JPS60168504A - Brine desalting operation in solar energy power generation electrodialytic apparatus - Google Patents

Brine desalting operation in solar energy power generation electrodialytic apparatus

Info

Publication number
JPS60168504A
JPS60168504A JP59024721A JP2472184A JPS60168504A JP S60168504 A JPS60168504 A JP S60168504A JP 59024721 A JP59024721 A JP 59024721A JP 2472184 A JP2472184 A JP 2472184A JP S60168504 A JPS60168504 A JP S60168504A
Authority
JP
Japan
Prior art keywords
tank
water
concn
output
electrodialysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024721A
Other languages
Japanese (ja)
Other versions
JPS6359725B2 (en
Inventor
Osamu Kuroda
修 黒田
Yasuo Koseki
小関 康雄
Sankichi Takahashi
燦吉 高橋
Seiji Koike
小池 清二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP59024721A priority Critical patent/JPS60168504A/en
Publication of JPS60168504A publication Critical patent/JPS60168504A/en
Publication of JPS6359725B2 publication Critical patent/JPS6359725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PURPOSE:To utilize the varied output of a solar cell in the operation of an electrodialytic apparatus with high efficiency, by providing a fresh water tank and an intermediate concn. tank and desalting brine in the intermediate concn. tank, when the output of the solar cell is high, so as to reach an intermediate concn. while supplying brine to the intermediate concn. tank corresponding to quantity of solar radiation to regulate a salt concn. CONSTITUTION:Water with an intermediate concn., which was desalted to the intermediate concn. in the previous day, is transferred to a fresh water tank 6 in an amount corresponding to that of fresh water formed per a day and, when the output of a solar cell is low over a predetermined time from sunrise, the water in said fresh water tank 6 is transferred to an electrodialytic apparatus 2 and desalted to obtain fresh water. Next, water with an intermediate concn. in an intermediate concn. tank 5 is recirculated to the electrodialytic apparatus 2 and desalted. Because the output of the cell shows increase inclination until the southing time of the sun, a valve 11 is opened and raw water is supplied to the intermediate concn. tank 5 and conditioned so as to enhance a salt concn. Because the salt concn. is lowered with the lowering in the output of the cell from the southing time to sunset and the max. output condition of the cell is formed automatically, water with an intermediate concn. desalted in the fresh water tank 6 in the next day is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は太陽光発電電気透析装置による塩水淡水化の操
業方法に係り、特に太陽の日射量が変動しても太陽電池
の出力を高効率で塩水の淡水化に使用するのに好適な太
陽光発電電気透析装置による塩水あるいは海水淡水化の
操業方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of operating salt water desalination using a photovoltaic electrodialysis device, and particularly to a method for controlling the output of a solar cell with high efficiency even when the amount of solar radiation changes. The present invention relates to a method of operating salt water or seawater desalination using a solar power generation electrodialysis device suitable for use in salt water desalination.

〔発明の背景〕[Background of the invention]

電気透析法は電解質溶液たとえば海水に対し電位差を与
え、異符号イオンに選択性をもつイオン交換膜を用い電
解質の濃縮および希釈を行う方法である。この方法は、
■海水(塩水)の前処理が簡単であること、■イオン交
換膜の強度が大きいこと、■運転の操業圧が低いことな
どの特性を有することから、中小容量の海水を淡水化す
るのに適している。
Electrodialysis is a method in which a potential difference is applied to an electrolyte solution, such as seawater, and an ion exchange membrane that is selective to ions of opposite sign is used to concentrate and dilute the electrolyte. This method is
■Simple pretreatment of seawater (saltwater), ■High strength of the ion exchange membrane, and ■Low operating pressure. Are suitable.

近年、塩水(海水)を淡水化する電気透析装置において
は、高温での運転技術の確立および新構造の開発などの
新技術の出現により著しい性能の向上が見られる。
In recent years, the performance of electrodialysis equipment for desalinating salt water (seawater) has significantly improved due to the establishment of high-temperature operation technology and the emergence of new technologies such as the development of new structures.

一方、太陽電池は新エネルギーとして有望視され精力的
な研究が進められてその性能向上と製造コストの低減に
は目覚ましいものがある。
On the other hand, solar cells are seen as a promising new energy source and are being actively researched, with remarkable improvements in performance and reductions in manufacturing costs.

ところで、中近東地域を始めとし一般に太陽エネルギー
に恵まれた地域では水資源に恵まれない場合が多く、水
資源を確保する対策に苦慮しているのが現状である。そ
こで、これらの地域においては太陽エネルギーを利用し
た海水淡水化に関心が集っている。特に、太陽電池を電
源として海水を淡水化する電気透析装置は最近の技術革
新を反映して有力視されている。
By the way, regions that are generally blessed with solar energy, such as the Middle East, are often not blessed with water resources, and the current situation is that they are struggling to take measures to secure water resources. Therefore, seawater desalination using solar energy is attracting attention in these regions. In particular, electrodialysis equipment that uses solar cells as a power source to desalinate seawater is considered to be a promising technology, reflecting recent technological innovations.

このような太陽電池と電気透析装置を組合せた海水淡水
化装置においては、■電気透析に直流電源を分離エネル
ギーとして使用するため、太陽電池の出力を直接利用す
ることができること、■太陽熱を利用して電気透析装置
を高温で運転することにより消費出力が低減できるとい
う利点を有している。従って、太陽熱と太陽光とを同時
に利用するプロセスが確立できるという利点がある。
In a seawater desalination system that combines a solar cell and an electrodialysis device like this, there are two main features: ■ Direct current power is used as the separated energy for electrodialysis, so the output of the solar cells can be used directly; ■ The solar heat can be used. This has the advantage that power consumption can be reduced by operating the electrodialyzer at high temperatures. Therefore, there is an advantage that a process that utilizes solar heat and sunlight simultaneously can be established.

