分解ガスに対して 、高感度で高速に応答し、安価で、製造が容易になる。また、本発明の絶縁ガス分解 検出装置によれば、高圧電気機器内で絶縁ガスが分解したときに、その位置を直ち に特定できる。本発明の分解ガス検出方法によれば、高感度で高速に応答すること ができる。  According to the decomposed gas sensor for a gas insulated device of the present invention, it responds to the decomposed gas of the insulating gas with high sensitivity and high speed, is inexpensive, and is easy to manufacture. Further, according to the insulating gas decomposition detection device of the present invention, when the insulating gas is decomposed in the high-voltage electric device, the position can be immediately specified. According to the decomposition gas detection method of the present invention, it is possible to respond with high sensitivity and high speed.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の実施例 1におけるガス絶縁機器用分解ガスセンサの説明図  FIG. 1 is an explanatory view of a decomposed gas sensor for a gas insulated device according to a first embodiment of the present invention.
[図 2]本発明における誘電泳動によって電極間に集積されたカーボンナノ材料の走 查電子顕微鏡 (SEM)で観察した模式図  FIG. 2 is a schematic view of a carbon nanomaterial integrated between electrodes by dielectrophoresis in the present invention observed by scanning electron microscope (SEM).
[図 3]本発明における集積されたカーボンナノ材料のコンダクタンスの温度依存性を 示すグラフ  FIG. 3 is a graph showing the temperature dependence of the conductance of the integrated carbon nanomaterial according to the present invention.
[図 4] (a)本発明の実施例 1におけるガス絶縁機器用分解ガスセンサを装着してガス 検出するガス測定装置の構成図、(b) (a)のガス測定装置に複数のガス絶縁機器用 分解ガスセンサを設置した説明図 (FIG. 4) (a) A gas was installed by mounting the decomposition gas sensor for gas-insulated equipment in Example 1 of the present invention. Configuration diagram of the gas measurement device to be detected, (b) Explanatory diagram in which a plurality of decomposition gas sensors for gas insulation equipment are installed in the gas measurement device in (a)
[図 5]本発明の実施例 1における分解ガス発生模擬装置の説明図  FIG. 5 is an explanatory view of a cracked gas generation simulation device according to Embodiment 1 of the present invention.
[図 6]本発明における SF中で発生した放電に対するコンダクタンスの経時変化を示  FIG. 6 shows a change with time of conductance with respect to discharge generated in SF in the present invention.
6  6
すグラフ Graph
[図 7] (a)本発明におけるカーボンナノ材料の NHに対するコンダクタンス変化を示  FIG. 7 (a) shows a change in conductance of the carbon nanomaterial according to the present invention with respect to NH.
3  Three
すグラフ、(b)本発明における集積されたカーボンナノ材料の NHに対するキャパシ Graph, (b) Capacity of integrated carbon nanomaterial in the present invention for NH
3  Three
タンス変化を示すグラフ Graph showing the change in the distance
[図 8] (a)本発明におけるカーボンナノ材料の NOに対するコンダクタンス変化を示  FIG. 8 (a) shows a change in conductance of carbon nanomaterial to NO in the present invention.
2  2
すグラフ、(b)本発明におけるカーボンナノ材料の NOに対するキャパシタンス変化 Graph, (b) Change in capacitance of carbon nanomaterial to NO in the present invention
2  2
を示すグラフ Graph showing
[図 9] (a)本発明におけるカーボンナノ材料の NHのコンダクタンス変化と濃度との関  [FIG. 9] (a) Relationship between NH conductance change and concentration of carbon nanomaterial in the present invention
3  Three
係を示すグラフ、(b)本発明におけるカーボンナノ材料の NOのコンダクタンス変ィ匕 A graph showing the relationship, (b) a change in the conductance of NO of the carbon nanomaterial in the present invention.
2  2
と濃度との関係を示すグラフ Graph showing the relationship between density and concentration
[図 10]本発明におけるガス絶縁機器用分解ガスセンサと HF検知管の応答比較ダラ フ  [Fig. 10] Comparison of response between the cracked gas sensor for gas insulation equipment and the HF detector tube according to the present invention.
[図 11]本発明におけるガス絶縁機器用分解ガスセンサと SO検知管の応答比較ダラ  [FIG. 11] A response comparison between a decomposition gas sensor for gas insulation equipment and an SO detection tube according to the present invention.
2  2
H
[図 12]本発明におけるカーボンナノ材料の SFガス、 Nガス、空気中で発生した放  [FIG. 12] The emission of carbon nanomaterials in the present invention in SF gas, N gas and air
6 2  6 2
電に対するコンダクタンス変化を示すグラフ Graph showing the change in conductance with respect to electricity
[図 13]本発明の電極からの地点ごとに測定した放電時の経時変化のグラフ  FIG. 13 is a graph of a change with time during discharge measured at each point from the electrode of the present invention.
[図 14]本発明の実施例 1におけるガスセンサ製造装置の構成図 FIG. 14 is a configuration diagram of a gas sensor manufacturing apparatus according to Embodiment 1 of the present invention.
符号の説明 Explanation of symbols
1 ガス絶縁機器用分解ガスセンサ  1 Decomposition gas sensor for gas insulation equipment
la, lb 電極  la, lb electrode
2 カーボンナノ材料  2 Carbon nanomaterial
3a, 3b 電界集中用縁部  3a, 3b Edge for electric field concentration
4 絶縁基板 5a, 5b 接続端子 4 Insulating board 5a, 5b connection terminal
6 ガス測定装置  6 Gas measurement device
6a ガス測定/誘電泳動制御装置  6a Gas measurement / dielectrophoresis controller
7 検出対象装置  7 Device to be detected
11 , 21 電源部  11, 21 Power supply
12, 22 測定部  12, 22 Measuring unit
13, 23 演算制御部  13, 23 Operation control unit
14, 24 表示部  14, 24 Display
15, 25 メモジ部  15, 25 Memo part
15a 校正データ部  15a Calibration data section
16, 26 計時咅 B  16, 26 timekeeping 咅 B
25a データ部  25a Data section
27 泳動用チャンバ  27 Electrophoresis chamber
28 容  28 Contents
29 ポンプ  29 pump
30 攪拌装置  30 Stirrer
31 , 32 電磁弁  31, 32 Solenoid valve
41 電極  41 electrodes
42 高電圧電源部  42 High voltage power supply
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明の第 1の形態は、高電圧電気機器に封入された絶縁ガスの分解ガスを検出 することができるガス絶縁機器用分解ガスセンサであって、半導体カーボンナノ材料 力 なる検出部を備え、分解ガスが半導体カーボンナノ材料に吸着して反応した結 果生じる検出部のインピーダンス変化を出力するガス絶縁機器用分解ガスセンサで あり、常温で使用でき、高感度で応答がきわめて速ぐ製造が容易で安価であり、小 型で、簡単に電気的出力を得ることができ、繰り返し利用することができる。  A first aspect of the present invention is a decomposition gas sensor for a gas insulating device capable of detecting a decomposition gas of an insulating gas sealed in a high-voltage electric device, wherein the detection unit comprises a semiconductor carbon nano material. This is a decomposed gas sensor for gas insulated equipment that outputs the change in impedance of the detection unit resulting from the reaction of the decomposed gas to the semiconductor carbon nanomaterial as it reacts.It can be used at room temperature, has high sensitivity, and has extremely fast response. It is easy, inexpensive, small, easily obtains electrical output, and can be used repeatedly.
[0021] 本発明の第 2の形態は、第 1の形態のガス絶縁機器用分解ガスセンサにおいて、 絶縁ガスが(1) SFガス、 (2)窒素ガス、(3)空気のいずれ力 1種または該 1種を主成 分として 2種以上を混合した、若しくは、該 2種以上のガスの中に(1) (2) (3)以外の 絶縁ガスを含めて混合したガスであって、検出部が該ガスの分解ガスを検出するガス 絶縁機器用分解ガスセンサであり、通常は発生しない分解ガスを局所的且つ高感度 に検出することができ、 GIS等には SFガスや、 SFガスと N A second aspect of the present invention is the decomposition gas sensor for gas insulated equipment according to the first aspect, wherein the insulating gas is any one of (1) SF gas, (2) nitrogen gas, and (3) air. Mainly one kind A mixture of two or more gases, or a mixture of two or more gases containing an insulating gas other than (1), (2), and (3), and the detection unit decomposes the gas. A gas detection gas sensor for insulating equipment that can detect gas, which is not normally generated, locally and with high sensitivity.
6 6 2, COガス等との混合ガ  6 6 2, gas mixture with CO gas, etc.
2  2
スが封入されることが多ぐさらには窒素ガス、空気等が封入されるが、このような GIS 等の異常を事前に容易に発見することができる。  In many cases, nitrogen gas, air, etc. are sealed, but such abnormalities in GIS etc. can be easily detected in advance.
[0022] 本発明の第 3の形態は、第 1または 2の形態に従属する形態であって、インピーダン ス変化としてコンダクタンス変化を出力するガス絶縁機器用分解ガスセンサであり、 高感度で応答がきわめて速いセンサにすることができる。 A third mode of the present invention is a mode subordinate to the first mode or the second mode, and is a decomposition gas sensor for gas insulated equipment that outputs a change in conductance as a change in impedance, and has a high sensitivity and extremely high response. It can be a fast sensor.
[0023] 本発明の第 4の形態は、第 1または 2の形態に従属する形態であって、インピーダン ス変化としてキャパシタンス変化を出力するガス絶縁機器用分解ガスセンサであり、 コンダクタンス変化の出力と同様に高感度で応答がきわめて速いセンサにすることが できる。 A fourth mode of the present invention is a mode dependent on the first mode or the second mode, and is a decomposition gas sensor for a gas insulated device that outputs a capacitance change as an impedance change, and is similar to an output of a conductance change. A highly sensitive and extremely fast sensor can be obtained.
[0024] 本発明の第 5の形態は、第 1一 4のいずれかの形態に従属する形態であって、一対 の電極を備え、検出部が電極の間に架橋された半導体カーボンナノ材料力 構成さ れたガス絶縁機器用分解ガスセンサであり、カーボンナノ材料の架橋構造によって 高速に応答し、検出精度が高レ、ものとなる。常温で使用でき、高感度で、応答が速く 、製造が容易で安価であり、簡単に電気的出力を得ることができ、繰り返し利用する こと力 Sできる。  A fifth aspect of the present invention is a form dependent on any one of the first to fourteenth aspects, wherein the semiconductor carbon nanomaterial has a pair of electrodes, and a detection unit is bridged between the electrodes. This is a decomposition gas sensor for gas insulated equipment, which responds at high speed by the cross-linked structure of carbon nanomaterial, and has high detection accuracy. It can be used at room temperature, is highly sensitive, has a fast response, is easy to manufacture and is inexpensive, can easily obtain an electrical output, and can be used repeatedly.
