JPS6016827A - Manufacture of optical fiber - Google Patents

Manufacture of optical fiber

Info

Publication number
JPS6016827A
JPS6016827A JP58120287A JP12028783A JPS6016827A JP S6016827 A JPS6016827 A JP S6016827A JP 58120287 A JP58120287 A JP 58120287A JP 12028783 A JP12028783 A JP 12028783A JP S6016827 A JPS6016827 A JP S6016827A
Authority
JP
Japan
Prior art keywords
optical fiber
gas
preform
atmosphere
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58120287A
Other languages
Japanese (ja)
Other versions
JPS6119575B2 (en
Inventor
Takao Shioda
塩田 孝夫
Ryozo Yamauchi
良三 山内
Koichi Inada
稲田 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58120287A priority Critical patent/JPS6016827A/en
Publication of JPS6016827A publication Critical patent/JPS6016827A/en
Publication of JPS6119575B2 publication Critical patent/JPS6119575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor

Abstract

PURPOSE:To obtain an optical fiber which can be exposed to a high-temperature environment for a long period without increasing the transmission loss caused by the hydroxyl group, by melt-spinning an optical fiber preform having a specific hydroxyl group-content in a specific atmosphere, and coating the fiber with a metal. CONSTITUTION:An anhydrous glass preform 9 is attached in the preform-feeing zone 4, and the lower end of the preform is positioned to the level of the heater 1b. Molten metal 10 such as aluminum, indium, etc. is supplied from the molten metal reservior 8 to the crucible 7. High-purity dried argon gas or helium gas which may contain a small amount of dry halogen gas, is introduced through the gas inlet 5 into the apparatus. The end part of the glass preform 9 is melted by the heater 1b, and the spun optical fiber 11 is introduced continuously into the crucible 7 containing the molten metal to obtain the objective metal-coated optical fiber 12. Since the inner space of the apparatus is shielded completely from the outer atmosphere, and is supplied with dry gas or dry halogen-containing gas, the atmosphere in the apparatus is maintained to the perfect anhydrous state or the dehydrated state by the halogen gas.

Description

【発明の詳細な説明】 以上で使用する場合、被覆材料にシリコーンゴムところ
で、このよう庁金属被覆光ファイバを高温中で使用する
場合、ガラス中での水酸基の拡散により光ファイバの損
失が増加する現象がある。
Detailed Description of the Invention When used above, silicone rubber is used as the coating material.By the way, when such a metal-coated optical fiber is used at high temperatures, the loss of the optical fiber increases due to the diffusion of hydroxyl groups in the glass. There is a phenomenon.

これは、クラッド寸たはノヤケットに混在しでいた水酸
基が拡散し、コアに侵入するためである。
This is because the hydroxyl groups mixed in the cladding or jacket diffuse and invade the core.

この現象を防止するには、ファイバ旬月の製造段階にお
いて、クラッドあるいはノヤケノトとなる部分に無水石
英力゛ラス管を用いるかあるい(弓:VAp法によって
脱水処理を行った全合成母材を製造すればよいことにな
る。しかし、このような無水の光フアイバ母材を用意し
ても、この無水光フアイバ母材から光ファイバを得る段
階において、水酸基で汚染されることがある。例えば、
光ファイバ切材の引延時、酸水素炎を用いれば引延され
たガラス母料表面には100 ppm以」二の水酸基を
含有する層が数μmにわたって形成される。′i/こ、
□!、’′都lに拡散、浸透する。かくして、光ファイ
バの表ファイバ強度の低下原因となる。
In order to prevent this phenomenon, at the manufacturing stage of fiber optics, anhydrous quartz glass tubes are used for the cladding or exposed parts, or a fully synthetic base material that has been dehydrated using the VAp method is used. However, even if such an anhydrous optical fiber preform is prepared, it may be contaminated with hydroxyl groups at the stage of obtaining an optical fiber from this anhydrous optical fiber preform.For example,
If an oxyhydrogen flame is used when drawing an optical fiber cut material, a layer containing 100 ppm or more of hydroxyl groups is formed over several micrometers on the surface of the drawn glass preform. 'i/ko,
□! , ''Spread and permeate into the city. This causes a decrease in the front fiber strength of the optical fiber.

この発EAは上記事情に鑑みてなされたもので、無水光
フアイバ母材から光ファイバを得るまでの工程において
も水酸基に汚染されず、高温下に長装置いても水酸基に
起因する透過損失の増加のない光ファイバを得ることの
できる光ファイバの製法を提供することを目的とするも
のである。
This EA was made in view of the above circumstances, and it is not contaminated with hydroxyl groups during the process from the anhydrous optical fiber base material to obtaining the optical fiber, and even if the equipment is exposed to high temperatures for a long time, the transmission loss due to hydroxyl groups will increase. The object of the present invention is to provide a method for manufacturing an optical fiber that can produce an optical fiber free of .

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明の光ファイバの製法は、無水の光フアイバ母材
を無水あるいはハロヶ8ン含有雰囲下で溶融紡糸および
金属被覆を行うことを特徴とするものである。
The method for producing an optical fiber of the present invention is characterized by performing melt spinning and metal coating on an anhydrous optical fiber base material in an atmosphere containing anhydrous or halogen.

まず、無水のプロファイバ母材、すなわち、あらゆる部
位での水酸基含有量が0.1 ppnn以下の光フアイ
バ母材を用意する。この無水の光フアイバ母材を得るに
は、周知の種々の方法が採用できる。例えば、VAD法
によって得られ/ヒ多孔質プリフォームを塩素ガス、フ
ッ素ガスなどのハロケリガスを用いて脱水処理し、透明
ガラス化した全合成光ファイバ母材やこの全合成光ファ
イバ母材に無水石英ガラス管をジャケットした光フアイ
バ母材などが挙げられる。上記水酸基含有量が0.lp
pmを11四ついで、この無水光フアイバ母材は、図面
に示す製造装置に取り付けられ、溶融紡糸および金属被
覆が行われる。ζこで、無水光ファイバ角材は、常に無
水の雰囲気下で保存もしくは取扱が行われる。これには
、乾燥アルコゞンカ゛スや乾燥窒素がス(露点−50℃
以下のもの)などの乾燥力スを充填した容器中に保存し
たり、あるいは上記乾燥ガスを光フアイバ母材に吹き付
けつつ取り扱うなどの手段が採られる。
First, an anhydrous profile fiber preform, that is, an optical fiber preform having a hydroxyl group content of 0.1 ppnn or less in all parts, is prepared. Various known methods can be used to obtain this anhydrous optical fiber preform. For example, a fully synthetic optical fiber preform obtained by the VAD method is dehydrated using a halogen gas such as chlorine gas or fluorine gas, and the preform is made into a transparent glass. An example is an optical fiber base material made of a jacketed glass tube. The above hydroxyl group content is 0. lp
After increasing the pm to 114 pm, this anhydrous optical fiber preform is installed in the manufacturing equipment shown in the drawings for melt spinning and metal coating. ζ Here, the anhydrous optical fiber cube is always stored or handled in an anhydrous atmosphere. This can be done using dry alcohol or dry nitrogen (dew point -50°C).
Measures such as storing the optical fiber in a container filled with a drying gas such as those listed below, or handling the optical fiber while blowing the drying gas onto the optical fiber base material are taken.

図面において、符号1は紡糸炉部であって、この紡糸炉
部1は、炉体1aおよび発熱体1bとから構成されてい
る。炉体1au、ジルコニア、アルミナ、黒鉛、窒化ケ
イ素などの耐火物からなる円筒体である。また、発熱体
1bは、上記炉体1aの外側に炉体1aを取り囲むよう
に設けられている。
In the drawings, reference numeral 1 denotes a spinning furnace section, and this spinning furnace section 1 is composed of a furnace body 1a and a heating element 1b. The furnace body 1au is a cylindrical body made of a refractory material such as zirconia, alumina, graphite, or silicon nitride. Further, the heating element 1b is provided outside the furnace body 1a so as to surround the furnace body 1a.

1.そして、この炉体1aの下部は、円筒状の石英1 ガニ:ラス管などからなる引出部2が連結されており、
炉体1aと引出部2との連結部分はoリング3に:よっ
て気密に封止されている。また、炉体1aの拐送出部4
の上方には排気管6がそれぞれ設けられている。
1. A drawer section 2 made of a cylindrical quartz tube or the like is connected to the lower part of the furnace body 1a.
The connecting portion between the furnace body 1a and the drawer portion 2 is hermetically sealed by an O-ring 3. In addition, the removal part 4 of the furnace body 1a
Exhaust pipes 6 are provided above the respective exhaust pipes.

1だ、引出部2の下部には、金属被覆を行うための黒鉛
などからなるルツボ7が設けられており、このルツボ7
と引出部2との連結部分は同様に。
1. A crucible 7 made of graphite or the like for metal coating is provided at the bottom of the drawer 2.
The connecting part between and drawer part 2 is the same.

リング3で気密に封止されている。また、ルッぎ7は、
浴融金属貯槽8に連通され、溶融金属が供給サレるよう
になっている。
It is hermetically sealed with ring 3. Also, Ruggi 7 is
It is connected to a bath molten metal storage tank 8, so that molten metal can be supplied thereto.

そして、このような製造装置には、その母材送出部4内
に上記無水のガラス母材9が、その先端部を発熱体1b
の位置に来るように取9伺けられ、ルツボ7には溶融金
属貯槽8がらアルミニウム、インジウムなどの溶融金属
10が供給される。捷た、給気管5からは、高純度でか
つ乾燥されたアルコゞンガスやヘリウムガ゛スあるいは
これに乾燥塩素ガス、乾燥フン素ガスが少量添加された
がスかの内部空間が外気から完全に遮断され、しかも内
部空間には、乾燥ガ゛スもしくは乾燥ハロヶ゛ン含有ガ
スが送シ込まれているため、装置内の雰囲気は完全な無
水状態もしくはハロケリガスによる脱水化状態となる。
In such a manufacturing apparatus, the anhydrous glass base material 9 is placed in the base material delivery section 4, and its tip end is connected to the heating element 1b.
A molten metal 10 such as aluminum or indium is supplied to the crucible 7 from a molten metal storage tank 8. From the cut air supply pipe 5, a small amount of high-purity and dry alco gas, helium gas, or dry chlorine gas or dry fluorine gas is added to this, but the internal space is completely freed from outside air. Since it is shut off and a dry gas or a dry halogen-containing gas is injected into the internal space, the atmosphere inside the device becomes completely anhydrous or dehydrated by the halogen gas.

したがって、この内部空間で無水のガラス母材9から浴
融紡糸し、金属被覆を行えば、光ファイバ11の内部は
もとより、表面にも水酸基は全く存在しない状態で金属
が被覆されることになる。
Therefore, if bath melt spinning is performed from the anhydrous glass base material 9 in this internal space and metal coating is performed, the metal will be coated not only inside the optical fiber 11 but also on the surface with no hydroxyl groups present at all. .

よって、このような方法によって得られた金属被覆光フ
ァイバ12は、水酸基が極めて微少であるので高温下に
おいて連続使用しても、水酸基の拡散による透過損失の
増加がなく、また強度低下もない。
Therefore, since the metal-coated optical fiber 12 obtained by such a method has extremely small hydroxyl groups, there is no increase in transmission loss due to diffusion of hydroxyl groups and no decrease in strength even when used continuously at high temperatures.

以下、実施例を示して、この発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

に示した装置に取9付けた。炉体1aの直径は30酩と
した。給気管5からヘリウムガス1.31△塩素ガス2
cc/分の割合の混合ガスを送給し、ルツボ7には溶融
アルミニウムを満し、浴融紡糸および金属被覆を行った
。得られた金属被覆光ファイバ12は、コート径160
μm17アイノぐ径125μm1コア径50μmであっ
た。この光ファイツク12を350℃の温度下に放置し
、水酸基の増加を0.945μmの水酸基特性吸収ピー
クを連続的に測定することによ請求めた。この結果、6
0時間の連続測定では水酸基特性吸収ピークの増加は認
められなかった。
It was attached to the device shown in Figure 9. The diameter of the furnace body 1a was 30 mm. Helium gas 1.31△chlorine gas 2 from air supply pipe 5
A mixed gas was fed at a rate of cc/min, the crucible 7 was filled with molten aluminum, and bath melt spinning and metal coating were performed. The obtained metal coated optical fiber 12 has a coat diameter of 160
The diameter of the core was 50 μm and 125 μm. This optical fiber 12 was left at a temperature of 350° C., and the increase in hydroxyl groups was determined by continuously measuring the absorption peak characteristic of hydroxyl groups at 0.945 μm. As a result, 6
No increase in the hydroxyl group characteristic absorption peak was observed in continuous measurement for 0 hours.

なお、以上の説明においては、金属被覆手段として溶融
金属ディップ法を採っているが、これに限らす算囲気を
無水もしくは・・ロケ゛ン含有雰囲気に保持できれば、
CVD法、スノ?ツタリング法など在しないものとなる
。よって、この光フアイバ全高温下で放置しても水酸基
の拡散によるコアへの侵入がなく、この水酸基に起因子
る光ファイバの透過損失の増加が防止でき、高温下での
連続使用に耐えるものとなる。また、金属被覆光ファイ
バであるので、耐水性がよく、高信頼性である。
In the above explanation, the molten metal dipping method is used as the metal coating method, but this is not the only method.If the surrounding atmosphere can be maintained in an anhydrous or location-containing atmosphere,
CVD method, snow? There would be no such thing as the Tsutaring method. Therefore, even if this optical fiber is left at high temperatures, the hydroxyl groups will not diffuse into the core, and the increase in transmission loss caused by these hydroxyl groups can be prevented, making it possible to withstand continuous use under high temperatures. becomes. Furthermore, since it is a metal-coated optical fiber, it has good water resistance and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の製法に用いられる製造装置の一例を
示す概略断面図である。 図においてl:紡糸炉、5:給気管、6:排気管、lO
:溶融金属、11:光ファイバ。
The drawing is a schematic cross-sectional view showing an example of a manufacturing apparatus used in the manufacturing method of the present invention. In the figure, l: spinning furnace, 5: air supply pipe, 6: exhaust pipe, lO
: Molten metal, 11: Optical fiber.

Claims (1)

【特許請求の範囲】[Claims] あらゆる部位での水酸基含有量が0.1 pprrJJ
、下の光フアイバ母材を無水あるいはハロケゞン含有雰
囲気下で溶融紡糸し、ついで得られたファイバに上記雰
囲気と同一雰囲気下で金属を被覆することを特徴とする
光ファイバの製法。
Hydroxyl group content in all parts is 0.1 pprrJJ
A method for producing an optical fiber, which comprises melt-spinning a lower optical fiber base material in an anhydrous or halokene-containing atmosphere, and then coating the obtained fiber with a metal in the same atmosphere as the above-mentioned atmosphere.
JP58120287A 1983-07-04 1983-07-04 Manufacture of optical fiber Granted JPS6016827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58120287A JPS6016827A (en) 1983-07-04 1983-07-04 Manufacture of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120287A JPS6016827A (en) 1983-07-04 1983-07-04 Manufacture of optical fiber

Publications (2)

Publication Number Publication Date
JPS6016827A true JPS6016827A (en) 1985-01-28
JPS6119575B2 JPS6119575B2 (en) 1986-05-17

Family

ID=14782502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120287A Granted JPS6016827A (en) 1983-07-04 1983-07-04 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPS6016827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051633A (en) * 1983-08-31 1985-03-23 Furukawa Electric Co Ltd:The Preparation of optical fiber
FR2600779A1 (en) * 1986-06-30 1987-12-31 Thomson Csf METHOD FOR SEALING METALLIC SEAL OF AN OPTICAL FIBER AND DEVICE USING THE SAME
WO2004002912A1 (en) * 2002-06-28 2004-01-08 Sumitomo Electric Industries, Ltd. Process for producing glass fibrous material and apparatus therefor
JP2007191395A (en) * 1995-03-23 2007-08-02 Corning Inc Method for coating fibers continuously and apparatus for forming coated fibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051633A (en) * 1983-08-31 1985-03-23 Furukawa Electric Co Ltd:The Preparation of optical fiber
FR2600779A1 (en) * 1986-06-30 1987-12-31 Thomson Csf METHOD FOR SEALING METALLIC SEAL OF AN OPTICAL FIBER AND DEVICE USING THE SAME
JP2007191395A (en) * 1995-03-23 2007-08-02 Corning Inc Method for coating fibers continuously and apparatus for forming coated fibers
WO2004002912A1 (en) * 2002-06-28 2004-01-08 Sumitomo Electric Industries, Ltd. Process for producing glass fibrous material and apparatus therefor

Also Published As

Publication number Publication date
JPS6119575B2 (en) 1986-05-17

Similar Documents

Publication Publication Date Title
FI76543C (en) Process for forming a glass article of which at least a part is fluorinated
US4184860A (en) Process for the production of glass fiber light conductors
US3540870A (en) Apparatus for drawing and coating quartz glass fibers
US4165915A (en) Light conducting fiber
US4154592A (en) Method of drawing optical filaments
US4157906A (en) Method of drawing glass optical waveguides
GB1597041A (en) Method of making optical waveguides
CA1260684A (en) Optical waveguide manufacture
JP2007513862A (en) Alkali-doped optical fiber, preform thereof and method for producing the same
JPH08502470A (en) Method and apparatus for manufacturing preforms for quartz glass lightwave conductors
JP3941910B2 (en) Method for producing hydrogen-resistant optical waveguide fiber and soot preform as precursor thereof
US4734117A (en) Optical waveguide manufacture
JPS6016827A (en) Manufacture of optical fiber
EP0201937A2 (en) Method for producing glass preform for optical fiber
JPS6340744A (en) Optical fiber
US4294514A (en) Light-wave guides and method of producing same
JPH01286932A (en) Production of optical fiber preform
JPH0436100B2 (en)
JPH0559850B2 (en)
CA1100001A (en) Method of making optical waveguides
JPS61101429A (en) Production of glass tube
JPS6250709A (en) Optical fiber and its production
JPH02141437A (en) Production of optical fiber
JPH05246739A (en) Production of carbon-coated optical fiber
JPS6120491B2 (en)