ところで、太陽電池の出力は太陽の日射量が日間で変動
し、それに伴って大きく変動する。このように変動する
電力を効率よく活用することは、電気透析装置に限らず
、太陽電池の負荷となる種種の装置に対して課せられた
課題である。幸にして、淡水化装置においては淡水を貯
蔵することができるため、日中のみ運転する方式を採用
することができる。特に電気透析法では運転−停止が容
易であると共に、イオン交換膜が海水中の微生物に対し
て強いだめ、夜間の停止中においても、特別な配慮をす
る必要がない。したがって、現状の太陽光発電電気透析
装置による海水淡水化方法の課題としては、日間の日射
量の変動に対応して大きく変動する太陽電池の出力をど
のように効率よく活用するかにある。
By the way, the output of a solar cell varies greatly as the amount of solar radiation changes from day to day. Efficiently utilizing fluctuating power in this way is a challenge not only for electrodialyzers but also for various types of devices that serve as a load for solar cells. Fortunately, desalination plants can store fresh water, so they can be operated only during the day. In particular, the electrodialysis method is easy to start and stop, and the ion exchange membrane is resistant to microorganisms in seawater, so there is no need to take special precautions even when the system is stopped at night. Therefore, the problem with current seawater desalination methods using photovoltaic electrodialysis equipment is how to efficiently utilize the output of solar cells, which fluctuates widely in response to daily changes in solar radiation.

従来、この技術課題を解決する方法としては、鉛蓄電池
を用いて電力変動を平滑化する方法が提案されている(
昭和56年度サンシャイン計画委託調査研究成果報告書
「太陽エネルギーシステムの研究」)。
Conventionally, as a method to solve this technical problem, a method has been proposed that uses lead-acid batteries to smooth out power fluctuations (
1981 Sunshine Project Commissioned Research Results Report ``Research on Solar Energy Systems'').

しかし、この従来方法では、高価な鉛蓄電池が多量に必
要となると共に、その保守および管理が容易でないのに
加えて、蓄電池における充放電にともなう電力効率の低
下が大きいという問題点を有していた。
However, this conventional method requires a large amount of expensive lead-acid batteries, is not easy to maintain and manage, and has the problem of a large drop in power efficiency as the batteries are charged and discharged. Ta.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、太陽の日射量に伴って日間に大きく変
動する太陽電池の出力を高効率で電気透析装置の運転に
利用することができる太陽光発電電気透析装置による塩
水淡水化の操業方法を提供するにある。
An object of the present invention is to provide a method for operating salt water desalination using a solar power generation electrodialysis device, in which the output of solar cells, which fluctuates greatly during the day depending on the amount of solar radiation, can be used with high efficiency to operate the electrodialysis device. is to provide.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、太陽の日射量に応じた太陽電池の特性
を前照して被脱塩処理水の塩濃度を日射量に対応して調
整させて太陽電池の最大出力で電気透析装置を運転し海
水を淡水化することにある。
A feature of the present invention is that the salt concentration of the water to be desalinated is adjusted in accordance with the amount of solar radiation in consideration of the characteristics of the solar cell depending on the amount of solar radiation, and the electrodialysis apparatus is operated at the maximum output of the solar cell. The purpose is to operate and desalinate seawater.

すなわち、本発明は、太陽電池を電源として塩水を脱塩
する電気透析装置を回分運転する操業方法において、前
記電気透析装置に対して淡水槽と中間濃度槽の2つの循
環槽を設け、太陽電池の高出力時に前記中間濃度槽を用
いて塩水を中間濃度まで脱塩すると共に、変動する日射
量に応じた最大電池出力が得られる様負荷である電気透
析装置の電気抵抗を調節すべく、中間濃度槽に塩水を供
給して塩濃度を調整し、該中間濃度槽て仲間濃度まで脱
塩された中間濃度水を前記淡水槽を用いて淡水濃度まで
脱塩することを特徴としている回分運転による操業方法
である。
That is, the present invention provides a method of operating an electrodialysis apparatus for desalinating salt water using a solar cell as a power source, in which two circulation tanks, a fresh water tank and an intermediate concentration tank, are provided for the electrodialysis apparatus, and the solar cell When the output is high, the intermediate concentration tank is used to desalinate the salt water to an intermediate concentration, and the intermediate concentration tank is used to adjust the electrical resistance of the electrodialysis device, which is the load, so that the maximum battery output can be obtained according to the fluctuating amount of solar radiation. Batch operation characterized in that the salt concentration is adjusted by supplying salt water to a concentration tank, and the intermediate concentration water that has been desalinated to a salt concentration in the intermediate concentration tank is desalted to a fresh water concentration using the fresh water tank. This is the method of operation.

第1図は太陽の日射量に対する太陽電池の出力電圧と出
力電流との関係を示す発電特性図、第2図は電気透析槽
(電気抵抗R)を太陽電池の負荷として供した場合の等
価回路図であって、1は太陽電池であって、太陽電池1
には広範囲に抵抗Rが変化する電気透析槽2が連設され
ている。
Figure 1 is a power generation characteristic diagram showing the relationship between the output voltage and output current of the solar cell with respect to the amount of solar radiation, and Figure 2 is the equivalent circuit when an electrodialysis tank (electrical resistance R) is used as the load of the solar cell. In the figure, 1 is a solar cell, and solar cell 1
An electrodialysis tank 2 whose resistance R varies over a wide range is connected to the dialysis tank 2.

種々の日射量における電圧(E+ )と電流(I+)の
特性は第1図の実線で示されている。図中の破線は最大
電力が得られる条件であって、実線と破線の交点が各々
日射量に対する最大出力条件(電圧および電流値すなわ
ち最適負荷抵抗値)である。
The voltage (E+) and current (I+) characteristics at various amounts of solar radiation are shown by solid lines in FIG. The broken lines in the figure are the conditions under which the maximum power can be obtained, and the intersections of the solid lines and the broken lines are the maximum output conditions (voltage and current values, ie, optimal load resistance values) for each amount of solar radiation.

日射蓋に対する最大出方条件での(E+ )は第1図に
示す如く各日射量にょシ略一定であシ、日射量の変動に
伴って出方電流値(I+ )が大きく変動する。
As shown in FIG. 1, (E+) under the maximum output condition with respect to the solar cover is approximately constant for each amount of solar radiation, and the output current value (I+) varies greatly as the amount of solar radiation changes.

以上のように、太陽電池を効率よく使用するためには、
負荷抵抗すなわち電気透析槽の電気抵抗Rを日射量に応
じて変化させて最大効率の電圧−電流の条件を維持する
ことが必要である。
As mentioned above, in order to use solar cells efficiently,
It is necessary to maintain voltage-current conditions for maximum efficiency by changing the load resistance, that is, the electrical resistance R of the electrodialysis tank, depending on the amount of solar radiation.

第3図(A) (B) (C) (D)は最大効率を得
るだめの条件を模式的に説明する線図である。
FIGS. 3(A), 3(B), 3(C), and 3(D) are diagrams schematically illustrating conditions for obtaining maximum efficiency.

(A)図には時刻の経過に伴う日射量(W)の変化の一
例が示されている。日射量(W)の小さい日の出および
日没に近い時刻には(B)図に示すように負荷抵抗(電
気透析槽の電気抵抗R)を大キくシ。
(A) shows an example of changes in the amount of solar radiation (W) over time. At times near sunrise and sunset when the amount of solar radiation (W) is low, the load resistance (electrical resistance R of the electrodialysis tank) is increased as shown in Figure (B).

一方、日射量Wが大きくなる正午近くの時刻においては
負荷抵抗Rを小さくすることにょシ、最大出力特性を維
持することができる。
On the other hand, at a time near noon when the amount of solar radiation W increases, the maximum output characteristic can be maintained only by reducing the load resistance R.

第6図(C) (D)に最大出方特性時における電圧(
E+ )および電流(工1)の変化を示す。す々わち、
最大出力効率を得るには、各時刻においてR+=Et/
I+を満足する電気透析槽の電気抵抗几!を実現する必
要がある。この電気透析槽の電気抵抗筐R1は電気透析
槽に循環させて淡水化する被脱塩処理水の塩濃度(C)
に左右される。
Figure 6 (C) and (D) show the voltage at the maximum output characteristic (
E+) and current (E+1) are shown. Suwachi,
To obtain maximum output efficiency, at each time R+=Et/
Electrical resistance of an electrodialysis tank that satisfies I+! It is necessary to realize this. The electrical resistance casing R1 of this electrodialysis tank determines the salt concentration (C) of the water to be desalinated which is circulated through the electrodialysis tank and desalinated.
depends on.

第4図は被処理水の塩濃度(C)すなわち電気透析槽内
に流通する液の塩濃度(0%)と電気透析槽の電気抵抗
(11(、)との関係を示す線である。
FIG. 4 is a line showing the relationship between the salt concentration (C) of the water to be treated, that is, the salt concentration (0%) of the liquid flowing in the electrodialysis tank, and the electrical resistance (11(,)) of the electrodialysis tank.

ここで被脱塩処理水の塩濃度(0%)は、正確には電気
透析槽の入口と出口における塩濃度の対数平均値である
Here, the salt concentration (0%) of the water to be desalinated is precisely the logarithmic average value of the salt concentrations at the inlet and outlet of the electrodialysis tank.

この関係線図は、電気透析槽の構造がイオン交換膜の1
枚当シの有効面積を0.237.イオン交換膜の対数を
200対とし、イオン交換膜の間隔を0.8問として1
食塩を主成分とする塩類水溶液を常温で脱塩処理する場
合の一例を示すものである。この塩濃度と電気透析装置
の電気抵抗(几)との関係は電気透析槽の構造により一
義的に定まるものである。たとえば、約3.5%塩濃度
の海水を0.05%塩濃度の淡水に脱塩する過程では電
気透析槽の電気抵抗(R)は、0.7Ωから14Ωまで
双曲線状に大きく変化する。
This relationship diagram shows that the structure of the electrodialysis tank is one of the ion exchange membranes.
The effective area of the sheet is 0.237. The logarithm of the ion exchange membranes is 200 pairs, and the interval between the ion exchange membranes is 0.8.
This is an example of a case where an aqueous salt solution containing common salt as a main component is desalted at room temperature. The relationship between this salt concentration and the electrical resistance (几) of the electrodialysis device is uniquely determined by the structure of the electrodialysis tank. For example, in the process of desalinating seawater with a salt concentration of about 3.5% to fresh water with a salt concentration of 0.05%, the electrical resistance (R) of the electrodialysis tank changes greatly hyperbolically from 0.7Ω to 14Ω.