[0025] 本発明の第 6の形態は、 5の形態に従属する形態であって、電極が交流電圧印加 時に不平等電界を発生するための電界集中用縁部を備え、検出部が誘電泳動によ つて形成されたガス絶縁機器用分解ガスセンサであり、電極に電界集中用縁部を設 けて電気力学的に誘電泳動で操作するので安価に製造でき、カーボンナノ材料は 電界方向に向くのが基本で、この架橋構造によって高速に応答し、検出精度が高い ものとなる。  [0025] A sixth aspect of the present invention is a form subordinate to the fifth aspect, wherein the electrode is provided with an electric field concentration edge for generating an uneven electric field when an AC voltage is applied, and the detection unit is a dielectrophoretic device. This is a decomposed gas sensor for gas insulation equipment formed by the method described above.Electrodynamically operated by dielectrophoresis by providing an electric field concentration edge on the electrode, it can be manufactured at low cost, and the carbon nanomaterial is oriented in the direction of the electric field. Basically, this cross-linked structure provides a high-speed response and high detection accuracy.
[0026] 本発明の第 7の形態は、第 6の形態に従属する形態であって、電極が絶縁基板上 に設けられた薄膜電極であって、電界集中用縁部が該電極のそれぞれに形成され た突出部のエッジであるガス絶縁機器用分解ガスセンサであり、小型、薄型の電極と することができ、製造が容易である。 A seventh aspect of the present invention is a form subordinate to the sixth aspect, wherein the electrode is a thin-film electrode provided on an insulating substrate, and an edge for electric field concentration is provided on each of the electrodes. This is a decomposition gas sensor for gas insulated equipment, which is the edge of the formed protrusion. Can be manufactured easily.
[0027] 本発明の第 8の形態は、第 1一 7のいずれかの形態に従属する形態であって、半導 体カーボンナノ材料力 ¾型半導体であるガス絶縁機器用分解ガスセンサであり、還元 性ガスに対してコンダクタンスが減少し、酸化性ガスに対してコンダクタンスが増加す る。  An eighth aspect of the present invention is a decomposition gas sensor for a gas insulated device, which is a form subordinate to any one of the first to seventeenth aspects, and is a semiconductor carbon nanomaterial 材料 type semiconductor. The conductance decreases for reducing gases and increases for oxidizing gases.
[0028] 本発明の第 9の形態は、第 1一 7のいずれかの形態に従属する形態であって、半導 体カーボンナノ材料が n型半導体であるガス絶縁機器用分解ガスセンサであり、還元 性ガスに対してコンダクタンスが増加し、酸化性ガスに対してコンダクタンスが減少す る。  [0028] A ninth aspect of the present invention is a decomposition gas sensor for a gas-insulated device, wherein the semiconductor carbon nanomaterial is an n-type semiconductor, which is a form subordinate to any one of the first to seventeenth aspects. The conductance increases for reducing gases and decreases for oxidizing gases.
[0029] 本発明の第 10の形態は、高圧電気機器の絶縁ガス内に複数配置された第 1一 9の レ、ずれかの形態のガス絶縁機器用分解ガスセンサと、ガス絶縁機器用分解ガスセン サにそれぞれ電圧を印加するための電源と、該電圧が印加されたとき各ガス絶縁機 器用分解ガスセンサのインピーダンス変化をそれぞれ検出する測定部と、測定部が 検出したインピーダンス変化を所定の基準値と比較する制御部とを備え、制御部によ つて、基準値以上のインピーダンス変化を出力したガス絶縁機器用分解ガスセンサ の位置を分解ガスが発生した位置と判定することを特徴とする絶縁ガス分解検出装 置であり、分解ガスに対して高感度で高速に応答することができ、複数箇所に設置し て分解ガスの発生位置を検出することができ、高圧電気機器の異常を事前に発見す ること力 Sできる。  [0029] A tenth aspect of the present invention is a decomposition gas sensor for a gas insulated equipment, which is disposed in an insulating gas of a high-voltage electric device in a plurality of positions, and a decomposed gas sensor for a gas insulated equipment. A power supply for applying a voltage to each of the sensors, a measuring unit for detecting a change in impedance of each of the decomposition gas sensors for each gas-insulated device when the voltage is applied, and a change in the impedance detected by the measuring unit to a predetermined reference value. A control section for comparing, and the control section determines the position of the cracked gas sensor for gas insulation equipment that has output an impedance change equal to or greater than the reference value as the position at which the cracked gas is generated. It is a device that can respond to cracked gas with high sensitivity and high speed, and can be installed at multiple locations to detect the location of cracked gas generation, and to detect abnormalities in high-voltage electrical equipment. The ability to discover in advance S
[0030] 本発明の第 11の形態は、高電圧電気機器の絶縁ガス中に半導体カーボンナノ材 料からなる検出部を備えたガス絶縁機器用分解ガスセンサを配置し、絶縁ガスから 発生した分解ガスを半導体カーボンナノ材料と反応させ、検出部のインピーダンス変 化で分解ガスを検出することを特徴とする分解ガス検出方法であり、分解ガスに対し て高感度で高速に応答することができ、電気的出力を得ることができ、繰り返し利用 すること力 sできる。  [0030] In an eleventh aspect of the present invention, a decomposed gas sensor for a gas insulated device including a detection unit made of a semiconductor carbon nano material is disposed in an insulating gas of a high-voltage electric device, and a decomposed gas generated from the insulating gas is provided. Is a method for detecting cracked gas by changing the impedance of the detection section to detect cracked gas.The method can respond to cracked gas with high sensitivity and high speed. Output can be obtained, and the power can be repeatedly used.
実施例  Example
[0031] 以下、本発明の実施例 1のガス絶縁機器用分解ガスセンサと絶縁ガス分解検出装 置、分解ガス検出方法について説明をする。このガス絶縁機器用分解ガスセンサと、 絶縁ガス分解検出装置は、通常は存在しない分解ガスが発生すると、直ちにこれを 検出することにより、 GIS等に局所的に発生した異常が全体へ広がっていく前に発見 すること力 Sできる。ガス絶縁機器用分解ガスセンサは GIS内に分散して複数配置され るため、部分放電等の近傍に設けられたガス絶縁機器用分解ガスセンサがこれを検 出し、部分放電等を予兆段階で検知できるものである。 Hereinafter, a decomposition gas sensor for a gas insulation device, an insulation gas decomposition detection device, and a decomposition gas detection method according to a first embodiment of the present invention will be described. This decomposition gas sensor for gas insulation equipment, Insulating gas decomposition detection equipment can detect unusual decomposition gas as soon as it is generated, and can detect abnormalities that have occurred locally in GIS etc. before they spread to the whole. Since a plurality of decomposed gas sensors for gas-insulated equipment are distributed and arranged in the GIS, decomposed gas sensors for gas-insulated equipment installed near partial discharges etc. can detect them and detect partial discharges etc. at an early stage. It is.
[0032] 図 1は本発明の実施例 1におけるガス絶縁機器用分解ガスセンサの説明図、図 2は 本発明における誘電泳動によって電極間に集積されたカーボンナノ材料の SEM写 真、図 3は本発明における集積されたカーボンナノ材料のコンダクタンスの温度依存 性を示すグラフ、図 4 (a)は本発明の実施例 1におけるガス絶縁機器用分解ガスセン サを装着してガス検出するガス測定装置の構成図、図 4 (b)は (a)のガス測定装置に 複数のガス絶縁機器用分解ガスセンサを設置した説明図、図 5は本発明の実施例 1 における分解ガス発生模擬装置の説明図である。図 6は本発明における SF中で発 FIG. 1 is an explanatory view of a decomposed gas sensor for a gas-insulated device in Example 1 of the present invention, FIG. 2 is an SEM photograph of carbon nanomaterials integrated between electrodes by dielectrophoresis in the present invention, and FIG. FIG. 4A is a graph showing the temperature dependence of the conductance of the integrated carbon nanomaterial according to the present invention, and FIG. 4A is a configuration of a gas measuring apparatus for detecting a gas by mounting the decomposition gas sensor for a gas insulating device according to the first embodiment of the present invention. Fig. 4 (b) is an explanatory view of installing a plurality of decomposed gas sensors for gas insulating equipment in the gas measuring apparatus of (a), and Fig. 5 is an explanatory view of a decomposed gas generation simulating apparatus in Example 1 of the present invention. . Fig. 6 shows the results in SF in the present invention.
6 生した放電に対するコンダクタンスの経時変化を示すグラフ、図 7 (a)は本発明にお けるカーボンナノ材料の NHに対するコンダクタンス変化を示すグラフ、図 7 (b)は本  6 A graph showing the change over time in the conductance with respect to the generated discharge, FIG. 7 (a) is a graph showing the change in the conductance of the carbon nanomaterial to NH in the present invention, and FIG.
3  Three
発明における集積されたカーボンナノ材料の NHに対するキャパシタンス変化を示  Fig. 4 shows the change in capacitance of integrated carbon nanomaterial with respect to NH in the invention.
3  Three
すグラフ、図 8 (a)は本発明におけるカーボンナノ材料の NOに対するコンダクタンス  Fig. 8 (a) shows the conductance of carbon nanomaterial to NO in the present invention.
2  2
変化を示すグラフ、図 8 (b)は本発明におけるカーボンナノ材料の NOに対するキヤ  FIG. 8 (b) is a graph showing the change, and FIG.
2  2
パシタンス変化を示すグラフ、図 9 (a)は本発明におけるカーボンナノ材料の NHの  FIG. 9 (a) is a graph showing the change in pacitance, and FIG.
3 コンダクタンス変化と濃度との関係を示すグラフ、図 9 (b)は本発明におけるカーボン ナノ材料の NOのコンダクタンス変化と濃度との関係を示すグラフである。また、図 1  3 A graph showing the relationship between the change in conductance and the concentration, and FIG. 9 (b) is a graph showing the relationship between the change in the conductance of NO in the carbon nanomaterial and the concentration in the present invention. Figure 1
2  2
0は本発明におけるガス絶縁機器用分解ガスセンサと HF検知管の応答比較グラフ、 図 11は本発明におけるガス絶縁機器用分解ガスセンサと s〇ガスセンサの応答比  0 is a response comparison graph of the cracked gas sensor for gas-insulated equipment and the HF detector tube of the present invention, and FIG. 11 is a response ratio of the cracked gas sensor for gas-insulated equipment and the s〇 gas sensor of the present invention.
2  2
較グラフ、図 12は本発明におけるカーボンナノ材料の SFガス、 Nガス、空気中で  FIG. 12 shows the carbon nanomaterial of the present invention in SF gas, N gas, and air.
6 2  6 2
発生した放電に対するコンダクタンス変化を示すグラフ、図 13は本発明の電極から の地点ごとに測定した放電時の経時変化のグラフ、図 14は本発明の実施例 1におけ るガスセンサ製造装置の構成図である。  FIG. 13 is a graph showing the change in conductance with respect to the generated discharge, FIG. 13 is a graph showing the change over time during discharge measured at each point from the electrode of the present invention, and FIG. 14 is a configuration diagram of the gas sensor manufacturing apparatus in Example 1 of the present invention. It is.
[0033] 図 1において、 1は GIS等の高電圧電気機器に封入された SFガス、 Nガス、空気 [0033] In Fig. 1, reference numeral 1 denotes SF gas, N gas, and air enclosed in high-voltage electrical equipment such as GIS.
6 2 等の分解ガスを検出するためのチップ状のガス絶縁機器用分解ガスセンサ、 la, lb はキャッスルウォール型電極、櫛歯型電極等の形状を備えたガス絶縁機器用分解ガ スセンサ 1を構成する一対の電極、 2は CNTやカーボンナノホーン、カーボンナノォ 二オン、カーボンナノファイバ、フラーレン等の半導体カーボンナノ材料(以下、カー ボンナノ材料)、 3a, 3bは誘電泳動を実施可能にする不平等電界を発生する屈曲し た縁部(以下、エッジ)等の電界集中用縁部、 4は絶縁基板、 5a, 5bは電極 la, lbの 接続端子である。カーボンナノ材料 2が本発明の実施例 1における検出部に相当す る。 6 Chip-shaped decomposition gas sensor for gas-insulated equipment to detect decomposition gas such as 2 and la, lb Is a pair of electrodes that constitute a disassembled gas sensor for gas-insulated equipment having a shape such as a castle wall-type electrode or comb-tooth-type electrode.1 is a pair of electrodes such as CNT, carbon nanohorn, carbon nano-one, carbon nanofiber, and fullerene. Semiconductor carbon nanomaterial (hereinafter, carbon nanomaterial), 3a and 3b are electric field concentration edges such as bent edges (hereinafter, edges) that generate uneven electric fields that enable dielectrophoresis, and 4 is insulating The substrates 5a and 5b are connection terminals for the electrodes la and lb. The carbon nanomaterial 2 corresponds to the detection unit in the first embodiment of the present invention.
[0034] 絶縁ガスは、実施例 1においては SFガスであるが、このほか、 GIS等で使用される  [0034] The insulating gas is SF gas in Example 1, but is used in GIS and the like.
6  6
上述の Nガス、空気、さらに SFガスと Nガス及び/または C〇ガス等の混合ガス等  The above-mentioned N gas, air, and mixed gas of SF gas and N gas and / or C〇 gas etc.
2 6 2 2 のガスである。従って、 SFガス、 Nガス、空気の中の 1種、またはこの 1種を主成分と  2 62 2 gas. Therefore, one of SF gas, N gas and air, or this one as the main component
6 2  6 2
して 2種以上を混合した、若しくは、 SFガスと Nガス及び/または COガスの混合ガ  Or a mixture of SF gas and N gas and / or CO gas
6 2 2  6 2 2
スのように、 Nガス, COガスを混合したようなガスが絶縁ガスとして対象となる。  Gases such as N2 and CO gas, such as gas, can be used as insulating gas.
2 2  twenty two
[0035] しかし、このような絶縁ガスの分解ガスが、部分放電等によってどのような反応で、ど のような組成に生成されるのかについては、現在、実験的及び理論的に十分解明さ れていない。従って、分解ガスに対して裏付けある正確な説明は難しぐ概要だけの ための説明になってしまうが、 SFガスの分解ガスは、おおむね次のようなものと推測  [0035] However, what kind of reaction and what composition the decomposition gas of such an insulating gas is generated by partial discharge or the like has been sufficiently clarified experimentally and theoretically at present. Not. Therefore, accurate explanations that support the decomposition gas are difficult to explain only for the outline, but it is assumed that the decomposition gas of SF gas is as follows.
6  6
される。 1つめは、 SFガスと金属との反応で生成されるガス、 2つめは水分との反応  Is done. The first is the gas generated by the reaction between SF gas and metal, the second is the reaction with moisture
6  6
で生成されるガスである。 1つめの反応は、相手の金属次第で多様であるが、例えば SF + Cu→SF +CuF、 3SF +W→WF + 3SF等が考えられる。 2つめの反応 Is the gas generated by The first reaction varies depending on the metal of the partner, but for example, SF + Cu → SF + CuF, 3SF + W → WF + 3SF, etc. can be considered. Second reaction
6 4 2 6 6 4 6 4 2 6 6 4
は、例えば SF +H〇→SOF + 2HF、 SOF +H 0→SO + 2HF等が考えられる  For example, SF + H〇 → SOF + 2HF, SOF + H0 → SO + 2HF
4 2 2 2 2 2 4 2 2 2 2 2
。従って、 SFガスの分解ガスには、 SOF、 HF、 SF、 SO等のようなガスが含まれ . Therefore, the decomposition gas of SF gas includes gases such as SOF, HF, SF, SO, etc.
6 2 4 2  6 2 4 2
ていると推測される。絶縁ガスが Nガス、空気の場合には、〇、 N〇、 N〇などの分  It is speculated that When the insulating gas is N gas or air, the components such as 〇, N〇, N〇
2 3 2  2 3 2
解ガスを形成すると考えられる。  It is thought to form degassed gas.
[0036] 次に、実施例 1におけるカーボンナノ材料 2について説明する。本発明で用いる力 一ボンナノ材料 2は、カーボンナノチューブ(CNT)、カーボンナノホーン、カーボン ナノオニオン、カーボンナノファイバ、フラーレンなどの総称であり、炭素原子が球状 、円筒状、円錐状などを含む様々な形状で結合してナノメートル(Ιθ η)スケールの 大きさの構造を成した物質全般を意味する。なお、「ナノ」とはあくまで材料の構成単 位に着目した際の呼称であり、これらが複数凝集するなどしてミクロンスケール(10_b m)の状態であっても、カーボンナノ材料 2に含めて考えることができる。また、主たる 構成元素は炭素であるが、その構造や物性を制御する目的で、炭素以外の元素を 含む物質もカーボンナノ材料に含まれる。カーボンナノ材料 2は、ー且エタノール等 の溶媒に混合し、この懸濁液中の電極 la, lbへ交流電圧を印加し、これによつて発 生する不平等電界の中で電界強度が最も大きくなる電界集中用縁部 3a, 3b間に誘 電泳動によって集積したものである。なお、誘電泳動によるこの製造方法については 後で詳述する。集積後に溶媒が蒸散され、架橋された状態で絶縁基板 4上に物理吸 着される (図 2の写真参照)。実験によれば、カーボンナノ材料 2は図 3に示すように温 度依存性を示し、図示はしないが電圧一電流特性も非線形性を有しており、半導体と しての性質を有している。半導体性を示すカーボンナノ材料 2には、シリコン系の半 導体と同様に、主電流キャリアがホールである p型と電子である n型が存在することが 知られている。どちらの型にするかは、カーボンナノ材料の構造や他元素のドープに より制御することが可能である。例えば Kや Rb等をドーピングすることにより n型半導 体にすることができる。カーボンナノ材料 2は CVD法、熱分解法など、どのような作製 方法で作製したものでもよい。また、これらの方法によって電極 la, lb上に直接カー ボンナノ材料を成長させることができる場合は、誘電泳動による集積化は必ずしも必 要ではない。このようなカーボンナノ材料 2の集積体の表面に SFガス等の分解ガス Next, the carbon nanomaterial 2 in Example 1 will be described. The force nanomaterial 2 used in the present invention is a general term for carbon nanotubes (CNT), carbon nanohorns, carbon nano onions, carbon nanofibers, fullerenes, etc., and various carbon atoms including spherical, cylindrical, conical, etc. It refers to all substances that combine in shape to form a structure on the nanometer (Ιθη) scale. Note that “nano” is simply This is a name when attention is paid to the position, and even if a plurality of these are in a micron scale ( 10_b m) state due to aggregation or the like, they can be included in the carbon nanomaterial 2. The main constituent element is carbon, but a substance containing an element other than carbon is also included in the carbon nanomaterial for the purpose of controlling its structure and physical properties. The carbon nanomaterial 2 is mixed with a solvent such as ethanol, and an alternating voltage is applied to the electrodes la and lb in the suspension, and the electric field intensity is the highest among the uneven electric fields generated by this. It is integrated by electrophoresis between the growing electric field concentration edges 3a and 3b. The production method by dielectrophoresis will be described later in detail. After the accumulation, the solvent is evaporated and physically adsorbed on the insulating substrate 4 in a crosslinked state (see the photograph in FIG. 2). According to the experiment, the carbon nanomaterial 2 shows temperature dependence as shown in FIG. 3, and although not shown, the voltage-current characteristic also has non-linearity, and has properties as a semiconductor. I have. It is known that the carbon nanomaterial 2 exhibiting semiconductivity has a p-type in which a main current carrier is a hole and an n-type in which an electron is an electron, similarly to a silicon semiconductor. Which type is used can be controlled by the structure of the carbon nanomaterial and the doping of other elements. For example, an n-type semiconductor can be obtained by doping with K or Rb. The carbon nanomaterial 2 may be manufactured by any manufacturing method such as a CVD method and a thermal decomposition method. When carbon nanomaterials can be grown directly on electrodes la and lb by these methods, integration by dielectrophoresis is not always necessary. Decomposed gas such as SF gas is placed on the surface of the aggregate of such carbon nanomaterials 2.
6  6
が吸着して電子の授受を行い、電極 la, lb間のインピーダンス変化として現れる。な お、カーボンナノ材料 2が集まった集積体が本発明の検出部に相当する。 Adsorbs and exchanges electrons, and appears as an impedance change between the electrodes la and lb. Note that an aggregate of the carbon nanomaterials 2 corresponds to the detection unit of the present invention.
電極 la, lbについて説明すると、図 1に示すキャッスルウォール型電極は、電極 la , lbの互いに対向する側に 1ピッチ(例えば 50 μ m— 100 μ m)おきに矩形の突出 部が多数形成されたものであり、互いに 1ピッチずらして例えば 5 x m— 10 z m離し て配設されたものである。電極 la, lbの突出部のエッジ部分が電界集中用縁部 3a, 3bであり、この電界集中用縁部 3a, 3b間にとくに電界が集中する。矩形に限らず、 櫛歯状、鋸歯状のものなど多くの形状が利用できる。なお、櫛歯状の櫛歯型電極は、 櫛のように歯(例えば 30 μ ηι- ΙΟΟ μ m幅)を形成された一対の電極が溝に入れ子 状に揷入、組み合わされ、狭いギャップ(例えば 5 x m— 10 z m幅)で対向した電極 であり、主として厚さ方向のエッジ間に不平等電界が形成され、これによつてカーボ ンナノ材料 2が多数集積されるものである。 Explaining the electrodes la and lb, the castle wall type electrode shown in Fig. 1 has a large number of rectangular projections formed at every other pitch (for example, 50 μm-100 μm) on the sides of the electrodes la and lb facing each other. They are arranged at a distance of one pitch from each other, for example, at a distance of 5 xm-10 zm. The edges of the protruding portions of the electrodes la and lb are the electric field concentration edges 3a and 3b, and the electric field is particularly concentrated between the electric field concentration edges 3a and 3b. Many shapes, such as a comb shape and a saw-tooth shape, are not limited to a rectangular shape. Note that a comb-shaped comb-shaped electrode has a pair of electrodes having teeth (for example, 30 μηι-μm width) formed like a comb and nested in a groove and combined with each other to form a narrow gap ( For example, electrodes facing each other at 5 xm—10 zm width An unequal electric field is mainly formed between edges in the thickness direction, whereby a large number of carbon nanomaterials 2 are integrated.
[0038] 電極 la, lbはクロムや白金等の薄膜電極として構成し、ガラス、プラスチック、酸化 シリコンなどの絶縁基板 4にスパッタリングや蒸着、メツキ等で成膜し、フォトリソグラフ ィ一等でエッチングして形成する。薄膜の厚さは 50nm— 200nm程度のものが望ま しい。なお、電極 la, lbの材質はクロムや白金に限らず、交流電圧を印加したとき電 気分解が生じなレ、イオン化傾向の小さい金属であればよレ、。なお、本発明の絶縁ガ ス分解検出装置のように多数同一のガスセンサを設置する場合には、接続端子 5a, 5bと接続できる専用の接続端子を設けるのが好適である。  [0038] The electrodes la and lb are formed as thin-film electrodes of chromium, platinum, or the like, formed on an insulating substrate 4 of glass, plastic, silicon oxide, or the like by sputtering, vapor deposition, plating, or the like, and then etched by photolithography or the like. Formed. It is desirable that the thickness of the thin film be about 50 nm to 200 nm. The materials of the electrodes la and lb are not limited to chromium and platinum. Electrolytic decomposition does not occur when an AC voltage is applied, and metals with a low ionization tendency can be used. When a large number of identical gas sensors are installed as in the insulated gas decomposition detection device of the present invention, it is preferable to provide a dedicated connection terminal that can be connected to the connection terminals 5a and 5b.
[0039] 続いて、高圧電気機器内で部分放電等で絶縁ガスが分解したときに、上述のガス 絶縁機器用分解ガスセンサ 1を複数使って、その分解した位置を直ちに特定できる 実施例 1の絶縁ガス分解検出装置について、図 4 (a) (b)に基づいて説明する。図 4 ( a)において、 6はガス絶縁機器用分解ガスセンサ 1を装着して分解ガスを検出する絶 縁ガス分解検出装置のガス測定装置、 7はガス測定装置 6で分解ガスを検出する GI Sや GCB等の交流または直流の高電圧電気機器である。ガス絶縁機器用分解ガス センサ 1は図 4 (b)のように多数のガス絶縁機器用分解ガスセンサ 1を備えている。ま た、実施例 1のガス測定装置 6は、測定時使用するだけでなぐガス絶縁機器用分解 ガスセンサ 1の作製時に、カーボンナノ材料 2を誘電泳動させるカーボンナノ材料泳 動装置にそのまま利用できるものである。  Subsequently, when the insulating gas is decomposed due to partial discharge or the like in the high-voltage electrical equipment, the decomposition position can be immediately specified by using a plurality of the above-mentioned decomposed gas sensors 1 for gas insulating equipment. The gas decomposition detection device will be described with reference to FIGS. In Fig. 4 (a), 6 is a gas measuring device of an isolated gas decomposition detection device that detects a decomposition gas by installing a decomposition gas sensor 1 for gas insulation equipment, and 7 is a gas detector that detects the decomposition gas with a gas measurement device 6. AC or DC high-voltage electrical equipment such as AC and GCB. As shown in FIG. 4 (b), the decomposition gas sensor 1 for gas insulated equipment includes a large number of decomposition gas sensors 1 for gas insulated equipment. In addition, the gas measuring device 6 of Example 1 can be used as it is for a carbon nano material swimming device that performs dielectrophoresis of the carbon nano material 2 at the time of producing the decomposition gas sensor 1 for gas insulation equipment that can be used only at the time of measurement. It is.
[0040] 11は電極 la, lb間に測定用の交流電圧を印加する電源部、 12は電極 la, lb間 のインピーダンスを測定することができる測定部、 13はマイクロプロセッサ等から構成 され、プログラムやデータを読み込んで機能し、少なくとも電源部 11及び測定部 12を 制御するとともに演算を行う演算制御部(本発明の制御部)、 14は表示部、 15はプロ グラムやデータを記憶したメモリ部、 15aは分解ガスのコンダクタンス変化の校正デー タを格納した校正データ部、 16は計時部である。電源部 11は直流または交流電源 であり、電圧と周波数が演算制御部 13によって制御される。本実施例 1においては、 電圧の振幅 IV— 10V、交流の場合は更に周波数を 1kHz— 10MHzの間で調整す ること力 Sできる。なお、実施例 1では、交流電圧として正弦波を印加するが、ほぼ一定 の周期で流れの向きを変える三角波、方形波等の電圧を意味し、正負両サイドの電 流の平均値が等しレ、ものである。 [0040] Reference numeral 11 denotes a power supply unit that applies an AC voltage for measurement between the electrodes la and lb, 12 denotes a measurement unit that can measure the impedance between the electrodes la and lb, and 13 includes a microprocessor and the like, and includes a program. Control unit (control unit of the present invention) that functions by reading data and data and controls at least the power supply unit 11 and the measurement unit 12, 14 is a display unit, 15 is a memory unit that stores programs and data Reference numeral 15a denotes a calibration data section storing calibration data of the change in conductance of the decomposition gas, and 16 denotes a clock section. The power supply unit 11 is a DC or AC power supply, and the voltage and frequency are controlled by the arithmetic and control unit 13. In the first embodiment, the voltage amplitude IV can be adjusted to 10 V, and in the case of AC, the frequency can be further adjusted to 1 kHz to 10 MHz. In the first embodiment, a sine wave is applied as an AC voltage, but is substantially constant. Means the voltage of the triangular wave, square wave, etc., which changes the direction of the flow in the cycle of, and the average value of the current on both the positive and negative sides is equal.
[0041] 測定部 12には lk Q程度の電流検出用の抵抗が設けられ、図 4 (a)に示す電圧印 加回路に直列に揷入されており、交流の場合は電流の大きさと電圧との位相差を測 定して電極 la, lb間のインピーダンスをリアルタイムに算出している。これによりカー ボンナノ材料 2が分解ガスと反応して生じたインピーダンス変化のコンダクタンス成分 (抵抗の逆数)とキャパシタンス成分を算出している。後で述べるように、分解ガスの 検出にはコンダクタンス、キャパシタンスのどちらを用いてもょレ、が、実施例 1におい ては、キャパシタンスは採用せず、コンダクタンスによる検出を行った場合について説 明する。一方、直流電圧を用いる場合は、電流検出用の抵抗によって電流の大きさ のみを測定して、電極 l a, lb間のコンダクタンスをリアルタイムに算出する。このよう にして測定したコンダクタンスを用レ、、校正データ部 15aの校正データからガス濃度 を求める。  The measuring unit 12 is provided with a current detecting resistor of about lk Q, and is connected in series to the voltage application circuit shown in FIG. 4 (a). The impedance between electrodes la and lb is calculated in real time by measuring the phase difference between the two. As a result, the conductance component (the reciprocal of resistance) and the capacitance component of the impedance change generated by the reaction of the carbon nanomaterial 2 with the decomposition gas are calculated. As will be described later, either the conductance or the capacitance may be used to detect the decomposition gas.In Example 1, however, the case where the capacitance is not used and the detection by the conductance is performed will be described. . On the other hand, when a DC voltage is used, only the magnitude of the current is measured by the resistance for current detection, and the conductance between the electrodes la and lb is calculated in real time. Using the conductance thus measured, the gas concentration is obtained from the calibration data in the calibration data section 15a.
[0042] なお、実際には、測定部 12が検出したコンダクタンスの測定値には変動があり、限 度を越えた変動が分解ガスの発生を意味する。そこで、予め部分放電が確認できる ときのインピーダンス変ィ匕(ここではコンダクタンス変化)の限度となる基準値を取得し ておき、これをメモリ部 15に記憶し、演算制御部 13は測定部 12が検出したインピー ダンス変化と基準値を比較し、基準値を越えたときに分解ガスが発生したと判定する  [0042] Actually, the measured value of the conductance detected by the measuring unit 12 fluctuates, and a fluctuation exceeding the limit means generation of a decomposition gas. Therefore, a reference value which is a limit of the impedance change (in this case, the conductance change) when partial discharge can be confirmed is obtained in advance and stored in the memory unit 15. The detected impedance change is compared with the reference value, and when the reference value is exceeded, it is determined that decomposition gas has been generated.
[0043] ところで、実施例 1の絶縁ガス分解検出装置は、ガス絶縁機器用分解ガスセンサ 1 が高圧電気機器の容器内に図 4 (b)に示すように所定間隔で複数配置されている。 図 4 (b)では A点、 B点、 C点、 · ·等の数箇所にガス絶縁機器用分解ガスセンサ 1が 配置されている。この A点、 B点、 C点、 · ·等で分解ガスの検知を継続して行レ、、ある 時点にレ、ずれ力、 1箇所、例えば A点で測定したインピーダンス変化が基準値を越え たとき、演算制御部 13は A点近傍で部分放電等が発生したと判定し、表示部 14や 図示しないブザー等の報知手段によって異常を報知する。これによつて、高電圧電 気機器で発生する部分放電等の異常を直ちに回避できる。 By the way, in the insulating gas decomposition detection apparatus according to the first embodiment, a plurality of decomposition gas sensors 1 for gas insulation equipment are arranged at predetermined intervals in a container of a high-voltage electric equipment as shown in FIG. 4 (b). In FIG. 4 (b), decomposition gas sensors 1 for gas insulation equipment are arranged at several points, such as points A, B, C,. Decomposition gas detection is continued at points A, B, C, etc., and at some point, the deviation force, the impedance change measured at one point, for example, point A, exceeds the reference value. Then, the arithmetic and control unit 13 determines that a partial discharge or the like has occurred in the vicinity of the point A, and notifies the display unit 14 or a notifying means such as a buzzer (not shown) of the abnormality. As a result, abnormalities such as partial discharge occurring in high-voltage electrical equipment can be immediately avoided.
[0044] さて、以上、ガス絶縁機器用分解ガスセンサ 1と絶縁ガス分解検出装置の構成に関 して説明したが、以下、ガス絶縁機器用分解ガスセンサ 1が分解ガスを検出するとき の作用について説明する。分解ガスの測定は実機では難しいので、図 5に示す分解 ガス発生模擬装置を使って実施している。なお、図 5に示す 7aはガスを封入するタン ク、 41は部分放電、地絡や短絡による放電を模擬するコロナ放電用の電極、 42は電 極 41から放電させるための 60Hzの高電圧電源部である。ガス絶縁機器用分解ガス センサ 1はコロナ放電用の電極からの距離が異なる A点、 B点、 C点に設けられてい る。高電圧電源部 42は 10kV— 50kVの間で電圧を調整することができる。図 6は電 極 41で放電したときの A点におけるコンダクタンスの経時変化である力 S、期間 (period) Aは高圧電圧電源部 42から電極 41へ供給する電圧を〇Nした期間、期間 (period)B は電極 41へ供給する電圧を OFFした期間、期間 (period)Cは電極 41へ供給する電 圧を〇Nした期間を示す。放電電圧が高圧になればなるほど、各ガス絶縁機器用分 解ガスセンサ 1のコンダクタンスが増加することが分る。 The above description relates to the configuration of the decomposition gas sensor 1 for gas insulation equipment and the configuration of the insulation gas decomposition detection device. Hereinafter, the operation when the decomposition gas sensor 1 for gas insulation equipment detects the decomposition gas will be described. Since the measurement of cracked gas is difficult with an actual machine, the measurement is performed using the cracked gas generation simulator shown in Fig. 5. In Fig. 5, 7a is a gas-filled tank, 41 is a corona discharge electrode that simulates partial discharge, discharge due to ground fault or short circuit, and 42 is a 60Hz high voltage power supply for discharging from electrode 41. Department. Decomposed gas sensors 1 for gas insulation equipment are provided at points A, B, and C at different distances from the corona discharge electrode. The high-voltage power supply unit 42 can adjust the voltage between 10 kV and 50 kV. Fig. 6 shows the force S, which is the time-dependent change in conductance at point A when discharging at the electrode 41, and the period (period) A is the period during which the voltage supplied from the high-voltage power supply 42 to the electrode 41 is 〇N, and the period (period) ) B represents a period in which the voltage supplied to the electrode 41 is turned off, and period (period) C represents a period in which the voltage supplied to the electrode 41 is ΔN. It can be seen that the higher the discharge voltage is, the higher the conductance of the disassembled gas sensor 1 for each gas insulating device is.
[0045] ところで絶縁ガスが分解すると、酸化性あるいは還元性の様々のガスを含んだ分解 ガスが生成される。その組成は絶縁ガスごとに異なる。従って、少なくとも酸化性また は還元性を示すガスが検出できれば、ガス絶縁機器用分解ガスセンサ 1は分解ガス の発生を検出できることになる。そこで、組成が明確でない分解ガスを測定するため に、予め性状が明白な酸化性ガスと還元性ガスを測定し、酸化性ガスか還元性ガス 力を判定するための、基準となる応答と出力を把握しておかなければならない。  When the insulating gas is decomposed, a decomposed gas containing various oxidizing or reducing gases is generated. The composition differs for each insulating gas. Therefore, if at least a gas showing oxidizing or reducing properties can be detected, the decomposed gas sensor 1 for gas insulated equipment can detect the generation of decomposed gas. Therefore, in order to measure the decomposition gas whose composition is not clear, the oxidizing gas and the reducing gas whose properties are clearly measured are measured in advance, and the response and output as a reference for determining the power of the oxidizing gas or the reducing gas. You have to know.
[0046] この測定は、室温で lOppmの NH (還元性ガス)と NO (酸化性ガス)に対して行つ  [0046] This measurement is performed on lOppm of NH (reducing gas) and NO (oxidizing gas) at room temperature.
3 2  3 2
た。ガス絶縁機器用分解ガスセンサ 1には周波数 100kHz、振幅 4Vの正弦波高周 波電圧を印加した。初期状態として Arをチャンバに収容しておき、測定のため NH  It was. A high frequency sine wave voltage with a frequency of 100 kHz and an amplitude of 4 V was applied to the decomposition gas sensor 1 for gas insulation equipment. Ar is housed in the chamber as an initial state, and NH is used for measurement.
3 または N〇と置換する。  Replace with 3 or N〇.
2  2
[0047] このとき図 7 (a) (b)、図 8 (a) (b)に示すように、 NHのコンダクタンスは急激に低下  At this time, as shown in FIGS. 7 (a) and (b), and FIGS. 8 (a) and (b), the conductance of NH sharply decreases.
3  Three
し、キャパシタンスは逆に急激に上昇する。これに対し NOでは逆にコンダクタンスが  On the contrary, the capacitance rises sharply. On the other hand, with NO, the conductance is
2  2
増加し、キャパシタンスは減少する。これは、カーボンナノ材料 2が p型半導体である ためと考えられる。すなわち還元性の NH分子がカーボンナノ材料 2に吸着すると、  Increases and the capacitance decreases. This is probably because the carbon nanomaterial 2 is a p-type semiconductor. That is, when the reducing NH molecules are adsorbed on the carbon nanomaterial 2,
3  Three
NH分子からカーボンナノ材料 2に電子が移動し、カーボンナノ材料 2のホール密度 Electrons move from the NH molecule to the carbon nanomaterial 2, and the hole density of the carbon nanomaterial 2
3 Three
が低下し、これによつてコンダクタンスが下がり、キャパシタンスは上がる。これに対し 酸化性の NO分子が吸着すると、カーボンナノ材料 2から NOに電子が移動し、ホ, Which leads to lower conductance and higher capacitance. In contrast When the oxidizing NO molecules are adsorbed, electrons move from the carbon nanomaterial 2 to NO, and
2 2 ール密度が上がり、コンダクタンスが上がり、キャパシタンスは下がるからである。 n型 半導体であれば逆の傾向を示すと考えられる。 This is because the density of the conductor increases, the conductance increases, and the capacitance decreases. An n-type semiconductor is considered to show the opposite tendency.
[0048] このように p型半導体のカーボンナノ材料 2を使えば、分解ガスが酸化性ガスの場 合はコンダクタンスが増加し、還元性ガスの場合にはコンダクタンスが減少する。なお 、キャパシタンス変化を利用することもできるが、浮遊容量等が存在するのでコンダク タンス変化を測定するのが好適である。従って両者を含めインピーダンス変化として 説明するが、以下コンダクタンス変化を中心に説明する。  As described above, when the p-type semiconductor carbon nanomaterial 2 is used, the conductance increases when the decomposition gas is an oxidizing gas, and the conductance decreases when the decomposition gas is a reducing gas. Although a change in capacitance can be used, it is preferable to measure a change in conductance because of the presence of stray capacitance and the like. Therefore, although both are described as impedance changes, the following description focuses on conductance changes.
[0049] さらに、ガス濃度を変えて同様の測定を繰り返し、コンダクタンスが安定状態で飽和 するまでのコンダクタンス変化とガス濃度との関係を求め、これを図 9のような校正曲 線とすれば、コンダクタンス変化を測定することでガス濃度に換算できる。なお、 N〇  [0049] Further, the same measurement is repeated while changing the gas concentration, and the relationship between the conductance change until the conductance saturates in a stable state and the gas concentration is obtained. By using this as a calibration curve as shown in FIG. By measuring the change in conductance, it can be converted into a gas concentration. Note that N〇
2 ではコンダクタンスが飽和しないために、代替値としてガス導入後安定化したとみな せる 9分経過時のデータを用いている(図 8 (a) (b)参照)。検出下限は NO力 SlOppb  In Fig. 2, since the conductance does not saturate, data after 9 minutes, which can be considered as stabilized after gas introduction, is used as an alternative value (see Figs. 8 (a) and (b)). Detection lower limit is NO force SlOppb
2 2
、 NH力 OOppbである。 , NH power is OOppb.
3  Three
[0050] 従って、 p型半導体のカーボンナノ材料 2で分解ガスの検出を行ったとき、コンダク タンスが減少した場合は還元性の強レ、分解ガスが発生したことを示し、コンダクタンス が増加した場合は酸化力の強い分解ガス発生したことを示している。また、飽和した などの所定の時点のコンダクタンス変化を測定すれば、図 9の校正曲線によってガス 濃度を算出できることが分る。  [0050] Therefore, when the decomposition gas is detected with the carbon nanomaterial 2 of the p-type semiconductor, if the conductance decreases, it indicates that the reducing gas is strong and the decomposition gas is generated, and if the conductance increases. Indicates that a decomposition gas having a strong oxidizing power was generated. Also, by measuring the conductance change at a predetermined time such as saturation, it can be seen that the gas concentration can be calculated from the calibration curve in FIG.
[0051] 次に、図 5の分解ガス発生模擬装置とガス絶縁機器用分解ガスセンサ 1を使って、 絶縁ガス(1) SFガス、 (2) Nガス、 (3)空気のいずれかの絶縁ガス内で放電を起こ  Next, using the cracked gas generation simulation device shown in FIG. 5 and the cracked gas sensor 1 for gas insulation equipment, one of the insulating gases (1) SF gas, (2) N gas, and (3) air Discharge within
6 2  6 2
したとき発生する分解ガスのコンダクタンス変化について説明する。実験は、分解ガ ス発生模擬装置のタンク 7aと電極 41を使レ、、 (1) SFガス、 (2) Nガス、(3)空気の  The change in the conductance of the decomposition gas generated when this is performed will be described. In the experiment, the tank 7a of the decomposition gas generation simulator and the electrode 41 were used, (1) SF gas, (2) N gas, and (3) air
6 2  6 2
各絶縁ガスを室温下でそれぞれ封入して、電極 41で放電して分解ガスを検知した。 このうち(1) SFガスを検出する場合には、ガス絶縁機器用分解ガスセンサ 1と同時  Each insulating gas was sealed at room temperature, and discharged by the electrode 41 to detect a decomposed gas. Among them, (1) when detecting SF gas, the same as decomposition gas sensor 1 for gas insulation equipment
6  6
に、 HF検知管(ガスチヱッカー)、 S〇検知管を使って、分解ガス中の HFと S〇の検  In addition, the HF detector tube (gas checker) and the S〇 detector tube are used to detect HF and S〇 in the decomposition gas.
2 2 知を行い、比較した。  22 I made a knowledge and compared.
[0052] 図 10はガス絶縁機器用分解ガスセンサ 1と HF検知管の双方の結果を示したもの である。図 10に示すように、コロナ開始電圧付近(実効値で 9kV)の微弱な放電に対 して、ガス絶縁機器用分解ガスセンサ 1は直ちに反応している。その後 1. 2時間程度 放電を続けた力 HF検知管は反応していない。その後、一旦電圧を下げ、 SFガス [0052] Fig. 10 shows the results of both the decomposition gas sensor 1 for gas insulation equipment and the HF detector tube. It is. As shown in FIG. 10, the decomposed gas sensor 1 for gas insulated equipment immediately responds to a weak discharge near the corona start voltage (effective value: 9 kV). Power that continued to discharge for about 1.2 hours thereafter The HF detector tube did not respond. After that, once lower the voltage, SF gas
6 の分解を促すために印加電圧を 30kVに増加させると、ガス絶縁機器用分解ガスセ ンサ 1は直ちに反応を開始して、当初のコンダクタンス変化の 10倍程度に変化してい る。この放電に対して、 HF検知管は長時間無応答が続き、分解ガスがかなり増加し た 2時間後に始めて反応した。  When the applied voltage was increased to 30 kV to promote the decomposition of 6, the decomposition gas sensor 1 for gas-insulated equipment immediately started the reaction and changed to about 10 times the initial conductance change. In response to this discharge, the HF detector tube remained unresponsive for a long time, and responded only after 2 hours, when the decomposition gas increased considerably.
[0053] このときのガス絶縁機器用分解ガスセンサ 1の応答は、コンダクタンス変化 A G = 3 Ο μ Sであり、 HF検知管が検知した HF濃度は約 1. 8ppmであった。この測定装置の コンダクタンスの測定精度は 1 μ Sであるため、ガス絶縁機器用分解ガスセンサ 1は 1 . 8ppm/30 = 0. 06ppm= 60ppbのガス濃度の HFと同時に発生する酸化性分解 ガスを検知できることが分る。このように、 HFに換算した場合は、 ppbオーダ (数 ppb 以上、少なくとも lOppb以上)の分解ガスを検出することが可能と考えられる。  [0053] At this time, the response of the decomposed gas sensor 1 for gas-insulated equipment was a conductance change A G = 3 µs, and the HF concentration detected by the HF detector tube was about 1.8 ppm. Since the measurement accuracy of the conductance of this measuring device is 1 μS, the decomposition gas sensor for gas insulation equipment 1 detects oxidized decomposition gas generated simultaneously with HF with a gas concentration of 1.8 ppm / 30 = 0.06 ppm = 60 ppb. See what you can do. Thus, when converted to HF, it is considered possible to detect decomposed gases on the order of ppb (several ppb or more, at least lOppb).
[0054] 同様に、図 11によっても、コロナ開始電圧付近(実効値で 9kV)で、ガス絶縁機器 用分解ガスセンサ 1は直ちに反応している。 1. 5時間程度放電を続けても SO検知  Similarly, according to FIG. 11, the decomposition gas sensor 1 for gas insulation equipment immediately reacts near the corona start voltage (effective value: 9 kV). 1. SO detection even when discharging for about 5 hours
2 管は反応しない。その後、印加電圧を下げ、再度 30kVに増加させると、ガス絶縁機 器用分解ガスセンサ 1は直ちに反応し、当初のコンダクタンス変化の 10倍程度に変 化している。 SO検知管は長時間無応答が続き、分解ガスが増加した 2時間後に反  2 Tubes do not react. Then, when the applied voltage was lowered and increased to 30 kV again, the decomposition gas sensor for gas-insulated equipment 1 immediately reacted and changed to about 10 times the initial change in conductance. The SO detector tube remains non-responsive for a long time, and responds two hours after the decomposition gas increases.
2  2
応している。  I am responding.
[0055] このときのガス絶縁機器用分解ガスセンサ 1の応答は A G = 45 /i Sであり、 SO検  [0055] At this time, the response of the decomposed gas sensor 1 for gas insulation equipment is A G = 45 / i S,
2 知管が検知した SO濃度は約 1. 2ppmであった。この測定精度は l Sであるから、  2 The SO concentration detected by the Shiretoko was about 1.2 ppm. Since the measurement accuracy is l S,
2  2
ガス絶縁機器用分解ガスセンサ 1は 1. 2ppm/45 = 0. 02ppm= 20ppbのガス濃 度の S〇と同時に発生する酸化性分解ガスを検知できたことが分る。このように、 SO It can be seen that the decomposed gas sensor 1 for gas insulation equipment was able to detect oxidized decomposed gas generated simultaneously with S〇 at a gas concentration of 1.2 ppm / 45 = 0.02 ppm = 20 ppb. Thus, SO
2 2
に換算した場合は、 lppb程度のガス濃度を検出することが可能と考えられる。 When converted to, it is considered possible to detect a gas concentration of about lppb.
2 2
[0056] さらに、図 12は(1) SFガス、 (2) Nガス、 (3)空気に対するコンダクタンス変化を  [0056] Further, Fig. 12 shows the change in conductance for (1) SF gas, (2) N gas, and (3) air.
6 2  6 2
比較して示すものである。 SFガスに対しては印加電圧 l lkV、 Nガスに対しては 8k  These are shown in comparison. Applied voltage l lkV for SF gas, 8k for N gas
6 2  6 2
V、空気に対しては l lkVを印加している。図 12の結果からみると、 SFガスのコンダ  LlkV is applied to V and air. According to the results in Fig. 12, the SF gas conductor
6  6
クタンス変化が最も低レ、が、 Nガス、空気の分解ガスのコンダクタンス変化も正の変 化であって相似に近い形状をしている。従って、 Nガス及び空気中の放電で発生す The conductance change is the lowest, but the conductance change of N gas and air decomposition gas is also a positive change. It has a similar shape. Therefore, it is generated by discharge in N gas and air.
2  2
る分解ガスは、 SFガス中の放電で発生する分解ガスとまったく同様に、酸化性であ  The decomposed gas is oxidizing, just like the decomposed gas generated by the discharge in SF gas.
6  6
ること力 s分り、校正曲線を作成すれば、コンダクタンス変化を測定することによってガ ス濃度を算出できることが分る。同様に、(1) SFガス、 (2) Nガス、(3)空気の絶縁  If the calibration curve is created, the gas concentration can be calculated by measuring the change in conductance. Similarly, (1) SF gas, (2) N gas, (3) air insulation
6 2  6 2
ガスのレ、ずれか 1種を主成分とし、他のガスを副成分として混合した絶縁ガスであつ ても、あるいは、 Nガス、 C〇ガス等の絶縁ガスを副成分として、この中に含めて混  An insulating gas containing one type of gas as a main component and another gas as a subcomponent, or an insulating gas such as N gas or C〇 gas as a subcomponent, is included in this Mixed
2 2  twenty two
合しても、同様に検出も濃度の算出も可能である。  Even in such a case, the detection and the calculation of the concentration can be similarly performed.
[0057] ところで、絶縁ガス分解検出装置は、図 4 (b)の A点、 B点、 C点、 "のように、ガス 絶縁機器用分解ガスセンサ 1が高圧電気機器の絶縁ガス内に複数配置される。そこ で、部分放電等の位置から離れるに従って、ガス絶縁機器用分解ガスセンサ 1の応 答がどのように変化するか説明する。測定は図 5の分解ガス発生模擬装置で行った。  By the way, as shown in points A, B and C in FIG. 4 (b), the insulation gas decomposition detection device has a plurality of decomposition gas sensors 1 for gas insulation equipment arranged in the insulation gas of a high-pressure electric equipment. Here, we explain how the response of the cracked gas sensor for gas-insulated equipment 1 changes as the distance from the position of partial discharge, etc., was measured using the cracked gas generation simulation device shown in Fig. 5.
[0058] この測定においては、図 5の電極 41から、 A点は 5cm、 B点は 20cm、 C点は 40cm のところに配置した。放電のまわりでの測定点を増やすため不等ピッチにしている。 図 13によれば、電極 41の付近で発生した分解ガスは電極 41からの距離が大きくな るほどガスの拡散が起こり、分解ガスに対するコンダクタンスは低くなることが分る。従 つて、電極 41で放電すると、 A点のガス絶縁機器用分解ガスセンサ 1がいち早く反応 し、次に B点、最後に C点のガス絶縁機器用分解ガスセンサ 1が反応する。そしてい ずれの箇所でも、放電の継続時間に比例してコンダクタンスは上昇する。  In this measurement, from electrode 41 in FIG. 5, point A was placed at 5 cm, point B at 20 cm, and point C at 40 cm. An irregular pitch is used to increase the number of measurement points around the discharge. According to FIG. 13, it can be seen that the decomposition gas generated near the electrode 41 diffuses as the distance from the electrode 41 increases, and the conductance to the decomposition gas decreases. Therefore, when the discharge occurs at the electrode 41, the decomposition gas sensor 1 for gas insulated equipment at point A reacts promptly, then the decomposition gas sensor 1 for gas insulation equipment at point B and finally C. At any point, the conductance increases in proportion to the duration of the discharge.
[0059] このように、絶縁ガス分解検出装置のガス絶縁機器用分解ガスセンサ 1を多数配置 したとき、部分放電に対して最短距離のものが反応し、このとき直ちに、この位置を部 分放電の位置と判定すれば、 GIS等の高電圧電気機器の異常診断が迅速に行える 。また、拡散を利用して、 2箇所のガス絶縁機器用分解ガスセンサ 1のコンダクタンス が順に基準の値を越えたときに、この 2箇所の間のどこかで部分放電が起こったと判 断することができ、この場合、時間差を利用してガス絶縁機器用分解ガスセンサ 1の 数を減らすことも可能である。  [0059] As described above, when a large number of the decomposition gas sensors 1 for gas insulation equipment of the insulation gas decomposition detection device are arranged, the one having the shortest distance reacts to the partial discharge. If the position is determined, abnormality diagnosis of high-voltage electrical equipment such as GIS can be performed quickly. In addition, when the conductance of the decomposition gas sensor 1 for gas-insulated equipment at two locations sequentially exceeds the reference value using diffusion, it can be determined that partial discharge has occurred somewhere between the two locations. In this case, it is also possible to reduce the number of decomposed gas sensors 1 for gas insulation equipment by utilizing the time difference.
[0060] ところで、以上説明した実施例 1のガス絶縁機器用分解ガスセンサは、誘電泳動に よって作成するものである。そこで、実施例 1のガス絶縁機器用分解ガスセンサ 1を作 製するカーボンナノ材料泳動装置について説明する。 [0061] 図 14において、 21は電極 la, lb間に誘電泳動を発生させるために交流電圧を印 加する誘電泳動用の電源部、 22は電極 la, lb間のインピーダンスを測定することが できる測定部、 23はマイクロプロセッサ等から構成され、プログラムやデータを読み 込んで機能し、少なくとも電源部 21及び測定部 22を制御するとともに演算を行う演 算制御部、 24は表示部、 25はプログラムやデータを記憶したメモリ部、 25aは集積量 と時間を収めたデータ部、 26は計時部である。電源部 21は誘電泳動をさせるため交 流電源でなければならなレ、。カーボンナノ材料泳動装置の以上説明した制御構成は 、基本的にガス測定装置 6と同一構成であり、本実施例 1においては、ガス測定装置 6をガス測定/誘電泳動制御装置 6aとして共用している。 Incidentally, the above-described decomposition gas sensor for gas-insulated equipment of Example 1 is produced by dielectrophoresis. Therefore, a carbon nanomaterial migration apparatus for producing the decomposition gas sensor 1 for a gas insulating device according to the first embodiment will be described. In FIG. 14, reference numeral 21 denotes a power supply unit for dielectrophoresis that applies an AC voltage to generate dielectrophoresis between the electrodes la and lb, and 22 can measure the impedance between the electrodes la and lb. The measurement unit 23 comprises a microprocessor or the like, reads and operates programs and data, controls the power supply unit 21 and the measurement unit 22 and performs calculations at the same time, 24 denotes a display unit, and 25 denotes a program And 25a is a data section that stores the amount of integration and time, and 26 is a clock section. The power supply section 21 must be an AC power supply for performing dielectrophoresis. The control configuration of the carbon nano material migration apparatus described above is basically the same as that of the gas measurement apparatus 6, and in the first embodiment, the gas measurement apparatus 6 is shared as the gas measurement / dielectrophoresis control apparatus 6a. I have.
[0062] 次に、 27はエタノール等の溶媒にカーボンナノ材料 2を懸濁させた懸濁溶媒を誘 電泳動させるために導入するための泳動用チャンバである。 28は懸濁させた懸濁溶 媒を貯めた容器、 29は懸濁溶媒を泳動用チャンバ 27に送るポンプ、 30は溶媒に力 一ボンナノ材料 2を懸濁させために設けられた超音波振動を容器 28に与える等の攪 拌装置、 31 , 32は電磁弁である。  Next, reference numeral 27 denotes an electrophoresis chamber for introducing a suspension solvent in which the carbon nanomaterial 2 is suspended in a solvent such as ethanol for electrophoresis. 28 is a container containing the suspended suspension solvent, 29 is a pump that sends the suspension solvent to the electrophoresis chamber 27, 30 is ultrasonic vibration provided to suspend the force nanomaterial 2 in the solvent And a stirring device 31 for supplying the container 28 to the container 28, and electromagnetic valves 31 and 32.
[0063] このカーボンナノ材料泳動装置を使ってガス絶縁機器用分解ガスセンサ 1を作製 するときのプロセスを説明する。薄膜電極の電極 la, lbを絶縁基板 4に形成し、容器 28内の例えば濃度 1 μ g/ml程度のエタノール中に予め作成しておいたカーボンナ ノ材料 2、例えば直径 20nm,長さ 5nm— 20nmの多層 CNT (純度 95%)を注ぐ。演 算制御部 23が攪拌装置 30を 60分程度動作させ、カーボンナノ材料 2を分散させる 。この状態で、データ部は電磁弁 31 , 32を開きポンプ 29を運転し、懸濁液を 15 /i l 程度の容積の泳動用チャンバ 27内に送る。次いで電極 la, lb間に高周波数の電圧 を印加し、発生する不平等電界によって誘電泳動を開始する。このタイミングから計 時部 26がカウントを開始する。計時部 26による時間の測定とともに、測定部 22で電 流を測定する。演算制御部 23は、ガス絶縁機器用分解ガスセンサ 1の予定の集積量 に対応した所定の時間をデータ部 25aから読み出して、カウントアウトしたら電源部 2 1を停止し、ポンプ 29を止め、落水後に電磁弁 31, 32を閉止する。泳動用チャンバ 27内を室温のまま空気を循環させ、比較的短時間にエタノールを蒸散させる。乾燥 後、カーボンナノ材料 2が集積されて架橋されたガス絶縁機器用分解ガスセンサ 1を 取り出す。このように誘電泳動する時間を管理することでカーボンナノ材料 2の集積 量をコントロールでき、高感度のガス絶縁機器用分解ガスセンサ 1の作製を容易に行 える。 [0063] A process for producing the decomposition gas sensor 1 for gas insulation equipment using this carbon nanomaterial migration apparatus will be described. The electrodes la and lb of the thin-film electrode are formed on the insulating substrate 4, and the carbon nanomaterial 2 previously prepared in, for example, ethanol having a concentration of about 1 μg / ml in a container 28, for example, a diameter of 20 nm and a length of 5 nm— Pour 20nm multi-walled CNT (purity 95%). The arithmetic control unit 23 operates the stirrer 30 for about 60 minutes to disperse the carbon nanomaterial 2. In this state, the data section opens the solenoid valves 31 and 32 and operates the pump 29 to send the suspension into the electrophoresis chamber 27 having a volume of about 15 / il. Next, a high-frequency voltage is applied between the electrodes la and lb, and dielectrophoresis is started by the generated uneven electric field. At this timing, the timer 26 starts counting. The current is measured by the measuring unit 22 together with the time measurement by the timer unit 26. The arithmetic control unit 23 reads out a predetermined time corresponding to the planned accumulation amount of the decomposition gas sensor 1 for gas insulation equipment from the data unit 25a, stops the power supply unit 21 after counting out, stops the pump 29, and Close solenoid valves 31 and 32. Air is circulated in the electrophoresis chamber 27 at room temperature to evaporate ethanol in a relatively short time. After drying, the decomposition gas sensor for gas-insulated equipment 1 in which carbon nanomaterials 2 are integrated and cross-linked Take out. By controlling the time of dielectrophoresis in this way, the amount of accumulation of the carbon nanomaterial 2 can be controlled, and the highly sensitive decomposition gas sensor 1 for gas insulating equipment can be easily manufactured.
[0064] ところで、誘電泳動力 F は複素数表現で F = 2 π ε * a3 ' Re [K] VE2で表現 By the way, the dielectrophoretic force F is represented by a complex number represented by F = 2πε * a 3 ′ Re [K] VE 2
DEP DEP m  DEP DEP m
できる。ここに、 ε :懸濁液の誘電率、 a :球形近似したときのカーボンナノ材料の半  it can. Where, ε: dielectric constant of the suspension, a: half of the carbon nanomaterial when approximated by a sphere
m  m
径、 Re [K]:微小物体と懸濁液の複素誘電率に依存するパラメータ、 E :電界強度で ある。この Re [K]は、誘電泳動に用いる電界の周波数 i¾rパラメータとして、正負に変 化する。特定の周波数域、例えば 10kHz 1MHzで正の誘電泳動力が働き、それ以 外では負の誘電泳動力が働ぐといった性格を有す。従って周波数を選んで、正の 最大の誘電泳動力 F を作用させてカーボンナノ材料 2を集積する必要がある。  Diameter, Re [K]: a parameter that depends on the complex permittivity of the minute object and suspension, E: electric field strength. This Re [K] changes to positive or negative as the frequency i¾r parameter of the electric field used for dielectrophoresis. Positive dielectrophoretic force works in a specific frequency range, for example, 10 kHz and 1 MHz, and negative dielectrophoretic force works in other cases. Therefore, it is necessary to select the frequency and apply the maximum positive dielectrophoretic force F to accumulate the carbon nanomaterial 2.
DEP  DEP
[0065] カーボンナノ材料 2にはフラーレンのような球体近似できるものもある力 概ねナノ サイズで長尺の繊維状のものが多レ、。しかし、実験によればいずれも同様に操作可 能であり、カーボンナノ材料泳動装置では、正の誘電泳動力を用い、分極した物体 を電界が最大となる領域に移動させることができる。周波数は実験的に定めればよい 。実施例 1においては、周波数 100kHz、電圧の振幅 5Vで誘電泳動させている。な お、カーボンナノ材料 2ごとに、このような周波数、電圧の振幅を設定し、誘電泳動時 間と集積量の関係をデータ部 25aに格納しておく。  [0065] The carbon nanomaterial 2 has a force that can approximate a sphere such as fullerene. The force is generally a nano-sized and long fibrous material. However, according to the experiments, all can be operated in the same manner, and the carbon nanomaterial migration apparatus can move the polarized object to the region where the electric field is maximized by using the positive dielectrophoretic force. The frequency may be determined experimentally. In Example 1, dielectrophoresis was performed at a frequency of 100 kHz and a voltage amplitude of 5 V. In addition, such a frequency and a voltage amplitude are set for each carbon nanomaterial 2, and the relationship between the dielectrophoresis time and the accumulation amount is stored in the data section 25a.
[0066] このように実施例 1のガス絶縁機器用分解ガスセンサ 1は、電気力学現象である誘 電泳動を利用してカーボンナノ材料 2をマイクロ電極上に容易に集積し、電極 l a, lb 間に容易に架橋を形成することができ、低コストでガス絶縁機器用分解ガスセンサ 1 を容易に製造することができる。実施例 1のガス絶縁機器用分解ガスセンサ 1は、 10 ppb以下のガスを常温で高速度、高精度に検出することができる。  As described above, the decomposed gas sensor 1 for gas-insulated equipment of Example 1 easily integrates the carbon nanomaterial 2 on the microelectrode using electrophoresis, which is an electrodynamic phenomenon, so that the electrode la, lb Thus, the crosslinked gas sensor 1 for gas-insulated equipment can be easily manufactured at low cost. The decomposition gas sensor 1 for gas-insulated equipment of Example 1 can detect a gas of 10 ppb or less at a high speed and a high accuracy at a normal temperature.
[0067] そして、このガス絶縁機器用分解ガスセンサ 1は、 GIS等内に通常は存在しない分 解ガスが発生すると直ちにこれを検出し、 GIS等の異常を事前に発見することができ るものである。従来の固体電解質を使ったガスセンサは常温では検出感度が悪ぐヒ ータで 400°C程度に加熱して使用しなければならず、し力、も応答が非常に遅レ、もの であるが、このガス絶縁機器用分解ガスセンサ 1は常温で使用でき、高感度で応答 がきわめて速ぐ製造が容易で安価であり、小型で、簡単に電気的出力を得ることが でき、繰り返し利用することができる。 [0067] Then, the decomposed gas sensor 1 for gas-insulated equipment can detect a decomposed gas that does not normally exist in a GIS or the like as soon as it is generated, and can detect an abnormality in the GIS or the like in advance. is there. Conventional gas sensors using solid electrolytes must be used by heating to about 400 ° C with a heater that has poor detection sensitivity at room temperature, and the response is very slow. The gas decomposition equipment sensor 1 for gas-insulated equipment can be used at room temperature, is highly sensitive, has a very fast response, is easy to manufacture, is inexpensive, and is small and can easily obtain an electrical output. It can be used repeatedly.
[0068] また、本発明の絶縁ガス分解検出装置は、高圧電気機器内で絶縁ガスが分解した ときに、分解した位置を直ちに特定できる。  [0068] Further, the insulating gas decomposition detection device of the present invention can immediately specify the position where the insulating gas is decomposed when the insulating gas is decomposed in the high-voltage electrical equipment.
[0069] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
本出願は、 2004年 1月 29日出願の日本特許出願(特願 2004— 021531)に基づくもの であり、その内容はここに参照として取り込まれる。  This application is based on a Japanese patent application filed on January 29, 2004 (Japanese Patent Application No. 2004-021531), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0070] 本発明は、安価で高速に応答し、検出精度が高ぐ製造が容易なガスセンサ、とく に変電設備の異常を予兆段階で事前に発見するガス絶縁機器用分解ガスセンサに 適用できる。とそれを使って GIS等の高電圧電気機器の異常診断を行える絶縁ガス 分解検出装置に適用できる。 The present invention can be applied to a gas sensor that is inexpensive, responds at high speed, has high detection accuracy, and is easy to manufacture, and is particularly applicable to a decomposition gas sensor for gas insulated equipment that detects an abnormality in a substation facility in advance. It can be applied to an insulation gas decomposition detection device that can use it to diagnose abnormalities in high voltage electrical equipment such as GIS.

Claims

請求の範囲 The scope of the claims
[1] 高電圧電気機器に封入された絶縁ガスの分解ガスを検出することができるガス絶縁 機器用分解ガスセンサであって、半導体カーボンナノ材料力もなる検出部を備え、前 記分解ガスが前記半導体カーボンナノ材料に吸着して反応することにより、前記検出 部のインピーダンス変化を出力することを特徴とするガス絶縁機器用分解ガスセンサ  [1] A decomposed gas sensor for a gas insulating device capable of detecting a decomposed gas of an insulating gas sealed in a high-voltage electric device, comprising a detection unit that also has a semiconductor carbon nanomaterial power, wherein the decomposed gas is the semiconductor A decomposed gas sensor for a gas insulation device, which outputs a change in impedance of the detection unit by adsorbing and reacting with a carbon nanomaterial.
[2] 請求項 1記載のガス絶縁機器用分解ガスセンサにぉレ、て、前記絶縁ガスが(1) SF [2] The decomposition gas sensor according to claim 1, wherein the insulation gas is (1) SF.
6 ガス、(2)窒素ガス、 (3)空気のいずれ力 1種または該 1種を主成分として 2種以上を 混合した、若しくは、該 2種以上のガスの中に(1) (2) (3)以外の絶縁ガスを含めて混 合したガスであって、前記検出部が該ガスの分解ガスを検出することを特徴とする請 求項 1記載のガス絶縁機器用分解ガスセンサ。  6 Gas, (2) Nitrogen gas, (3) One of the forces of air or a mixture of two or more with the one as the main component, or (1) (2) 2. The decomposed gas sensor for gas-insulated equipment according to claim 1, wherein the detection section detects a decomposed gas of the gas including an insulating gas other than (3).
[3] 前記インピーダンス変化としてコンダクタンス変化を出力することを特徴とする請求項3. The method according to claim 1, wherein a change in conductance is output as the change in impedance.
1または 2に記載のガス絶縁機器用分解ガスセンサ。 3. The decomposition gas sensor for gas-insulated equipment according to 1 or 2.
[4] 前記インピーダンス変化としてキャパシタンス変化を出力することを特徴とする請求項[4] A capacitance change is output as the impedance change.
1または 2に記載のガス絶縁機器用分解ガスセンサ。 3. The decomposition gas sensor for gas-insulated equipment according to 1 or 2.
[5] 一対の電極を備え、前記検出部が前記電極の間に架橋された半導体カーボンナノ 材料から構成されたことを特徴とする請求項 1一 4のいずれかに記載されたガス絶縁 機器用分解ガスセンサ。 [5] The gas-insulated equipment according to any one of [14] to [14], further comprising a pair of electrodes, wherein the detection unit is made of a semiconductor carbon nano material bridged between the electrodes. Decomposition gas sensor.
[6] 前記電極が交流電圧印加時に不平等電界を発生するための電界集中用縁部を備 え、前記検出部が誘電泳動によって形成されたことを特徴とする請求項 5記載のガス 絶縁機器用分解ガスセンサ。 6. The gas insulating device according to claim 5, wherein the electrode has an electric field concentration edge for generating an uneven electric field when an AC voltage is applied, and the detection unit is formed by dielectrophoresis. For decomposition gas sensor.
[7] 前記電極が絶縁基板上に設けられた薄膜電極であって、前記電界集中用縁部が該 電極のそれぞれに形成された突出部のエッジであることを特徴とする請求項 6記載の ガス絶縁機器用分解ガスセンサ。 7. The electrode according to claim 6, wherein the electrode is a thin film electrode provided on an insulating substrate, and the electric field concentration edge is an edge of a protrusion formed on each of the electrodes. Decomposition gas sensor for gas insulation equipment.
[8] 前記半導体カーボンナノ材料力 ¾型半導体であることを特徴とする請求項 1一 7のい ずれかに記載されたガス絶縁機器用分解ガスセンサ。 [8] The decomposition gas sensor for gas-insulated equipment according to any one of claims 117, wherein the semiconductor carbon nanomaterial is a semiconductor.
[9] 前記半導体カーボンナノ材料が n型半導体であることを特徴とする請求項 1一 7のい ずれかに記載されたガス絶縁機器用分解ガスセンサ。 [9] The decomposed gas sensor for gas-insulated equipment according to any one of claims 117, wherein the semiconductor carbon nanomaterial is an n-type semiconductor.
[10] 前記高圧電気機器の絶縁ガス内に複数配置された請求項 1一 9のいずれかのガス 絶縁機器用分解ガスセンサと、前記ガス絶縁機器用分解ガスセンサにそれぞれ電圧 を印加するための電源と、該電圧が印加されたとき各ガス絶縁機器用分解ガスセン サのインピーダンス変化をそれぞれ検出する測定部と、前記測定部が検出したインピ 一ダンス変化を所定の基準値と比較する制御部とを備え、前記制御部によって、基 準値以上のインピーダンス変化を出力したガス絶縁機器用分解ガスセンサの位置を 分解ガスが発生した位置と判定することを特徴とする絶縁ガス分解検出装置。 [10] The gas-insulated equipment decomposition gas sensor according to any one of [11] to [9], wherein a plurality of the gas-insulation equipment decomposition gas sensors are arranged in an insulating gas of the high-voltage electric equipment, and a power supply for applying a voltage to the gas insulation equipment decomposition gas sensor. A measuring unit that detects a change in impedance of each of the decomposition gas sensors for gas-insulated equipment when the voltage is applied, and a control unit that compares the impedance change detected by the measuring unit with a predetermined reference value. And a controller configured to determine a position of the cracked gas sensor for a gas insulating device that has output an impedance change equal to or greater than a reference value as a position where the cracked gas is generated.
[11] 高電圧電気機器の絶縁ガス中に半導体カーボンナノ材料からなる検出部を備えた ガス絶縁機器用分解ガスセンサを配置し、前記ガス絶縁機器用分解ガスセンサに、 前記絶縁ガスから発生した分解ガスを前記半導体カーボンナノ材料と反応させ、前 記検出部のインピーダンス変化によって分解ガスを検出することを特徴とする分解ガ ス検出方法。  [11] A decomposed gas sensor for a gas insulated device provided with a detection unit made of a semiconductor carbon nano material in an insulating gas of a high-voltage electric device, and a decomposed gas generated from the insulating gas is provided in the decomposed gas sensor for a gas insulated device. And reacting the gas with the semiconductor carbon nanomaterial, and detecting the decomposed gas by the impedance change of the detection section.
PCT/JP2005/001234 2004-01-29 2005-01-28 Decomposed gas sensor for gas-insulated apparatus, insulating gas decomposition detector, and decomposed gas detecting method WO2005073702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-021531 2004-01-29
JP2004021531A JP4500993B2 (en) 2004-01-29 2004-01-29 Insulating gas decomposition detection apparatus and decomposition gas detection method

Publications (1)

Publication Number Publication Date
WO2005073702A1 true WO2005073702A1 (en) 2005-08-11

Family

ID=34823798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001234 WO2005073702A1 (en) 2004-01-29 2005-01-28 Decomposed gas sensor for gas-insulated apparatus, insulating gas decomposition detector, and decomposed gas detecting method

Country Status (2)

Country Link
JP (1) JP4500993B2 (en)
WO (1) WO2005073702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184140A (en) * 2023-04-21 2023-05-30 北京西能电子科技发展有限公司 Multifunctional monomer sensor suitable for GIS equipment defect detection

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052932B2 (en) * 2006-12-22 2011-11-08 Research Triangle Institute Polymer nanofiber-based electronic nose
JP4530034B2 (en) * 2007-03-30 2010-08-25 株式会社イデアルスター Gas sensor, gas detection module therefor, and gas measurement system using them
US8381587B2 (en) 2007-05-08 2013-02-26 Ideal Star Inc. Gas sensor, gas measuring system using the gas sensor, and gas detection module for the gas sensor
US7816681B2 (en) * 2008-12-03 2010-10-19 Electronics And Telecommunications Research Institute Capacitive gas sensor and method of fabricating the same
CN103946695B (en) * 2011-11-18 2016-03-30 三菱电机株式会社 Moisture content detection device
CN112198238B (en) * 2020-08-25 2021-12-28 西安交通大学 Method and system for detecting gas decomposition products in circuit breaker under discharge working condition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777274B2 (en) * 1990-08-17 1998-07-16 株式会社東芝 Gas insulated electrical equipment
JP2825634B2 (en) * 1990-10-03 1998-11-18 三菱電機株式会社 Internal abnormality detection device for gas insulated electrical equipment
JP2003227808A (en) * 2002-02-05 2003-08-15 Koyo Seiko Co Ltd Sensor using carbon nano tube
JP2003227806A (en) * 2002-02-01 2003-08-15 Kansai Research Institute Gaseous substance-detecting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004300B2 (en) * 2002-02-05 2007-11-07 大阪瓦斯株式会社 Object exploration method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777274B2 (en) * 1990-08-17 1998-07-16 株式会社東芝 Gas insulated electrical equipment
JP2825634B2 (en) * 1990-10-03 1998-11-18 三菱電機株式会社 Internal abnormality detection device for gas insulated electrical equipment
JP2003227806A (en) * 2002-02-01 2003-08-15 Kansai Research Institute Gaseous substance-detecting method
JP2003227808A (en) * 2002-02-05 2003-08-15 Koyo Seiko Co Ltd Sensor using carbon nano tube

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUEHIRO J. ET AL: "Carbon nanotube Gas Sensor SF6 Bunkai Gas no Kenshutsu", DAI 51 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU 2004 NEN 3 GATSU, 2004, pages 540, XP002992179 *
SUEHIRO J. ET AL: "Fabricationn of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy", vol. 36, no. 21, 7 November 2003 (2003-11-07), pages L109 - L114, XP002342595 *
SUEHIRO J. ET AL: "Yuden Eido ni yoru Carbon Nanotube no Shusekika Zairyo Kenkyukai Shiryo", DENKI GAKKAI DENSHI ZAIRYO KENKYUKAI SHIRYO, vol. EFM-03, no. 35-44, 19 December 2003 (2003-12-19), pages 41 - 46, XP002992178 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116184140A (en) * 2023-04-21 2023-05-30 北京西能电子科技发展有限公司 Multifunctional monomer sensor suitable for GIS equipment defect detection

Also Published As

Publication number Publication date
JP2005214788A (en) 2005-08-11
JP4500993B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
WO2005073702A1 (en) Decomposed gas sensor for gas-insulated apparatus, insulating gas decomposition detector, and decomposed gas detecting method
Suehiro et al. Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis
Suehiro et al. Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement
EP1552272B1 (en) Palladium-silver alloy nanowires and nanoparticle columns for use as variable-range hydrogen sensors
Wang et al. A review of carbon nanotubes-based gas sensors
Pandey et al. Pd-doped reduced graphene oxide sensing films for H2 detection
JP4320316B2 (en) Sensor for detecting chemical substances
JPH09210963A (en) Solid gas sensor
JP4825968B2 (en) Carbon nanotube sensor and manufacturing method thereof
JP4953306B2 (en) Hydrogen gas sensor manufacturing method
Jung et al. Enhanced humidity-sensing response of metal oxide coated carbon nanotube
CN109459469A (en) A kind of virtual sensors array and preparation method thereof
Wang et al. A novel gas ionization sensor using Pd nanoparticle-capped ZnO
Huang et al. A novel conductive humidity sensor based on field ionization from carbon nanotubes
JP4530034B2 (en) Gas sensor, gas detection module therefor, and gas measurement system using them
Kim et al. Nanoporous silicon thin film-based hydrogen sensor using metal-assisted chemical etching with annealed palladium nanoparticles
Fawcett et al. Kinetics and thermodynamics of the electroreduction of buckminsterfullerene in benzonitrile
Zhang et al. Pt-doped TiO 2-based sensors for detecting SF 6 decomposition components
Basu et al. Electrochemical sensing using nanodiamond microprobe
US9664634B2 (en) Nanostructured sensor architecture and method for enhanced chemical detection
Ionete et al. SWCNT-Pt-P 2 O 5-Based Sensor for Humidity Measurements
Cai et al. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode
US10976276B2 (en) Nanofiber sensor
CN209946061U (en) Graphene-based sensor for GIS characteristic gas detection
Timalsina et al. Characterization of a vertically aligned silica nanospring-based sensor by alternating current impedance spectroscopy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase