JPS60168057A - Ground resistance measuring device of dc line - Google Patents
Ground resistance measuring device of dc lineInfo
- Publication number
- JPS60168057A JPS60168057A JP2328984A JP2328984A JPS60168057A JP S60168057 A JPS60168057 A JP S60168057A JP 2328984 A JP2328984 A JP 2328984A JP 2328984 A JP2328984 A JP 2328984A JP S60168057 A JPS60168057 A JP S60168057A
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- ground
- switch
- divider
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
(発明の技術分野)
この発明は非接地式直流線路の接地抵抗を計測する直流
線路の接地抵抗測定装置に関するものである。
(技術技術〕
従来、この種の測定装置としては、接地検漏器、おJび
換算−を要する接地抵抗針等あるが、接地検漏器は接地
極を判定するものであり、抵抗値まで知ることはできな
い。また換算を要する接地抵抗計とは、@接、計器によ
り抵抗値を読みとることができず、各々調整したときの
調整の度合で計器の読みを換算する必要があるものであ
る。
このように従来のこの種の測定装置には種々の欠点があ
った。
〔発明の概要〕
この発明は以上の従来のものの欠点を除去し、簡単な回
路で直流回路の接地抵抗を直読できる直流線路の接地抵
抗測定装置を提供するものである。
〔発明の実施例〕
第1図および第2図はこの発明にまる直流線路の接地抵
抗測定装置の基本動作を説明するための図で、まず第1
図において+Ill、e2は直流回路の線路を示し、e
lは正極側線路、e2は負極側線路。
Eは直流回路の各線路e、g=+こ加わる電圧、 RP
は6正極側の接地抵抗、RNは負極側の接地抵抗、(υ
は接地抵抗測定装置で、一端が接地された電流計Mと、
電流計Mの可変端子に接続された可変抵抗器VRと、可
変抵抗VRと正、負極側線路e1.e2間に接続された
スイッチSW、 、 sw2とで構成されている。
なお、分割抵抗R,,R,は可変抵抗器VRの可変端子
で分割された可変抵抗器VRの分割抵抗である。
次に第1図の装置の動作を説明する。まずスイッチSW
IおよびSWaをONする。このとき接地抵抗RpとR
Nおよび可変抵抗器VRの分割抵抗R1とR2でブリッ
ジ回路が形成されるが、このブリッジ回路の平衡を可変
抵抗器VRで調整する。これは電流針Mの指示が零にな
るように可変抵抗器VRで調整すaこのとき次の〔1〕
式が成立する。
Rp−Rt−RH−Rt ・・・〔1〕、次に正極側接
地抵抗RPの測定方法について述べると、h述したよう
匡平衡をとった可変抵抗器VRの設定位置をそのままに
して、スイッチSW+をOFF 、スイッチSWiをO
Nとし、このとき電流計Mに流れる電流をIPとすると
、(ただし電流計Mの内部抵抗は零とみなす)
R2(RN+RP) +RN−RP
(2) 式iコオイテ、 (Rt +R2) ハ可変抵
抗器VR(D最大端子間抵抗であり、常に一定で、かつ
値も既知である。またEは回路電圧で値は既知である。
従って、〔2〕式1こまり、電流計Mに流れる電流IP
と。
正極側接地抵抗RPの関係がまるので、これに従って電
流計Mに目盛記入すれば、接地抵抗RPe直読できる。
次に負極側接地抵抗RNの測定方法について述べる。上
述した平衡状態のままスイッチSW+をON。
スイッチSW2をOFFとする。このとき、電流計Mに
流れる電流をINとすると。
R1(RP +RN) +RN−Rp
R+ + R2+ RN
〔8〕式は〔2〕式と同形で、(2〕式におけるRPを
RNにおきかえただけである。従って〔2〕式と同様に
電流計Mlと流れる電流INと、負極側接地抵抗RNと
の関係がまるので、これに従って電流計M1ζ目盛を記
入すれば、接地抵抗RNを直読できる。
ここで電流IPとINは流れる方向が逆であるが。
電流計Mは両振れ計器にするか、まt:、 i、t a
旅回路を入れて計器入力方向を同一にすることで解決で
きる。
次1ζ、h述した第1図の説明において、を流計Mの抵
抗値を零として記載したが、実際1こ1よ0(らかの抵
抗値を有しており、いまその抵抗値をRmとしたとき、
第1図における各計算式におし)で。
ブリッジの平衡式11〕は同一である力S、[2)式お
よび〔8〕式1ζ相当する式が異なる。すなわち、vI
L流計M1こ流れる電流IPおよびI%1.1次式のよ
う昏ζなる。
を代入)
を代入)
これらは共壷こ可変抵抗VRの設定点が変化すれば変化
するもので、(4〕、 [,53式は接地抵抗RP、R
Nが互いに影響し合うことを示す。
このような不都合をなくす実施例が第2図に承すもので
ある。第2図ζこおいて、(21は接地抵抗測定装置+
Rm (8ケ所)は任意の固定された抵抗で。
これは電流計Mの内部抵抗値も含む値である。
SW3 、 SW4はスイッチである。
以下第2図の動作について説明する。まず、スイッチ5
WI、SW2をON、スイッチsw3.sw、をOFF
とする。このとき接地抵抗RPとRN、f3よび抵抗R
mと可変抵抗器VRの一万の設定抵抗R】の和(Rm+
R1)と抵抗Rmと可変抵抗器VRの他方の設定抵抗R
2の和(Rm+R2)により、ブリッジ回路が形成され
るが、このブリッジ回路の平衡を可変抵抗器VRで調整
する。このとき次の〔6〕式が成立する。
Rp ・(R2+Rm) =RN ・(R1+Rm)
−= (6〕次fこ正極側接地抵抗RPの測定方法lζ
ついて述べる。上述の平衡をとつlコ可変抵抗器VRの
設定位置をそのままにして、スイッチSW4をON、ス
イッチSW+〜SW3をOFFとする。このとき電流計
Mに流れる電流IFは次式のようになる。
代入)
(7〕式において+ (R+ +R4)は可変抵抗器V
Rの最大端子間抵抗であり、一定で既知の抵抗値であり
、またRmも一定既知の抵抗である。従って〔7〕式に
より、電流at Mに流れる電流IFと正極側接地抵抗
RPの関係がわかり、これに従って電流計Mに目盛記入
すれば接地抵抗RPを直読できる。
次に負極側接地抵抗RNを測定する方法についC述べる
。上述した平衡状態のままスイッチSW3をON、スイ
ッチSWI 、 SW2お誹びSW4を0FFffる。
このとき屯流創Mに流れる電流INは次式のようになる
。
R+ +R2” 2 Rm 十RN
を代入)
〔8〕式はE記〔7〕式と同様fこ、電流計Mに流れる
電流INと負極側接地抵抗RNの関係がわかり、これに
従って電流fFrMに目盛を記入すれば接地抵抗RNを
直読できる。以上のように第2図に示す回路は電流計M
の内部抵抗による影嚢を受けない。
第8図および第4図はこの発明1こよる直流線路の接地
抵抗測定装置の一実施例を示す図で1図中第1図および
第2図と同一の部分は同一符号を付し′Cいる。まず第
8図について、その動作を説明する。第8図の回路は第
2図の回路において減算器al)と除算器(2)が追加
されたもので、電流計Mは除算!(2)の出力に接続さ
れている。減算器(11はア−スに対する線路e、とe
2の電圧の差1こ比例した直流電圧を出力するもので、
その出力は明らかにアースに対して回路電圧Eに比例し
た直流電圧が得られる。除算器OaはY−Z/X なる
演算を行ない、その出力で電流計Mを駆動させる。
このように構成された第8図の実施例1こおいて。
まずスイッチSWI 、 SW2をON、スイッチSW
3 。
SW4をOFF 、切換スイッチS Wsを端子す側に
倒す。
このとき第2図と同様に、接地抵抗RpとRN、および
抵抗Rmと可変抵抗器VRの一方の設定抵抗R,の和(
Rm+R4)と抵抗Rmと可変抵抗VRの他方の設定抵
抗R2の和(Rm+Ra ) )こより、ブリッジ回路
が形成され、該ブリッジの不平衡電圧がアース間1こ挿
入された抵抗Rmおよび切換えスイッチS Wsを介し
て電流計M(ζ供給される。従って該電流計Mの指示が
零昏こなるように可変抵抗器VRを調整すれば、R記〔
6〕式と同一の平衡式が成立する。
次に正極側接地抵抗RPの測定方法について述べる。上
述の平衡をとった可変抵抗器VRの設定位置をそのまま
にして、スイッチSW4をON、スイッチsw、 〜s
w3をOFF 、切換えスイッチS W sを端子a側
1こ倒す。このときアース間1こ挿入されている抵抗R
mlζ流れる電流IPは前記〔7〕式と同一になる。
該電流IFによるアース間に挿入の抵抗Rm両端の電圧
降下EPは2次の(Technical Field of the Invention) The present invention relates to a DC line grounding resistance measuring device for measuring the grounding resistance of an ungrounded DC line. (Technology) Conventionally, this type of measuring device includes earth leak detectors and earth resistance needles that require J and J conversion. It is impossible to know.Also, a ground resistance meter that requires conversion is one in which the resistance value cannot be read with a meter, and it is necessary to convert the meter reading based on the degree of adjustment when each adjustment is made. As described above, this type of conventional measuring device has various drawbacks. [Summary of the Invention] This invention eliminates the above-mentioned drawbacks of the conventional measuring device and makes it possible to directly read the ground resistance of a DC circuit with a simple circuit. [Embodiment of the Invention] Figures 1 and 2 are diagrams for explaining the basic operation of the earthing resistance measuring device for a DC line according to the present invention. First of all
In the figure, +Ill and e2 indicate the lines of the DC circuit, and e
l is the positive line, and e2 is the negative line. E is the voltage applied to each line e, g=+ of the DC circuit, RP
is the grounding resistance on the positive side of 6, RN is the grounding resistance on the negative side, (υ
is a grounding resistance measuring device, which includes an ammeter M whose one end is grounded,
The variable resistor VR connected to the variable terminal of the ammeter M, the variable resistor VR and the positive and negative side lines e1. It consists of switches SW, , sw2 connected between e2. Note that the dividing resistors R, , R, are dividing resistances of the variable resistor VR divided by the variable terminals of the variable resistor VR. Next, the operation of the apparatus shown in FIG. 1 will be explained. First, switch SW
Turn on I and SWa. At this time, grounding resistance Rp and R
A bridge circuit is formed by dividing resistors R1 and R2 of N and variable resistor VR, and the balance of this bridge circuit is adjusted by variable resistor VR. This is adjusted with the variable resistor VR so that the indication of the current needle M becomes zero.At this time, the following [1]
The formula holds true. Rp-Rt-RH-Rt... [1] Next, to describe the method for measuring the positive ground resistance RP, leave the set position of the balanced variable resistor VR as is as described above, and press the switch. Turn off SW+, turn on switch SWi
N, and if the current flowing through the ammeter M at this time is IP, (however, the internal resistance of the ammeter M is assumed to be zero) R2 (RN+RP) +RN-RP (2) Formula i, (Rt + R2) C variable resistance VR (D is the maximum terminal resistance, always constant, and its value is known. E is the circuit voltage and its value is known. Therefore, [2] Equation 1 is the current IP flowing through the ammeter M.
and. Since the relationship between the positive electrode side grounding resistance RP is perfect, if the ammeter M is calibrated accordingly, the grounding resistance RPe can be directly read. Next, a method for measuring the negative ground resistance RN will be described. Turn on switch SW+ while maintaining the above-mentioned equilibrium state. Switch SW2 is turned OFF. At this time, let IN be the current flowing through the ammeter M. R1 (RP +RN) +RN-Rp R+ + R2+ RN Equation [8] has the same form as Equation [2], just replacing RP in Equation (2) with RN.Therefore, like Equation [2], the ammeter The relationship between Ml, the current IN, and the negative grounding resistance RN is perfect, so if you mark the ammeter M1ζ scale accordingly, you can directly read the grounding resistance RN. Here, the currents IP and IN flow in opposite directions. Is the ammeter M a bidirectional meter?
This can be solved by adding a travel circuit and making the instrument input direction the same. 1ζ, h In the explanation of Figure 1 mentioned above, the resistance value of the flowmeter M was described as zero, but in reality it has a resistance value of 1, 1, and 0, and now its resistance value is When Rm,
(For each calculation formula in Figure 1). Bridge balance equation 11] is the same force S, equation [2) and equation [8] equation 1ζ are different. That is, vI
The current flowing through the L current meter M1 is IP and I% as shown in the linear equation. (Substitute)) These changes change when the set point of the variable resistor VR changes, and Equations (4) and [,53 are the ground resistances RP and R.
Show that N influences each other. An embodiment that eliminates this inconvenience is shown in FIG. In Fig. 2 ζ, (21 is the earth resistance measuring device +
Rm (8 locations) is any fixed resistance. This value also includes the internal resistance value of the ammeter M. SW3 and SW4 are switches. The operation shown in FIG. 2 will be explained below. First, switch 5
WI, SW2 turned on, switch sw3. sw, OFF
shall be. At this time, grounding resistances RP and RN, f3 and resistance R
m and the sum of 10,000 setting resistance R of variable resistor VR (Rm+
R1), the resistor Rm, and the other setting resistor R of the variable resistor VR
A bridge circuit is formed by the sum of 2 (Rm+R2), and the balance of this bridge circuit is adjusted by a variable resistor VR. At this time, the following formula [6] holds true. Rp ・(R2+Rm) =RN ・(R1+Rm)
−= (6) Method of measuring the positive electrode side grounding resistance RP lζ
I will talk about this. The switch SW4 is turned ON and the switches SW+ to SW3 are turned OFF while leaving the set position of the variable resistor VR that maintains the above-mentioned balance as it is. At this time, the current IF flowing through the ammeter M is expressed by the following equation. Substitution) In formula (7), + (R+ +R4) is the variable resistor V
The maximum terminal-to-terminal resistance of R is a constant and known resistance value, and Rm is also a constant and known resistance. Therefore, from equation [7], the relationship between the current IF flowing through the current at M and the positive ground resistance RP can be found, and by marking the scale on the ammeter M according to this, the ground resistance RP can be directly read. Next, a method for measuring the negative ground resistance RN will be described. While maintaining the above-mentioned balanced state, switch SW3 is turned on, switches SWI and SW2 are turned on, and SW4 is turned to 0FFff. At this time, the current IN flowing through the torrent hole M is expressed by the following equation. R+ +R2" 2 Rm 10RN) Formula [8] is written in E. Similar to formula [7], the relationship between the current IN flowing through the ammeter M and the negative electrode side grounding resistance RN is found, and the current fFrM is scaled accordingly. You can directly read the ground resistance RN by writing in.As described above, the circuit shown in Figure 2 is an ammeter M.
It is not affected by the sac due to internal resistance. Figures 8 and 4 are diagrams showing an embodiment of the DC line grounding resistance measuring device according to the present invention 1, and the same parts in Figure 1 as in Figures 1 and 2 are designated by the same reference numerals. There is. First, the operation of FIG. 8 will be explained. The circuit shown in Figure 8 is the circuit shown in Figure 2 with the addition of a subtracter al) and a divider (2), and the ammeter M is divided! (2) is connected to the output. Subtractor (11 is line e to ground, and e
It outputs a DC voltage proportional to the difference between the two voltages by 1.
The output is obviously a DC voltage proportional to the circuit voltage E with respect to ground. The divider Oa performs the calculation Y-Z/X, and drives the ammeter M with its output. Embodiment 1 of FIG. 8 is constructed as described above. First, turn on switches SWI and SW2, then switch SW
3. Turn off SW4 and move the selector switch SWs to the terminal side. At this time, as in FIG. 2, the sum (
Rm+R4), the sum of the resistor Rm and the other setting resistor R2 of the variable resistor VR (Rm+Ra)), a bridge circuit is formed, and the unbalanced voltage of the bridge is connected to the resistor Rm inserted between the ground and the changeover switch SWs. The ammeter M (ζ is supplied through the ammeter M. Therefore, if the variable resistor VR is adjusted so that the indication of the ammeter M becomes zero, then R
6] The same equilibrium equation as the equation holds true. Next, a method for measuring the positive electrode side grounding resistance RP will be described. Leave the above-mentioned balanced setting position of the variable resistor VR as it is, turn on switch SW4, switch sw, ~s
Turn off w3 and turn the selector switch S W s one turn on the terminal a side. At this time, one resistor R is inserted between the ground
The current IP flowing through mlζ is the same as the equation [7] above. The voltage drop EP across the resistor Rm inserted between the ground due to the current IF is expressed as the quadratic
〔9〕式のようになる。
次1ζ負極側接地抵抗RNの測定は、上述の平衡状態の
ままスイッチSW3をON、スイッチSW、 、 5W
2HよびSW4をOFF 、 vJ換えスイッチSWs
を端子a側]こ倒す。このときアース間に挿入された抵
抗Rmに流れる電流INは、n記(8〕式と同一になる
。該[ilNによるアース間に挿入された抵抗Rm両端
の’r4t、 圧降F ENは次のし10〕 式のよう
になる。
以上(9:] 、[101式で示される電圧EPおよび
ENは、除算器(2)において減算器Oυの出力電圧E
を除算し、それぞれ次の(11〕および〔12〕式のよ
う1こ表される。
1記(11ml 、 (12:)式は、除算器(2)の
出力EP(およびEN)が、正極側接地抵抗RP(およ
び負極側接地抵抗R,)と、既知の抵抗(R) + R
2) *おまびRmの関数で表わされており、さらに回
路電圧Eの項が存在しないので1回路電圧Eの変動によ
る誤差も生じない。従って除算器(ロ)の出力で電流計
Mを駆動し、(10、(12〕式に従って電流計Mに目
盛を記入しておけば、接地抵抗RpおよびRNを直読す
ることができる。また(11) 、 [12〕式のよう
に除算器側の出力電圧EpおよびENが、それぞれ接地
抵抗Rp#、J:びRNに一次比例するので、データロ
ガ−2計算器等への信号として応用範囲が広い。
次に第4図は別の実施例を示す図で1図中アース間挿入
抵抗R,を十分小さくしておけば、第1図の回路の変形
として利用できるものである。その測定式は前記1−4
) 、 [,5]式と同形であり、既に簡単tこ説明済
みであるので、特にここでは説明しない。
〔発明の効果〕
以上のようにこの発明によれば、簡単な回路で直流線路
の接地抵抗を直読することができる。[9] Equation becomes as follows. Next, to measure the 1ζ negative side grounding resistance RN, turn on the switch SW3 in the above-mentioned balanced state, switch SW, , 5W
Turn off 2H and SW4, vJ change switch SWs
Terminal a side]. At this time, the current IN flowing through the resistor Rm inserted between the ground is the same as the formula (8) in n. Noshi 10] The voltages EP and EN shown in the above (9:) and [101 equations are the output voltage E of the subtracter Oυ in the divider (2).
are expressed as the following equations (11) and [12], respectively.Equation 1 (11ml, (12)) shows that the output EP (and EN) of the divider (2) is the positive polarity. Side grounding resistance RP (and negative side grounding resistance R,) and known resistance (R) + R
2) *It is expressed as a function of Rm, and there is no term for circuit voltage E, so errors due to fluctuations in one circuit voltage E do not occur. Therefore, by driving the ammeter M with the output of the divider (b) and marking the scale on the ammeter M according to equations (10 and (12)), the ground resistances Rp and RN can be directly read. 11) As shown in equations [12], the output voltages Ep and EN on the divider side are linearly proportional to the grounding resistances Rp#, J: and RN, respectively, so the range of application is as a signal to the data logger 2 calculator, etc. Next, Fig. 4 shows another embodiment, which can be used as a modification of the circuit shown in Fig. 1 if the ground-to-ground insertion resistance R in Fig. 1 is made sufficiently small.The measurement formula is is 1-4 above.
) is isomorphic to the formula [,5], and has already been briefly explained, so it will not be explained here. [Effects of the Invention] As described above, according to the present invention, the ground resistance of a DC line can be directly read using a simple circuit.
第1図および第2図はそれぞれこの発明に町る(ば流線
路の接地抵抗測定装置の基本動作を説明するtコめの図
、第8図および第4図はそれぞれこの発明の一実施例を
示す回路図である。。
図中、 VRは可変抵抗器1Mは電流計、RP + R
Nは接地抵抗、 SW+〜SW4はスイッチ、SWsは
切換スイッチ、0υは減算器、(2)は除算器である。
なお。
各図中同一符号は同−又は相当部分を示す。
代理人 弁理士 大岩増雄
第1図
第2図
第3図
第4図FIGS. 1 and 2 respectively relate to the present invention (the second figure explains the basic operation of the earthing resistance measuring device for a flow line, and FIGS. 8 and 4 each illustrate an embodiment of the present invention). This is a circuit diagram showing the circuit diagram. In the figure, VR is a variable resistor, 1M is an ammeter, and RP + R
N is a grounding resistance, SW+ to SW4 are switches, SWs is a changeover switch, 0υ is a subtracter, and (2) is a divider. In addition. The same reference numerals in each figure indicate the same or corresponding parts. Agent: Patent Attorney Masuo Oiwa Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
髪抵抗器、前記可変抵抗器の可変端子とアース間に接続
された抵抗器、上記可変抵抗器と前記正極側、負極側間
に挿入された第1.第2のスイッチ、前記正極とアース
間の電圧と前記負極とアース間の電圧の差1こ比例した
直流電圧を出力する減算器、前記減算器の出力を前記抵
抗器の両端に生じる電圧で除算する除算器、前記除算器
の出力で駆動される對器、および前記計器の目盛調整時
に前記計器を前記可変端子に接続し接地抵抗測定時に1
前記計器を前記除算器に接続する切換スイッチを備え、
前記第1.第2のスイッチのオン、オフ操作により、前
記正極側と負極側の各接地抵抗を、n記計器の指示にて
直読し得るようfこしたことを特徴とする直流線路の接
地抵抗測定装置。Measured item] A hair resistor connected between the positive pole side and the negative pole side of the C flow path, a resistor connected between the variable terminal of the variable resistor and the ground, the variable resistor and the positive pole side, The first one inserted between the negative electrode side. a second switch, a subtracter that outputs a DC voltage proportional to the difference of 1 between the voltage between the positive electrode and the ground and the voltage between the negative electrode and the ground, and divides the output of the subtracter by the voltage generated across the resistor; a divider driven by the output of the divider; and a divider driven by the output of the divider; and a divider driven by the output of the divider;
comprising a changeover switch connecting the meter to the divider,
Said 1st. A grounding resistance measuring device for a DC line, characterized in that by turning on and off a second switch, each of the grounding resistances on the positive electrode side and the negative electrode side is set to f so that the grounding resistances on the positive electrode side and the negative electrode side can be directly read according to instructions from an n-meter meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2328984A JPS60168057A (en) | 1984-02-10 | 1984-02-10 | Ground resistance measuring device of dc line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2328984A JPS60168057A (en) | 1984-02-10 | 1984-02-10 | Ground resistance measuring device of dc line |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60168057A true JPS60168057A (en) | 1985-08-31 |
Family
ID=12106441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2328984A Pending JPS60168057A (en) | 1984-02-10 | 1984-02-10 | Ground resistance measuring device of dc line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60168057A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102156224A (en) * | 2011-04-13 | 2011-08-17 | 成都智达电力自动控制有限公司 | Direct-current insulation monitoring equipment and insulation resistance value calculating method |
CN104345215A (en) * | 2013-07-31 | 2015-02-11 | 艾默生网络能源有限公司 | Insulation resistance detecting method, device, and apparatus |
-
1984
- 1984-02-10 JP JP2328984A patent/JPS60168057A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102156224A (en) * | 2011-04-13 | 2011-08-17 | 成都智达电力自动控制有限公司 | Direct-current insulation monitoring equipment and insulation resistance value calculating method |
CN104345215A (en) * | 2013-07-31 | 2015-02-11 | 艾默生网络能源有限公司 | Insulation resistance detecting method, device, and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1383062A (en) | Corrosion ratemeter | |
JPS60168057A (en) | Ground resistance measuring device of dc line | |
CA1119253A (en) | Capacitive pick-off circuit | |
US2288310A (en) | Apparatus for geoelectric and seismic investigations | |
US2623916A (en) | Electrical measuring system | |
US4213088A (en) | Voltage measuring circuit | |
US3281684A (en) | Null type and direct reading meter with continuously adjustable range having meter scale coupled to potentiometer arm | |
JPS60165558A (en) | Measuring device for ground resistance of direct current line | |
JPS6037680Y2 (en) | measuring device | |
JPS626171B2 (en) | ||
JP2567118B2 (en) | Cable accident point search method | |
US4179655A (en) | Moving coil instrument with linear characteristic | |
SU1693564A1 (en) | Electrical resistance simulator | |
US4047087A (en) | Electromechanical transducer | |
RU2071065C1 (en) | Converter for mechanical quantities into electric signal | |
JPH0131931Y2 (en) | ||
CN2208235Y (en) | High electric resistance measuring meter | |
US4250448A (en) | Voltmeter apparatus for cascaded transformers | |
JPS6241261Y2 (en) | ||
JPS6324268B2 (en) | ||
JPS6228627A (en) | Temperature compensating circuit for three-wire resistance type temperature sensor | |
JPH0519951B2 (en) | ||
SU949511A1 (en) | Automatic compensator | |
JPH0611506Y2 (en) | Electric line accident detection device | |
US3486114A (en) | Indicating instruments with scale-law changing circuit |