そこで、電気透析装置を最大効率で運転する方法として
、電気透析槽に流通させる被脱塩処理水の塩濃度を変化
させて、第3図(B)に示した最大出力の負荷抵抗Rに
なるように電気透析槽の電気抵抗を調整し、太陽電池の
最大効率の特性を得。る方法が考えられる。この方法は
太陽電池の低出力時に低塩濃度の被脱塩処理水(すなわ
ち電気透析槽の電気抵抗の高い領域)を電気透析槽に流
通させる一方、太陽電池の高出力時に高塩濃度の被脱塩
処理水(すなわち電気透析槽の電気抵抗Rが低い領域)
を電気透析槽に流通させることにょシミ気透析槽の運転
条件と太陽電池の最大出力の時刻変動とを一致させるも
のである。
Therefore, as a method to operate the electrodialysis device at maximum efficiency, the salt concentration of the water to be desalinated that flows through the electrodialysis tank is changed to achieve the maximum output load resistance R shown in Figure 3 (B). Adjust the electrical resistance of the electrodialyzer to obtain the maximum efficiency characteristics of the solar cell. There are ways to do this. In this method, when the output of the solar cell is low, the demineralized water with a low salt concentration (i.e., the area of high electrical resistance of the electrodialysis tank) is passed through the electrodialysis tank, while when the output of the solar cell is high, the water to be desalinated is passed through the electrodialysis tank. Desalinated water (i.e. the area where the electrical resistance R of the electrodialyzer is low)
The purpose is to match the operating conditions of the stain air dialysis tank with the time fluctuations of the maximum output of the solar cells by flowing the electrolytic dialysis tank into the electrodialysis tank.

ところで、従来の電気透析装置の代表的な運転方法とし
ては回分すなわち被脱塩処理水を循環槽を介して電気透
析槽に何度も循環させて所定の塩濃度の淡水を得る方法
が知られている。この運転方法では電気透析槽に流通す
る被脱塩処理水の塩濃度が経時的に変化するが、その塩
濃度の経時変化の模様は太陽電池出力の変動と全く無関
係である。したがって、この回分運転方法では、単に太
陽電池の負荷として電気透析槽を直接的に結合したのみ
であシ、日射量に伴う太陽電池の出力を効率よく利用す
ることができない。
By the way, as a typical operating method for conventional electrodialysis equipment, there is a known method in which batchwise, ie, desalinated water is circulated through an electrodialysis tank many times through a circulation tank to obtain fresh water with a predetermined salt concentration. ing. In this operating method, the salt concentration of the water to be desalinated flowing through the electrodialysis tank changes over time, but the pattern of the change in salt concentration over time is completely unrelated to fluctuations in the output of the solar cells. Therefore, in this batch operation method, the electrodialysis tank is simply connected directly as a load to the solar cell, and the output of the solar cell that depends on the amount of solar radiation cannot be efficiently utilized.

これに対し、本発明は、電気透析槽に対して淡水槽と中
間濃度槽の2つの循環槽を並列に設け、太陽電池の低山
時と高出力時に2つの循環槽を使い分けて被脱塩水の塩
濃度を調整して回分運転することにより、電気透析槽の
運転条件と太陽電池出力の時刻変動とを一致させて最大
効率を得るようにしたものである。さらに具体的に説明
すると。
In contrast, the present invention provides two circulation tanks, a fresh water tank and an intermediate concentration tank, in parallel to the electrodialysis tank, and uses the two circulation tanks separately when the solar cell is at low altitude and when the output is high. By adjusting the salt concentration and performing batch operation, the operating conditions of the electrodialysis tank and the time fluctuations of the solar cell output are matched to obtain maximum efficiency. Let me explain more specifically.

前日の太陽電池の高出力時に予め前記中間濃度槽を用い
て塩水を中間濃度まで脱塩すると共に、太陽電池の出力
変動に対応して電気透析装置の最大効率で脱塩できるよ
うに中間濃度槽に塩水を供給して塩濃度が調整される。
The intermediate concentration tank is used to desalinate salt water to an intermediate concentration in advance during the high output of the solar cells on the previous day, and the intermediate concentration tank is also used to desalinate salt water at the maximum efficiency of the electrodialysis device in response to fluctuations in the output of the solar cells. The salt concentration is adjusted by supplying salt water to the

次に、中間濃度槽を用いて脱塩された中間濃度水を淡水
槽に移注し、太陽電池の低出力時(たとえば翌日の日の
出以降)に淡水槽を用いて中間濃度水な淡水濃度まで脱
塩して淡水を得ることができる。
Next, the intermediate concentration water desalinated using the intermediate concentration tank is transferred to a freshwater tank, and when the solar cell output is low (for example, after sunrise the next day), the freshwater tank is used to raise the freshwater concentration to the intermediate concentration water. Fresh water can be obtained by desalination.

第5図は本発明の実施に用いる電気透析装置のフローチ
ャートの一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a flowchart of an electrodialysis apparatus used for carrying out the present invention.

2は太陽電池の負荷となる電気透析槽であって、この電
気透析槽2の脱塩室に被脱塩処理水を循環させる流路3
,4が設けられ4には中間濃度槽5と淡水槽6とが並列
に連設されている。さらに、中間濃度槽5および淡水槽
6の上下管路にはパルプ7〜10がそれぞれ設けられて
いる。また中間濃度槽5の上方にパルプ11を介して原
水を供給する供給管12が設けられている。一方、中間
濃度槽5および淡水槽6゛の共通流路3の途中にポンプ
13が設けられ、パルプ7〜10の開閉により中間濃度
槽5又は淡水槽6内の被脱塩処理水を電気透析槽2に循
環できるように構成されている。
Reference numeral 2 denotes an electrodialysis tank that serves as a load for the solar cell, and a flow path 3 that circulates the water to be desalinated into the desalination chamber of the electrodialysis tank 2.
, 4, and an intermediate concentration tank 5 and a freshwater tank 6 are connected in parallel to the tank 4. Further, pulps 7 to 10 are provided in the upper and lower pipes of the intermediate concentration tank 5 and the fresh water tank 6, respectively. Further, a supply pipe 12 for supplying raw water through the pulp 11 is provided above the intermediate concentration tank 5 . On the other hand, a pump 13 is provided in the middle of the common flow path 3 of the intermediate concentration tank 5 and the fresh water tank 6, and the water to be desalinated in the intermediate concentration tank 5 or the fresh water tank 6 is subjected to electrodialysis by opening and closing the pulps 7 to 10. It is configured so that it can be circulated to tank 2.

また電気透析槽2の出口側の流路4は中間濃度槽5およ
び淡水槽6と連結されていると共に、その延長端はパル
プ14を介して淡水タンク15に連結されている。なお
、電気透析槽2においては濃縮水および極液に関する部
分は省略した。
Further, the flow path 4 on the outlet side of the electrodialysis tank 2 is connected to an intermediate concentration tank 5 and a fresh water tank 6, and its extended end is connected to a fresh water tank 15 via a pulp 14. In addition, in the electrodialysis tank 2, the parts related to concentrated water and polar liquid are omitted.

次に、このように構成した装置を用いて本発明法による
塩水淡水化方法を説明する。
Next, a salt water desalination method according to the present invention will be explained using the apparatus configured as described above.

第6図(A)(B)(C)は日の出から日没までの時刻
経過に沿って本発明の操業方法の一例を説明する線図で
ある。なお、図中のaは日の出時刻、bは淡水槽から中
間濃度槽に切換え操業する時刻、Cは南中時(12時)
およびdは日没時刻である。
FIGS. 6(A), 6(B), and 6(C) are diagrams illustrating an example of the operating method of the present invention along the passage of time from sunrise to sunset. In addition, in the figure, a is the sunrise time, b is the time when switching from the freshwater tank to the intermediate concentration tank, and C is the midday hour (12 o'clock).
and d is the sunset time.

図において、先ず日の出(第6図中のa点)から時間を
経ない電池の低出力時には、第5図に示したように前日
に中間濃度槽において原水から中間濃度にまで脱塩され
た中間濃度水のうち一日の生成淡水量に相当する量を淡
水槽6に移注し、パルプ7.8を閉じると共に、パルプ
9.lOを開いてポンプ13の作動によシ中間濃度水を
電気透析槽に移送し脱塩して、所定の濃度の淡水を得る
In the figure, first of all, when the battery output is low and time has not passed since sunrise (point a in Figure 6), the intermediate concentration that has been desalted from raw water to an intermediate concentration in the intermediate concentration tank the previous day, as shown in Figure 5, is An amount of the concentrated water corresponding to the amount of fresh water produced per day is transferred to the fresh water tank 6, pulp 7.8 is closed, and pulp 9. 1O is opened and the pump 13 is operated to transfer the intermediate concentration water to the electrodialysis tank and desalinate it to obtain fresh water with a predetermined concentration.

この日の出から所定時間(a−b)を経過するまでの太
陽電池の低出力時には塩濃度の低い中間濃度水(すなわ
ち電気透析槽の電気抵抗が高い)を処理するので、第3
図に示したように高い電力利用効率を得ることができる
When the output of the solar cells is low until a predetermined time (a-b) has elapsed from sunrise, intermediate concentration water with a low salt concentration (that is, the electrical resistance of the electrodialysis tank is high) is processed, so the third
As shown in the figure, high power usage efficiency can be obtained.

処理によル得られた淡水はパルプ10を閉じると共にパ
ルプ14を開いてポンプ13の作動によシ淡水タンクエ
5に排出される。
The fresh water obtained by the treatment is discharged into the fresh water tank 5 by closing the pulp 10 and opening the pulp 14 and operating the pump 13.

次いでパルプ9.14を閉じ、パルプ7.8を開いて中
間濃度槽5内の中間濃度水をポンプ13によシミ気透析
槽に循環させて脱塩する。
Next, the pulp 9.14 is closed, the pulp 7.8 is opened, and the intermediate concentration water in the intermediate concentration tank 5 is circulated to the stain dialysis tank by the pump 13 for desalination.

この運転に入る時期は電池出力が大きく塩濃度の高い水
を処理するのに適している。
This period of operation is suitable for treating water with high battery output and high salt concentration.

さらに、太陽の南中時までは電池出力は増加する傾向に
あるので、パルプ11を開き中間濃度槽5に原水を供給
して塩濃度が高くなるように調整する。
Further, since the battery output tends to increase until the sun reaches its midpoint, the pulp 11 is opened and raw water is supplied to the intermediate concentration tank 5 to adjust the salt concentration to be high.

すなわち、b−c間では電気透析槽2において淡水化で
きる最大能力以上に原水を供給し、塩濃度を経時的に増
加させる。この塩濃度の経時変化は電池の出力増加に対
応させることが好ましい。
That is, between b and c, raw water is supplied in an amount exceeding the maximum capacity for desalination in the electrodialysis tank 2, and the salt concentration is increased over time. It is preferable that this change in salt concentration over time corresponds to an increase in the output of the battery.

T、Eがって、原水の供給量は電池出力に連動してパル
プ11の開度を変えることによって最適に調整される。
Accordingly, the amount of raw water supplied can be optimally adjusted by changing the opening degree of the pulp 11 in conjunction with the battery output.

南中時以降(第6図のC−D間)においては、電池出力
の低下に伴って塩濃度が低下し、電池の最大出力条件が
自動的に成立する。このように日没まで運転を続ければ
、翌日の淡水槽6における脱塩処理に供する中間濃度水
を得ることができる。
After midday (between C and D in FIG. 6), the salt concentration decreases as the battery output decreases, and the maximum battery output condition is automatically established. If the operation is continued until sunset in this manner, intermediate concentration water can be obtained for desalination treatment in the fresh water tank 6 the next day.

また、この運転においても、原水を必要に応じて供給し
、最適条件を厳密に管理することができる。
In addition, in this operation as well, raw water can be supplied as needed and optimal conditions can be strictly controlled.

上記の運転によって得られた中間濃度水の一定量はパル
プ10を開きパルプ8を閉じてポンプ13により淡水槽
6に送られ、翌日の脱塩処理に供される。
A certain amount of intermediate concentration water obtained by the above operation is sent to the freshwater tank 6 by the pump 13 after opening the pulp 10 and closing the pulp 8, and is subjected to desalination treatment on the next day.

以下、本発明を実施例によシさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail using examples.

〔実施例1〕 太陽光電池の出力特性をシミュレートした直流電源を用
いて本発明法を実施し、3.5%食塩水溶液を塩濃度s
、ooppmまで脱塩した。電気透析槽としては第4図
に示した電気透析槽の電気抵抗特性と同じイオン交換膜
1杖当たりの通電面積を0、23 yr?とじ、イオン
交換膜の対数を200対としたものを使用した。運転開
始時には淡水槽に0.35%食塩水溶液を4.2m”を
導入し、中間濃度槽に同濃度の食塩水溶液1.4m”を
供給した。
[Example 1] The method of the present invention was carried out using a DC power supply that simulated the output characteristics of a solar cell, and a 3.5% saline solution was heated to a salt concentration of s.
, oppm. As an electrodialysis tank, the ion exchange membrane has the same electrical resistance characteristics as the electrodialysis tank shown in Figure 4.The current carrying area per rod is 0.23 yr? An ion exchange membrane with a logarithm of 200 pairs was used. At the start of operation, 4.2 m'' of 0.35% saline solution was introduced into the fresh water tank, and 1.4 m'' of the same concentration saline solution was supplied to the intermediate concentration tank.

直流電源の出力は最大出力を10kWとし、周期を16
時間の正弦波とし最初の8時間で電気透析装置を運転し
た。
The maximum output of the DC power supply is 10kW, and the period is 16
The electrodialysis machine was operated for the first 8 hours with a sine wave of time.

第7図(A) (B) (C)は周期時間に対する電気
透析特性を示す線図であって、(A)図は時間と太陽電
池の発電量(kW )および電気透析に消費される電力
との関係、(B)は淡水槽および申開濃度槽における被
処理塩水の塩濃度変化、(C)図は電気透析槽の電力利
用効率を示す線図である。
FIG. 7 (A), (B), and (C) are diagrams showing electrodialysis characteristics with respect to cycle time, and (A) shows time, the amount of power generated by the solar cell (kW), and the power consumed for electrodialysis. (B) is a diagram showing the change in salt concentration of the salt water to be treated in the freshwater tank and the water concentration tank, and (C) is a diagram showing the power utilization efficiency of the electrodialysis tank.

図から明らかなように、運転開始後1時間55分後に淡
水槽中の水の塩濃度は5001)I)mとなシ、続く中
間濃度槽の運転では(運転開始から)4時間まで3.5
チ食塩水溶液を直流電源出力に対応して添加した。8時
間後(運転開始から)における中間濃度槽中の水の塩濃
度は運転開始時と同じ0.35%にまで低下した。運転
中の電力利用効率は、(C)図に示すように淡水槽運転
終了の直前で低下する以外は高く維持され、平均91q
6が得られた。
As is clear from the figure, 1 hour and 55 minutes after the start of operation, the salt concentration of the water in the fresh water tank is 5001)I)m, and in the subsequent operation of the intermediate concentration tank, up to 4 hours (from the start of operation), the salt concentration is 3. 5
A saline solution was added in accordance with the DC power output. After 8 hours (from the start of operation), the salt concentration of the water in the intermediate concentration tank had decreased to 0.35%, the same as at the start of operation. The power usage efficiency during operation remained high, with an average of 91q, except for a drop immediately before the end of freshwater tank operation, as shown in Figure (C).
6 was obtained.

〔実施例2〕 実施例1と同じ直流電源出力を用いて電気透析装置を従
来の回分運転法により食塩水溶液を脱塩した。この回分
運転では、脱塩水槽及び濃縮水槽を設は各水槽からそれ
ぞれ電気透析槽の脱塩室及び濃縮室に塩類水溶液を循環
させて、脱塩水槽中の水の塩濃度が淡水4度まで低下す
ると、その淡水を抜き出し、新たな被処理水を循環させ
る一般的な方法を採用した。原水として3.5%食塩水
溶液を脱塩水槽にo、sm”導入し、淡水濃度が500
pplnになるまで回分運転(6回)を行った。
[Example 2] Using the same DC power output as in Example 1, the electrodialysis apparatus was operated in a conventional batch manner to desalinate a saline solution. In this batch operation, a desalination water tank and a concentration water tank are set up, and the salt solution is circulated from each tank to the desalination chamber and concentration chamber of the electrodialysis tank, respectively, until the salt concentration of the water in the desalination tank reaches 4 degrees of fresh water. When the water level decreases, we adopted a common method of extracting the fresh water and circulating new water to be treated. A 3.5% saline solution was introduced into the desalination water tank as raw water, and the freshwater concentration was 500.
Batch operation (6 times) was performed until ppln.

その結果は第7図(j)(B)に示す通りである。The results are shown in FIG. 7(j)(B).

各回分運転中においては第8図(13)に示すように必
ず一度は約100%の電力利用効率を示すが、低い電力
利用効率を示す時間が圧倒的に長いため、8時間の運転
における平均電力利用効率は66チであった。従来の回
分方法では本発明法(実施例1)に比べて著しく電力利
用効率が低いことが判明した。
During each batch operation, as shown in Figure 8 (13), the power usage efficiency always shows about 100% once, but because the time when the power usage efficiency is low is overwhelmingly long, the average over 8 hours of operation The power usage efficiency was 66 cm. It was found that the conventional batch method had significantly lower power utilization efficiency than the method of the present invention (Example 1).

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る太陽光発
電電力透析による塩水淡水化方法によれば、日間に大き
く変動する太陽電池′の出力を高効率で直接電気透析装
置を運転することができるという顕著な効果を有する。
As is clear from the above explanation, according to the method for desalinating salt water using solar power dialysis according to the present invention, it is possible to directly operate the electrodialysis apparatus with high efficiency using the output of the solar cells, which fluctuates greatly during the day. It has the remarkable effect of being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽電池の発電特性を示す電圧−電流特性線図
、第2図は太陽電池による電気透析装置の等価回i第3
図は太陽電池の最大出力での使用条件を示す模式図、第
4図は電気透析装置を循環する被処理水の塩濃度と電気
透析槽の電気抵抗との関係を示す線図、第5図は本発明
法による電気透析装置のフローチャート図、第6図(A
) (B)(C)は本発明による運転内容を示す線図、
第7図(A) (B) (C:)は本発明の実施例によ
る運転結果を示す線図、第8図は従来の回分法による運
転結果を示す線図である。 1・・・太陽電池、2・・・電気透析槽、5・・・中間
濃度槽6・・・淡水槽、7〜10・・・パルプ、13・
・・ポンプ。 代理人 弁理士 鵜沼辰之 光1図 翳2図 晒3区 (ハ) (D) 時刻 荊洋図 電気透町情四廣通泉塩濃度C(刈 時i11 第1頁の続き ■発明箸小池 清二 日立市幸町3丁目1番1号 株式会社日立製作所日立研
究所内 手続補正書ζ力人ン 昭和59年Δ月l1日 特許庁長官 殿 2発明(D名ftfF太陽光発電電気透析装置いよ。 塩水淡水化の操業方法 3、補正をす本省 事件との関係 特許出願人 名称 (51G)株式会社日立製作所 % # (iりバブコック日立株式会社4、代理人 7、補正の対象 図面(第7図) 8、補正の内容 (1)第7図を別紙朱書の如く訂正する。 以上
Figure 1 is a voltage-current characteristic diagram showing the power generation characteristics of solar cells, and Figure 2 is the equivalent cycle i-3 of an electrodialysis device using solar cells.
The figure is a schematic diagram showing the usage conditions at maximum output of the solar cell, Figure 4 is a diagram showing the relationship between the salt concentration of the water to be treated circulating through the electrodialysis equipment and the electrical resistance of the electrodialysis tank, and Figure 5 is a flowchart of the electrodialysis apparatus according to the method of the present invention, and FIG. 6 (A
) (B) (C) are diagrams showing the operation details according to the present invention,
7(A), (B), and (C:) are diagrams showing the results of operation according to the embodiment of the present invention, and FIG. 8 is a diagram showing the results of operation according to the conventional batch method. DESCRIPTION OF SYMBOLS 1...Solar cell, 2...Electrodialysis tank, 5...Intermediate concentration tank 6...Freshwater tank, 7-10...Pulp, 13.
··pump. Agent Patent attorney Tatsuyuki Unuma 1 drawing, 2 drawings, 2 drawings, 3 sections (c) (D) Time and day drawing, electricity transmission town, Joshihiro street, spring salt concentration C (Karitoki i11, continuation of page 1 ■ Invention chopsticks Seiji Koike 3-1-1 Saiwai-cho, Hitachi City Hitachi, Ltd. Hitachi Research Institute Internal Procedures Amendment ζ Rikijin Δ11, 1980 Commissioner of the Japan Patent Office 2 Invention (D name ftfF Solar power generation electrodialysis device. Salt water Desalination Operation Method 3, Relationship with the Ministry Case for Amendment Name of Patent Applicant (51G) Hitachi, Ltd. 8. Contents of the amendment (1) Figure 7 will be corrected as shown in red attached sheet.

Claims (1)

【特許請求の範囲】 16 太陽電池を電源として塩水を脱塩する電気透析装
置を回分運転する操業方法において、前記電気透析装置
に対して淡水槽5ζ中間濃度槽の2つの循環槽を設け、
太陽電池の高出力時に前記中間濃度槽を用いて原水を中
間濃度まで脱塩すると共に中間濃度槽に原水を供給して
電池出力が高効率で利用できる様塩濃度を調整し、該中
間濃度槽で中間濃度まで脱塩された中間濃度水を前記淡
水槽を用いて淡水濃度まで脱塩することを特徴とする太
陽光発電電気透析装置による塩水淡水化の操業方法。 ゛ 2、特許請求の範囲第1項において、毎日の日射開
始時における太陽電池の低出力時に前日に中間濃度まで
脱塩した中間濃度水を淡水槽を用いて淡水濃度まで脱塩
し、引き続き中間濃度槽を用いて原水を中間濃度まで脱
塩することを特徴とする太陽光発電電気透析装置による
塩水淡水化の操業方法。
[Claims] 16. In a method of operating an electrodialysis apparatus for desalinating salt water using a solar cell as a power source, the electrodialysis apparatus is provided with two circulation tanks, a freshwater tank 5ζ intermediate concentration tank,
When the output of the solar cell is high, the intermediate concentration tank is used to desalinate the raw water to an intermediate concentration, and the raw water is supplied to the intermediate concentration tank to adjust the salt concentration so that the battery output can be used with high efficiency. 1. A method for operating salt water desalination using a solar power generation electrodialysis device, characterized in that intermediate concentration water desalinated to an intermediate concentration is desalted to a fresh water concentration using the fresh water tank. 2. In claim 1, when the output of the solar cells is low at the start of each day's solar radiation, intermediate concentration water that has been desalinated to an intermediate concentration on the previous day is desalinated to a fresh water concentration using a freshwater tank, and then A method of operating salt water desalination using a solar-powered electrodialysis device, which is characterized by desalinating raw water to an intermediate concentration using a concentration tank.
JP59024721A 1984-02-13 1984-02-13 Brine desalting operation in solar energy power generation electrodialytic apparatus Granted JPS60168504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024721A JPS60168504A (en) 1984-02-13 1984-02-13 Brine desalting operation in solar energy power generation electrodialytic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024721A JPS60168504A (en) 1984-02-13 1984-02-13 Brine desalting operation in solar energy power generation electrodialytic apparatus

Publications (2)

Publication Number Publication Date
JPS60168504A true JPS60168504A (en) 1985-09-02
JPS6359725B2 JPS6359725B2 (en) 1988-11-21

Family

ID=12146019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024721A Granted JPS60168504A (en) 1984-02-13 1984-02-13 Brine desalting operation in solar energy power generation electrodialytic apparatus

Country Status (1)

Country Link
JP (1) JPS60168504A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157208A (en) * 1984-08-29 1986-03-24 Hitachi Ltd Electrodyalitic brine desalting method and apparatus using solar cell as power source
JPH01288391A (en) * 1988-05-17 1989-11-20 Agency Of Ind Science & Technol Method and apparatus for treatment of waste water
CN113060805A (en) * 2021-04-01 2021-07-02 山东大学 Carbon fiber solar water purifier and heavy metal sewage treatment method
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157208A (en) * 1984-08-29 1986-03-24 Hitachi Ltd Electrodyalitic brine desalting method and apparatus using solar cell as power source
JPS6357086B2 (en) * 1984-08-29 1988-11-10 Hitachi Seisakusho Kk
JPH01288391A (en) * 1988-05-17 1989-11-20 Agency Of Ind Science & Technol Method and apparatus for treatment of waste water
CN113060805A (en) * 2021-04-01 2021-07-02 山东大学 Carbon fiber solar water purifier and heavy metal sewage treatment method
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Also Published As

Publication number Publication date
JPS6359725B2 (en) 1988-11-21

Similar Documents

Publication Publication Date Title
KR101632685B1 (en) Hybrid system for accomplishing selectively electrodialysis reversal and reverse electrodialysis
WO2011050473A1 (en) Method and system for desalinating saltwater while generating electricity
CN107381923B (en) Seawater desalination treatment device and method based on membrane capacitance deionization and membrane distillation
WO2007096679B1 (en) System for energy recovery and reduction of deposits on the membrane surfaces in (variable power and variable production) reverse osmosis desalination systems
CN214400132U (en) System of clean energy sea water desalination coupling salt difference energy power generation facility
CN211310967U (en) Electrodialysis sea water desalination system for solar energy coupling reverse electrodialysis power generation
CN112723640A (en) System and method for clean energy sea water desalination coupling salt difference energy power generation device
CN108455793A (en) A kind of processing method of cephalosporin antibiotic production waste water
JPS60168504A (en) Brine desalting operation in solar energy power generation electrodialytic apparatus
EP3643683A2 (en) Salinity gradient/solar energy hybrid power generation apparatus and desalination system using same
CN105621539A (en) Multifunctional water-flowing type electrolysis equipment
KR101661597B1 (en) Complex apparatus of reverse electrodialysis equipment and desalination plant and Method for improving power density thereof
JPS6336893A (en) Method for operating desalination apparatus by means of electrodialysis
CN111439814A (en) Desulfurization wastewater concentration and reduction treatment system and method based on non-softening and directional driving electrodialysis technology
CN205933294U (en) Renewable sources of energy sea water automatic treating device
CN206051741U (en) A kind of solar powered water treatment system with electrodialysis control unit
WO2014057892A1 (en) Method for generating fresh water
KR20200037646A (en) Desalination system with complex power generation
JPS6157208A (en) Electrodyalitic brine desalting method and apparatus using solar cell as power source
CN210393985U (en) Environment-friendly brine treatment device
CN206486382U (en) It is electrolysed soft water system and water purifier
CN219752007U (en) Electrodialysis treatment system
CN108793536A (en) A method of carrying out sea water desalination using trough-electricity
KR101903837B1 (en) renewable energy based micro grid integrated and lnterlocking system
CN115010227A (en) Photovoltaic waste heat coupling magnetic-thermal intensified electrodialysis system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees