JPS60167926A - Production of heat-resistant inorganic fiber - Google Patents

Production of heat-resistant inorganic fiber

Info

Publication number
JPS60167926A
JPS60167926A JP2190984A JP2190984A JPS60167926A JP S60167926 A JPS60167926 A JP S60167926A JP 2190984 A JP2190984 A JP 2190984A JP 2190984 A JP2190984 A JP 2190984A JP S60167926 A JPS60167926 A JP S60167926A
Authority
JP
Japan
Prior art keywords
compound
fibers
aluminum
silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2190984A
Other languages
Japanese (ja)
Other versions
JPS6253611B2 (en
Inventor
Susumu Aoki
進 青木
Seiji Sakurai
桜井 誠二
Junichi Kuchiki
朽木 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2190984A priority Critical patent/JPS60167926A/en
Publication of JPS60167926A publication Critical patent/JPS60167926A/en
Publication of JPS6253611B2 publication Critical patent/JPS6253611B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fibers having improved mechanical properties, by firing fibers prepared from a specific silicon compound, aluminum compound and material containing carbon atoms as main raw materials in a nitrogen atmosphere to convert the silicon and aluminum compounds into a compound containing Si-Al-O-N elements. CONSTITUTION:(A) A silica-forming silicon compound, e.g. colloidal silica, (B) an alumina-forming compound, e.g. alumina sol, and (C) a material, containing carbon atoms, and same or different from the component (A) or (B) as main saw materials are dissolved or dispersed in water, and a water-soluble organic polymer, e.g. polyvinyl alcohol, is added thereto to impart fiber-forming properties to the solution or dispersion. The resultant spinning dope is then deaerated and spun to give precursor fibers, which are then fired in a nitrogen atmosphere to convert the silicon and aluminum compounds in the fibers into a compound containing Si-Al-O-N elements and give the aimed fibers.

Description

【発明の詳細な説明】 本発明は、高度の耐熱性を有する無機質繊維に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inorganic fiber having a high degree of heat resistance.

約800℃をこえる高温の雰囲気で連続使用可能な耐熱
性繊維としてはセラミック繊維が代表的なものであり、
近年はそのすぐれた耐熱性、耐熱衝撃性、軽量性、電気
絶縁性、化学的安定性、吸音性などを生め化で、製鉄そ
の他各種の金属工業、化学工業、機械工業等において断
熱材、高温シール材、補強材、バ・ンキング、消音材、
濾材などに広く利用されるようになった。しかしなが呟
もっとも代表的なセラミック繊維であるアルミノシリケ
ート質セラミック繊維の場合、その耐熱限界温度は約1
500’Cとされているが、実際にはそれよりもかなり
低い温度においても劣化を起こす。すなわち、この繊維
は約980℃以上に加熱されるとムライト結晶(3A+
203・2SiOz)の生成により体積収縮を起こし、
もろくなってしまう。また最大100〜200m+o程
度の短繊維しか得られず、粒状物の含有量が多いという
欠点もある。また、アルミニウム化合物を主成分とする
粘稠な溶液から前駆体繊維を成形し、これを焼成するこ
とにより製造される多結晶質アルミナ繊維は、融点20
50℃のアルミナを主成分とし、本質的には高耐熱性で
あるが、約1200°C以上でフラングム(α−A +
 20 、)への転移を生じ、強度が低下するとともに
もろくなる傾向があるから、この繊維も、実用上の耐熱
限界はそれほど高くない。
Ceramic fiber is a typical heat-resistant fiber that can be used continuously in high-temperature environments exceeding approximately 800℃.
In recent years, its excellent heat resistance, thermal shock resistance, light weight, electrical insulation, chemical stability, sound absorption properties, etc. have made it popular as a heat insulating material and high temperature material in steel manufacturing and other metal industries, chemical industry, machinery industry, etc. Sealing materials, reinforcing materials, bunking, sound deadening materials,
It has become widely used as filter media. However, in the case of aluminosilicate ceramic fiber, which is the most typical ceramic fiber, its heat resistance limit temperature is approximately 1.
Although it is said to be 500'C, deterioration actually occurs even at temperatures much lower than that. In other words, when this fiber is heated to about 980°C or higher, it forms mullite crystals (3A+
203.2SiOz) causing volumetric contraction,
It becomes brittle. Another disadvantage is that only short fibers with a maximum length of about 100 to 200 m+o can be obtained, and the content of granules is large. In addition, polycrystalline alumina fibers produced by molding precursor fibers from a viscous solution containing an aluminum compound as a main component and firing the fibers have a melting point of 20
The main component is alumina at 50°C, and it is essentially highly heat resistant, but at temperatures above about 1200°C, it undergoes furangum (α-A +
20), which tends to reduce strength and become brittle, so the practical heat resistance limit of this fiber is also not very high.

一方、これらの耐熱性繊維の用途分野における各種設備
は近年ますます高性能化する傾向にあり、それにともな
い、そこで使われる耐熱性繊維材料についても一層耐熱
性のすぐれたものが要望されるようになった。
On the other hand, in recent years, the various types of equipment in which these heat-resistant fibers are used have tended to become more and more sophisticated, and as a result, the heat-resistant fiber materials used there are also required to have even better heat resistance. became.

本発明は、上述のような現状を背景に、より高度の耐熱
性を有するセラミック繊維をめて本発明者らが鋭意研究
を重ねた結果完成されたものであって、シリカ形成性ケ
イ素化合物、アルミナ形成性アルミニウム化合物、およ
び前記ケイ素化合物もしくはアルミニウム化合物と同一
または異なる炭素原子含有物質を溶解状態またはコロイ
ド状態で含有し且つ繊維形成能を有する水溶液を繊維化
し、得られた繊維を窒素雰囲気中で焼成して繊維中のケ
イ素化合物およびアルミニウム化合物を5i−AI−(
)N 4元素化合物に変換することを特徴とする耐熱性
無機質繊維の製造法を提供するものである。
The present invention was completed as a result of intensive research by the present inventors in search of ceramic fibers having higher heat resistance against the background of the above-mentioned current situation, and includes silica-forming silicon compounds, An aqueous solution containing an alumina-forming aluminum compound and a carbon atom-containing substance that is the same as or different from the silicon compound or aluminum compound in a dissolved state or a colloidal state and has fiber-forming ability is made into fibers, and the obtained fibers are heated in a nitrogen atmosphere. By firing, the silicon compounds and aluminum compounds in the fibers are converted into 5i-AI-(
) A method for producing a heat-resistant inorganic fiber is provided, which is characterized by converting N into a four-element compound.

本発明の製法により得られる繊維は、大質的に5iAI
−0−N 4元素化合物よりなる新規な繊維である。好
ましい組成が式Si、、AI□02N、−,(但し2は
1.0〜4.2の正数)で表わされるこの5i−AI−
0−N 4元素化合物は、非繊維分野においては焼結体
製造原料として公知のものである(K。
The fiber obtained by the production method of the present invention has substantially 5iAI
-0-N A novel fiber made of a four-element compound. The preferred composition is this 5i-AI-
The 0-N four-element compound is known as a raw material for producing sintered bodies in the non-textile field (K.

H,Jack、JoMat−3ci、、 11 * 1
135)。しかしなが呟この化合物からなる繊維が製造
された例はまだ見当らない。
H, Jack, JoMat-3ci,, 11 * 1
135). However, no examples have yet been found where fibers made from this compound have been produced.

本発明の製法により得られる5iAI−0−N 4元素
化合物からなる繊維は、熱的にきわめて安定であるだけ
でなく、すぐれた機械的性質を有するものであるから、
アルミ/シリケート質セラミック繊維にみられるような
結晶化に伴う大きな収縮や強度低下を起こすこともなく
、きわめて苛酷な条件での使用に耐えるものである。
The fiber made of the 5iAI-0-N four-element compound obtained by the production method of the present invention is not only extremely thermally stable but also has excellent mechanical properties.
It can withstand use under extremely harsh conditions without causing significant shrinkage or strength loss due to crystallization, which occurs with aluminum/silicate ceramic fibers.

次に本発明による上記耐熱性繊維の製造法について工程
順に説明する。
Next, the method for producing the above-mentioned heat-resistant fiber according to the present invention will be explained in order of steps.

ケイ素化合物、アルミニウム化合物、炭素原子含有物質
等の繊維製造原料としくは、いずれも水によく溶解する
か、コロイド状に分散するものを用いる。ケイ素化合物
としては、約1000℃以上に加熱したとき脱水または
熱分解によりシリカを生成する化合物、たとえばフロイ
グルシリ力、エチルシリケートの加水分解物、有機ケイ
素重合体などを用いる。
As fiber manufacturing raw materials such as silicon compounds, aluminum compounds, and carbon atom-containing substances, those that are well soluble in water or dispersed in colloidal form are used. As the silicon compound, there may be used a compound that produces silica by dehydration or thermal decomposition when heated to about 1000° C. or higher, such as Frogl silicate, hydrolyzate of ethyl silicate, organosilicon polymer, and the like.

アルミニウム化合物としては、約1000℃以上に加熱
したとき脱水または熱分解によりアルミナを生成する化
合物、たとえばアルミナゾル、酢酸アルミニウム、乳酸
アルミニウム、塩化アルミニウム、オキシ塩化アルミニ
ウム、硫酸アルミニウム、アルミニツムアルフラート等
を用いる。ケイ素化合物とアルミニウム化合物の量比は
、Sio2およびA1□O1としてのモル比が1:3な
いし10:1になるようにすることが望ましい。
As the aluminum compound, a compound that produces alumina by dehydration or thermal decomposition when heated to about 1000° C. or higher, such as alumina sol, aluminum acetate, aluminum lactate, aluminum chloride, aluminum oxychloride, aluminum sulfate, aluminum alflate, etc. is used. . The quantitative ratio of the silicon compound to the aluminum compound is preferably such that the molar ratio of Sio2 and A1□O1 is 1:3 to 10:1.

炭素原子含有物質は、後記窒素雰囲気での焼成工程にお
いて炭素化し、次いで還元剤として次の5iAl−()
N 4元素化合物生成反応に関与する。
The carbon atom-containing substance is carbonized in the firing process in a nitrogen atmosphere described later, and then the following 5iAl-() is used as a reducing agent.
Participates in the reaction of producing N4 element compounds.

2ZAI203 + 4(6Z)SiO2+ 3(8Z
)C+ 2(8−Z)N2=4S 16−zA l□O
,N、−□+3(8−Z)Co2(但しZは1.0〜4
.2の正数) この反応に必要な炭素の量は、たとえばZ=4の場合、
繊維重量に対し約11重量%になる。原料として用いた
ケイ素化合物または(および)アルミニウム化合物が炭
素原子を含有する化合物であって充分な炭素供給源とな
り得る場合は上記反応のために炭素を補給する必要がな
いが、通常は、やや過剰量の炭素を存在させるために、
炭素原子含有物質を別に添加することが望ましい。この
ために用いる炭素原子含有物質としては、後記原料溶液
に繊維形性能を付与するために添加される水溶性有機重
合体も役立つが、ほかにも、高級アルコールやカーボン
ブラック等を用いることができる。
2ZAI203 + 4(6Z)SiO2+ 3(8Z
)C+ 2(8-Z)N2=4S 16-zA l□O
, N, -□+3(8-Z)Co2 (however, Z is 1.0 to 4
.. 2 positive number) The amount of carbon required for this reaction is, for example, when Z = 4,
The amount is about 11% by weight based on the weight of the fiber. If the silicon compound or (and) aluminum compound used as a raw material is a compound containing carbon atoms and can serve as a sufficient carbon source, there is no need to supply carbon for the above reaction. In order to have an amount of carbon present,
It is desirable to separately add a carbon atom-containing substance. As the carbon atom-containing substance used for this purpose, water-soluble organic polymers that are added to give the raw material solution fiber-forming properties described later are also useful, but higher alcohols, carbon black, etc. can also be used. .

以上の主要原料を水に溶解または分散させ、更に繊維形
成能を付与するために水溶性有機重合体、たとえばポリ
ビニルアルコール、ポリエチレンオキサイド、ざリアク
リルアミド等を加えて紡糸液を調製する。繊維化に適当
な紡糸液濃度は20〜60重量%、粘度は10〜100
0ポアズであり、このために必要ならば、適宜濃縮を行
う。
A spinning solution is prepared by dissolving or dispersing the above main raw materials in water, and adding a water-soluble organic polymer such as polyvinyl alcohol, polyethylene oxide, zaryacrylamide, etc. to impart fiber-forming ability. The concentration of the spinning solution suitable for fiberization is 20 to 60% by weight, and the viscosity is 10 to 100%.
0 poise, and if necessary for this purpose, concentration is carried out accordingly.

以上のようにして調製した紡糸液を脱泡後に紡糸して、
前駆体繊維を製造する。紡糸方法としては、遠心法、押
出し法、吹出し法など任意の方法を採用することができ
るが、最も有利な方法は、下向きに配置された紡糸ノズ
ルから紡糸液を押出し、これを直ちに下向きの高速気流
により牽引して細化し、同時に横方向から熱風を吹付け
て乾燥し、フィラメント状に固化させる方法である。
The spinning solution prepared as described above is degassed and then spun.
Produce precursor fibers. As a spinning method, any method such as centrifugation, extrusion, or blowing can be adopted, but the most advantageous method is to extrude the spinning solution from a spinning nozzle placed downward, and immediately send it downward at high speed. In this method, the material is pulled by an air current to be thinned, and at the same time, hot air is blown from the side to dry it and solidify it into a filament.

得られた前駆体繊維は、窒素雰囲気中で徐々に昇温し、
まず有機物を炭化させるとともにケイ素化合物およびア
ルミニウム化合物をシリカお上Vアルミナに変換する。
The obtained precursor fiber is gradually heated in a nitrogen atmosphere,
First, organic substances are carbonized and silicon compounds and aluminum compounds are converted into silica and V-alumina.

その後、引続き加熱を続けて最高的1500〜1800
℃まで昇温し、数分ないし数時間この温度に保つことに
より、前記反応による5i−AI−0−N 4元素化合
物への変換を起こさせる。この場合、雰囲気ガスに一酸
化炭素やメタンを混入し、還元剤として作用させてもよ
い、5i−AI−0−N 4元素化合物の生成は、X線
回折による鉱物分析により確認することができる。
After that, continue heating to reach a maximum temperature of 1500 to 1800.
By raising the temperature to .degree. C. and keeping it at this temperature for several minutes to several hours, the conversion to the 5i-AI-0-N four-element compound by the reaction described above occurs. In this case, carbon monoxide or methane may be mixed into the atmospheric gas to act as a reducing agent. The formation of the 5i-AI-0-N four-element compound can be confirmed by mineral analysis using X-ray diffraction. .

以上のように、本発明の製法によれば、ありふれた原料
を用いて、すでlこ確立されているアルミナ繊維の製造
法におけるのとほぼ同様の繊維化・焼成処理により容易
に、且つ高い生産性をもって、高性能耐熱性wL勢を製
造することがで終る。
As described above, according to the manufacturing method of the present invention, using common raw materials, it is possible to easily and highly The result is to manufacture high-performance heat-resistant WL units with high productivity.

以下実施例を示して本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 1 フロイグルシリ力20%液(日産化学・ス/−テ・ンク
スーO)とヒドロキシ塩化アルミニウム・A1□(OH
)、SC120%水溶液とを1 : 3の割合で混合し
た液にポリビニルアルコールを3重量%添加して溶解し
たのち40℃で減圧濃縮して粘度60ボアス゛の紡糸液
を調製した。この紡糸液を紡糸ノズルから押出し、直ち
に高速気流により牽引して細化し、同時に横方向から熱
風を吹付けて乾燥し、フィラメント状に固化させた。
Example 1 Flougl Silica 20% liquid (Nissan Chemical, S/-Te NxO) and aluminum hydroxychloride, A1□ (OH
) and SC120% aqueous solution at a ratio of 1:3, 3% by weight of polyvinyl alcohol was added and dissolved, and the mixture was concentrated under reduced pressure at 40° C. to prepare a spinning solution with a viscosity of 60 bores. This spinning solution was extruded from a spinning nozzle and immediately pulled by a high-speed air stream to be thinned, and at the same time, hot air was blown from the side to dry it and solidify it into a filament.

得られた前駆体繊維を次いで焼成炉に移し、窒素ガスを
流しながら200°C/hrの昇温速度で加熱して17
00°Cまで昇温し、この温度に10分間保持してから
徐冷した。
The obtained precursor fibers were then transferred to a firing furnace and heated at a temperature increase rate of 200°C/hr while flowing nitrogen gas to a temperature of 17°C.
The temperature was raised to 00°C, held at this temperature for 10 minutes, and then slowly cooled.

得られた繊維は実質的に5iAl−0−N 4元素化合
物よりなり、平均直径は8μ、引張強さは120 Kg
/mm2.1500℃で3時間加熱後の引張強さは10
0にg/IaI112であった。
The resulting fibers essentially consisted of a 5iAl-0-N four-element compound, had an average diameter of 8μ, and a tensile strength of 120 Kg.
/mm2.The tensile strength after heating at 1500℃ for 3 hours is 10
0g/IaI was 112.

実施例 2 エチルシリケー) 100重量部、エタノール300i
i部、水17.8重量部および2N−塩酸4重量部を混
合して5時間撹拌することにより得られたエチルシリケ
ート加水分解液とギ酸アルミニウム10%水溶液とを1
 :2の割合で混合し、混合液にポリエチレンオキサイ
ドを0.01%添加したのち、40’Cで減圧濃縮して
粘度400ポアズの紡糸液を調製した。この紡糸液を紡
糸ノズルから押出して繊維化し、周速100m/min
のローターで巻取った。
Example 2 Ethyl silica) 100 parts by weight, ethanol 300i
i part, 17.8 parts by weight of water, and 4 parts by weight of 2N hydrochloric acid were mixed and stirred for 5 hours, and a 10% aqueous solution of aluminum formate was mixed with 1 part
After adding 0.01% of polyethylene oxide to the mixed solution, the mixture was concentrated under reduced pressure at 40'C to prepare a spinning solution having a viscosity of 400 poise. This spinning solution is extruded from a spinning nozzle to form fibers at a circumferential speed of 100 m/min.
It was wound up with a rotor.

得られた前駆体繊維を次いで焼成炉に移し、窒素ガスを
流しながら200’(:/hrの昇温速度で加熱して1
800”Cまで昇温し、この温度に5分間保持してがら
徐冷した。
The obtained precursor fibers were then transferred to a firing furnace and heated at a temperature increase rate of 200' (:/hr) while flowing nitrogen gas.
The temperature was raised to 800''C and slowly cooled while maintaining this temperature for 5 minutes.

得られたWL維は実質的に5i−AI−0−N 4元素
化合物よりす+)、平均直径は11μ、引張強−’ハ1
70 Kg/ml112.1500°Cで3時間加熱後
の引張強さは160 Kg/mm2であった。
The obtained WL fibers are substantially made of 5i-AI-0-N 4-element compound +), have an average diameter of 11μ, and a tensile strength of -'Ha1.
70 Kg/ml112.The tensile strength after heating at 1500°C for 3 hours was 160 Kg/mm2.

代理人 弁理士 板井−珊Agent: Patent Attorney San Itai

Claims (2)

【特許請求の範囲】[Claims] (1)シリカ形成性ケイ素化合物、アルミナ形成性アル
ミニウム化合物、および前記ケイ素化合物もしくはアル
ミニウム化合物と同一または異なる炭素原子含有物質を
溶解状態またはコロイド状態で含有し且つ繊維形成能を
有する水溶液を繊維化し、得られた繊維を窒素雰囲気中
で焼成して繊維中のケイ素化合物およびアルミニウム化
合物を5i−AI−0−N 4元素化合物に変換するこ
とを特徴とする耐熱性無機質#&雑の製造法。
(1) Fiberizing an aqueous solution containing a silica-forming silicon compound, an alumina-forming aluminum compound, and a carbon atom-containing substance that is the same or different from the silicon compound or aluminum compound in a dissolved or colloidal state and has fiber-forming ability, A method for producing heat-resistant inorganic materials #& miscellaneous, which comprises firing the obtained fibers in a nitrogen atmosphere to convert silicon compounds and aluminum compounds in the fibers into 5i-AI-0-N four-element compounds.
(2)Si41−0−N 4元素化合物が組成式S i
、−zA hO−N、、−、(但し2は1.0〜4.2
の正数)で表わされるものである特許請求の範囲第1項
記載の製造法。
(2) Si41-0-N four-element compound has the composition formula Si
, -zA hO-N,, -, (however, 2 is 1.0 to 4.2
The manufacturing method according to claim 1, which is expressed by a positive number).
JP2190984A 1984-02-10 1984-02-10 Production of heat-resistant inorganic fiber Granted JPS60167926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2190984A JPS60167926A (en) 1984-02-10 1984-02-10 Production of heat-resistant inorganic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2190984A JPS60167926A (en) 1984-02-10 1984-02-10 Production of heat-resistant inorganic fiber

Publications (2)

Publication Number Publication Date
JPS60167926A true JPS60167926A (en) 1985-08-31
JPS6253611B2 JPS6253611B2 (en) 1987-11-11

Family

ID=12068217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2190984A Granted JPS60167926A (en) 1984-02-10 1984-02-10 Production of heat-resistant inorganic fiber

Country Status (1)

Country Link
JP (1) JPS60167926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213629A2 (en) * 1985-09-03 1987-03-11 Mitsubishi Kasei Corporation Process for the production of inorganic fibers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875823A (en) * 1971-12-22 1973-10-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875823A (en) * 1971-12-22 1973-10-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213629A2 (en) * 1985-09-03 1987-03-11 Mitsubishi Kasei Corporation Process for the production of inorganic fibers

Also Published As

Publication number Publication date
JPS6253611B2 (en) 1987-11-11

Similar Documents

Publication Publication Date Title
KR940010096B1 (en) Ceramic articles containing silicon carbide
US11572314B2 (en) Preparation method for yttrium aluminum garnet continuous fiber
CN101319414B (en) Production method of silicon carbide fiber with high temperature tolerance
US4883779A (en) Ceramic articles containing silicon carbide
CN110041055B (en) Alumina ceramic filament and sol-gel spinning preparation method thereof
JPS62125015A (en) High-purity silicon nitride fiber and production thereof
CN111995393B (en) Method for preparing aluminum titanate ceramic fiber from titanium-aluminum polymer precursor
CA1240109A (en) Process for producing inorganic fiber
CN110256052B (en) Linear organic silicon oligomer/alumina-based composite ceramic precursor and preparation method thereof
JPS60167926A (en) Production of heat-resistant inorganic fiber
JPS61124626A (en) Aluminum nitride fiber and production thereof
US5051215A (en) Curing preceramic polymers by exposure to nitrogen dioxide
Chen et al. Preparation and properties of silicon oxycarbide fibers
CN111533563A (en) POSS (polyhedral oligomeric silsesquioxane) functionalized alumina ceramic fiber and sol-gel spinning preparation method thereof
Chen et al. Preparation and properties of silicon oxycarbide fibers
JPS5824394B2 (en) Titsukahousofukugoutaino Seizouhouhou
Motz et al. New SiCN fibers from the ABSE polycarbosilazane
JPS643802B2 (en)
JPS6228205B2 (en)
JPH01280022A (en) Aluminum nitride fiber and production thereof
CN110528120B (en) Zirconium carbide nano-fiber and preparation method thereof
JPH045770B2 (en)
JPS60209016A (en) Preparation of composite ceramic fiber
JPH0384035A (en) Organic metal ceramic precursor based on boron, nitrogen and silicon
JPH01124625A (en) Production of boron nitride fiber