JPS6016758B2 - Gallium nitride light emitting device and its manufacturing method - Google Patents

Gallium nitride light emitting device and its manufacturing method

Info

Publication number
JPS6016758B2
JPS6016758B2 JP54135641A JP13564179A JPS6016758B2 JP S6016758 B2 JPS6016758 B2 JP S6016758B2 JP 54135641 A JP54135641 A JP 54135641A JP 13564179 A JP13564179 A JP 13564179A JP S6016758 B2 JPS6016758 B2 JP S6016758B2
Authority
JP
Japan
Prior art keywords
gallium nitride
nitride layer
semi
light emitting
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54135641A
Other languages
Japanese (ja)
Other versions
JPS5660076A (en
Inventor
芳正 大木
幸雄 豊田
敬幸 小林
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54135641A priority Critical patent/JPS6016758B2/en
Priority to US06/199,097 priority patent/US4396929A/en
Publication of JPS5660076A publication Critical patent/JPS5660076A/en
Priority to US06/480,794 priority patent/US4476620A/en
Publication of JPS6016758B2 publication Critical patent/JPS6016758B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は窒化ガリウム発光素子の新規な構造及びその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel structure of a gallium nitride light emitting device and a method for manufacturing the same.

従来窒化ガリウム発光素子は主に材料特性の険討が行な
われているだけであり、実際の素子に組み立てる技術は
殆んど開発されていない。
Conventional gallium nitride light emitting devices have only been subject to extensive research into material properties, and almost no technology for assembling them into actual devices has been developed.

通常知られている窒化ガリウム発光素子は、例えば第1
図に示すようにサファイア基板1上にn型窒化ガリウム
層2およびp型ないし半絶縁性窒化ガリウム層3(以下
i層という)を形成し、i層3表面に蒸着などで金属電
極4を、また側面のn型肩2の露出した部分にn型オー
ミック電極5を形成し、図のように金属電極4をステム
6にダィボンドし、n型オーミック電極5をポスト7に
紬線9で縞線し、適当なしンズ8をかぶせて形成されて
いる。この素子の形を通常M−1−N形と呼び、金属ス
テムと金属ポストの間に適当な電圧を印加することによ
り発光する。このような素子では、細い金属線9による
結線をするために断線を生じたり、また取付ける発光ダ
イオードチップの個数、取付けるべきステムの形状や材
料、かぶせるレンズの材質などによって工程の煩雑さや
信頼性の低下が問題となる。
A commonly known gallium nitride light emitting device is, for example, a first
As shown in the figure, an n-type gallium nitride layer 2 and a p-type or semi-insulating gallium nitride layer 3 (hereinafter referred to as i-layer) are formed on a sapphire substrate 1, and a metal electrode 4 is formed on the surface of the i-layer 3 by vapor deposition or the like. In addition, an n-type ohmic electrode 5 is formed on the exposed part of the n-type shoulder 2 on the side surface, and the metal electrode 4 is die-bonded to the stem 6 as shown in the figure, and the n-type ohmic electrode 5 is attached to the post 7 with a striped line using a pongee wire 9. It is formed by covering it with a suitable lens 8. The shape of this element is usually called the M-1-N type, and it emits light by applying an appropriate voltage between the metal stem and the metal post. In such devices, wire breaks may occur due to the thin metal wires 9 being used for connection, and the process may be complicated and reliability may be compromised due to factors such as the number of light emitting diode chips to be attached, the shape and material of the stem to be attached, and the material of the lens to be covered. Decrease becomes a problem.

特にn型オーミック電極を小さな発光ダイオードチップ
の側面からとることは、金属電極の形成、ワイヤによる
ポストとの結線が困難であり、量産性に乏しい欠点があ
った。本発明は上記欠点を解消し、ステムないし金属ポ
ストと発光ダイオード上の金属電極とを金属ワイヤで結
線する必要がなく、信頼性・量産性におし、て優れた窒
化ガリウム発光素子及びその製造方法を提供するもので
ある。
In particular, when the n-type ohmic electrode is taken from the side surface of a small light emitting diode chip, it is difficult to form a metal electrode and connect it to a post with a wire, which has the drawback of poor mass production. The present invention eliminates the above drawbacks, eliminates the need to connect the stem or metal post and the metal electrode on the light emitting diode with a metal wire, and provides an excellent gallium nitride light emitting device with excellent reliability and mass productivity. The present invention provides a method.

以下図面を用いて本発明の一実施例における発光素子を
詳細に説明する。第2図は本発明の一実施例を示したも
ので、aは発光ダイオードのチップ斜視図、bはaに示
した発光ダイオードチップをステムに取り付けた場合の
断面図を示す。第2図aにおいて、1 1はサファイア
などの基板であり、その一部に切り溝等の凹凸部91が
ストライプ状に設けてある。21はn型窒化ガリウム層
、31は半絶縁性窒化ガリウム層であり、凹凸部91に
対応する部分の半絶縁性窒化ガリウム層にはn型の強い
導電性を示すビットを含んだ領域92を形成し、この領
域92はn型窒化ガリウム層21と連続して接続されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A light emitting device according to an embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 2 shows an embodiment of the present invention, in which a is a perspective view of a light emitting diode chip, and b is a sectional view of the light emitting diode chip shown in a attached to a stem. In FIG. 2a, reference numeral 11 is a substrate made of sapphire or the like, and a part thereof is provided with uneven parts 91 such as grooves in a striped shape. 21 is an n-type gallium nitride layer, 31 is a semi-insulating gallium nitride layer, and the semi-insulating gallium nitride layer in the portion corresponding to the uneven portion 91 has a region 92 containing bits exhibiting strong n-type conductivity. This region 92 is continuously connected to the n-type gallium nitride layer 21 .

上誌凹凸部91の形成には、基板表面を荒らしておけば
良く、例えば超音波加工やサンドブラストなどを用いれ
ば良い。上記強いn型導電性領域92の少なくとも一部
に接するごとくn型オーミック電極41が、強いn型導
電性領域92には接しないように、半絶縁性窒化ガリウ
ム層31上に他方の金属電極(以下i層電極と記す。)
51が形成される。第2図bにおいて、67はステムで
、ステム電極61及び71から構成されており、ステム
電極61と71は絶縁体90で絶縁され、かつ一体化さ
れている。
To form the above-mentioned uneven portions 91, it is sufficient to roughen the surface of the substrate, and for example, ultrasonic processing, sandblasting, etc. may be used. The other metal electrode ( (hereinafter referred to as i-layer electrode)
51 is formed. In FIG. 2b, a stem 67 is composed of stem electrodes 61 and 71, and the stem electrodes 61 and 71 are insulated by an insulator 90 and integrated.

同図aに示した発光ダイオードチップを、n型オーミッ
ク電極41がステムの電極71に、i層電極51がステ
ムの電極71に接続するようにダイボンドし、レンズ8
1をかぶせて本発明の発光素子を完成する。この発光素
子のステムの電極に適当な電圧を印加することにより素
子からの発光が得られる。本発明の発光ダイオードの場
合、n型窒化ガリウム層21からの電極取り出しを、強
いn型導軍性領域を介して基板表面で行なっているため
、ワイヤ結線が不要となり、従って断線による歩留りの
低下を防止できる。
The light emitting diode chip shown in FIG.
1 to complete the light emitting device of the present invention. By applying an appropriate voltage to the electrode of the stem of this light emitting element, light emission from the element can be obtained. In the case of the light emitting diode of the present invention, since the electrode is taken out from the n-type gallium nitride layer 21 on the substrate surface through the strong n-type conductivity region, wire connection is not required, and therefore the yield is reduced due to wire breakage. can be prevented.

また強いn型導電性領域の形成は、サファイア基板11
に、スクラィバ等により凹凸領域を形成すれば良く、従
釆に比して簡単に形成でき、電極の取り出しが容易にな
る利点がある。
In addition, the formation of a strong n-type conductive region is possible on the sapphire substrate 11.
In addition, it is sufficient to form the uneven region using a scriber or the like, which has the advantage that it can be formed more easily than in the case of a follower, and that the electrode can be easily taken out.

上記の説明では凹凸部91をストライプ状に設けた例を
掲げたが、凹凸部91の形状がこれに限定されるもので
ないことはもちろんであり、必要ならば円形にすること
もできる。
In the above description, an example is given in which the uneven portions 91 are provided in a striped shape, but it goes without saying that the shape of the uneven portions 91 is not limited to this, and may be circular if necessary.

次に第3図によって、第2図aに示した本発明の発光ダ
イオードチップの製造方法を説明する。
Next, a method for manufacturing the light emitting diode chip of the present invention shown in FIG. 2a will be explained with reference to FIG.

まず1に示すようにサファイア等の基板12を用意し、
ローこ示すように基板12の表面にスクラィバないしダ
ィサ等の加工装置を用いて必要なピッチで切り溝ないし
スクラッチ93を形成する。この基板に例えば気相成長
法などでmに示すようにまずn型窒化ガリウム層22を
形成し、さらにWに示すように亜鉛等をドープして半絶
縁性にした窒化ガリウム層32を形成する。このとき切
り溝の上に相当する部分は、半絶縁性とならずに、n型
の高い導電性を示すビットを含んだ結晶94となってい
る。次にVに示すように、マスク蒸着ないしフオトェツ
チ工程等半導体工業でよく知られた工程により、上記ビ
ットを含んだn型領域94の少なくとも一部に接するご
とくn型オーミック電極42を、上記n型領域94を含
まない領域にi層電極52を形成する。このウェハをダ
ィサ等でチップに切断すれば第2図aに示した発光ダイ
オードチップとなる。以下本発明を実施例にもとずいて
説明する。
First, as shown in 1, a substrate 12 such as sapphire is prepared,
As shown in the figure, grooves or scratches 93 are formed on the surface of the substrate 12 at a required pitch using a processing device such as a scriber or a dicer. On this substrate, an n-type gallium nitride layer 22 is first formed as shown in m by, for example, a vapor phase growth method, and then a gallium nitride layer 32 doped with zinc or the like to make it semi-insulating is formed as shown in W. . At this time, the portion corresponding to the top of the groove is not semi-insulating, but is a crystal 94 containing bits exhibiting high n-type conductivity. Next, as shown in V, the n-type ohmic electrode 42 is attached to the n-type ohmic electrode 42 in contact with at least a portion of the n-type region 94 containing the bit, using a process well known in the semiconductor industry such as mask deposition or photo-tetch process. The i-layer electrode 52 is formed in a region that does not include the region 94. If this wafer is cut into chips using a dicer or the like, the light emitting diode chips shown in FIG. 2a will be obtained. The present invention will be explained below based on examples.

<実施例 1>第2図において基板11をサファイア基
板で形成し、凹凸部91としてスクラィバによるきずを
つけた。
<Example 1> In FIG. 2, the substrate 11 was formed of a sapphire substrate, and scratches were made as uneven portions 91 using a scriber.

n型半導体層21はn21び7〜1び9仇‐8の姿化ガ
リウム層を気相成長法により厚さ10〜100ムmで形
成した。半絶縁層31はp型不純物として、例えば亜鉛
を添加した室化ガリウムを20山以下の厚さに気相成長
法で成長させて形成した。金属電極41,51は葵着マ
スクを用いて金属を真空蒸着により付着させて形成した
。この素子をステムの上にマウントする方法は、熱圧着
法あるいは半田によった。以上に示した本実施例の発光
素子は、緑〜青紫の領域の発光を示した。
The n-type semiconductor layer 21 is formed by forming gallium layers of n21, 7 to 1, and 9 to 8 to a thickness of 10 to 100 mm by vapor phase epitaxy. The semi-insulating layer 31 is formed by growing gallium nitride doped with zinc as a p-type impurity to a thickness of 20 peaks or less by vapor phase growth. The metal electrodes 41 and 51 were formed by depositing metal by vacuum evaporation using an Aoi mask. This element was mounted on the stem by thermocompression bonding or soldering. The light-emitting element of this example shown above emitted light in the green to bluish-violet range.

〈実施例 2> 基板11としてスピネル単結晶および六方晶系炭化シリ
コン単結晶を用いて実施例1と同じ条件で素子を形成し
たところ同機に緑〜青紫の発光をする素子が得られた。
<Example 2> When a device was formed under the same conditions as in Example 1 using a spinel single crystal and a hexagonal silicon carbide single crystal as the substrate 11, a device emitting green to blue-violet light was obtained.

<実施例 3>実施例1において、スクライバの代りに
ダイサ−を用いて中約100ムmの切り溝を入れたとこ
ろ、その幅に等しい領域に帯状をなして導電性のビット
を多数含む領域が得られた。
<Example 3> In Example 1, when a dicer was used instead of the scriber to cut a groove with a diameter of about 100 mm, an area equal to the width of the groove formed in a band shape and containing many conductive bits. was gotten.

これを用いて同機に緑に青紫の発光をする素子が得られ
た。<実施例 4>実施例1において、スクライバの加
重を大きくし約5一の深さに至る切り溝を格子状に入れ
たサファイア基板11を用いて、窒化ガリウム結晶を成
長させたところ、切り溝の上部に導電性のビットを含む
領域が形成されると同時に切り溝に沿ってサファイア基
板内にクラツクが発生した。
Using this, an element that emits green to blue-violet light was obtained on the same machine. <Example 4> In Example 1, when a gallium nitride crystal was grown using the sapphire substrate 11 in which the scriber load was increased and the kerfs to a depth of approximately 5 mm were formed in a lattice pattern, the kerfs were A crack was generated in the sapphire substrate along the kerf at the same time as a region containing conductive bits was formed on top of the sapphire substrate.

このクラックに沿って割ることにより、第4図に示すよ
うな発光ダイオードチップを容易に得ることができた。
すなわち、基板13に格子状に深い溝96を入れておく
と、ダイオードチップの周辺部をとりかこむように導電
性にビットを含む領域95が表面に達するまで形成され
る。この導電・性の領域95にかかるようにn型電極4
3、かからないようにi層電極53を形成した後、ロー
ラーで軽く圧することにより図に示す様なチップが容易
に得られ、このようにして作られた素子により緑〜青紫
の発光が得られた。なお図で33は半絶縁性窒化ガリウ
ム層、23はN型窒化ガリウム層である。<実施例 5
> 本発明の方法を数字表示に用いた例を第5図を用いて述
べる。
By breaking along this crack, a light emitting diode chip as shown in FIG. 4 could be easily obtained.
That is, if deep grooves 96 are formed in the substrate 13 in a lattice pattern, a conductive bit-containing region 95 is formed surrounding the peripheral portion of the diode chip until it reaches the surface. The n-type electrode 4 is placed over this conductive/sexual region 95.
3. After forming the i-layer electrode 53 so that it does not overlap, a chip as shown in the figure can be easily obtained by pressing lightly with a roller, and the device made in this way can emit green to blue-violet light. . In the figure, 33 is a semi-insulating gallium nitride layer, and 23 is an N-type gallium nitride layer. <Example 5
> An example of using the method of the present invention for numerical display will be described using FIG.

同図aはサファイア基板上の1数字分を示してあり、そ
の一部に超音波加工によって表面を荒らした領域55を
設けてある。このような処理をした基板上に実施例1と
同様な方法によりn型および半絶縁性のGaN結晶を成
長させたところ、基板上の加工をした領域55に相当す
る部分の表面は高い導電率をもつn型であり、その他の
表面は高抵抗層59であった。このような結晶に同図b
に示すように数字表示素子を形成した。ここで56は、
基板の55で示した領域に形成したn側金属電極であり
、“日”の字型の金属電極57と小数点の金属電極58
は、結晶の半絶縁層59上に形成した。n側電極を負に
、“日”の字型及び小数点の電極を正になるように電圧
を印加したところ音色の発光が得られた。n側電極56
と小数点電極58の大きさないし形を変えておくことに
より識別を容易にすることも可能である。
Figure a shows one digit on the sapphire substrate, and a region 55 whose surface has been roughened by ultrasonic processing is provided in a part thereof. When an n-type and semi-insulating GaN crystal was grown on the substrate treated in this manner in the same manner as in Example 1, the surface of the portion corresponding to the processed region 55 on the substrate had high conductivity. The other surface was a high resistance layer 59. In such a crystal, the same figure b
A numeric display element was formed as shown in FIG. Here, 56 is
This is the n-side metal electrode formed in the area indicated by 55 on the substrate, and includes a “Japanese”-shaped metal electrode 57 and a decimal point metal electrode 58.
was formed on the crystalline semi-insulating layer 59. When a voltage was applied so that the n-side electrode was negative and the "day"-shaped and decimal point electrodes were positive, tonal light emission was obtained. n-side electrode 56
It is also possible to make identification easier by changing the size or shape of the decimal point electrode 58.

数字パターンのかわりにドットマトリックスとすること
によって文字表示とすることも可能である。以上述べて
きたように、本発明は、単結晶基板、その上に形成され
た導電性窒化ガリウム層、さらにその上に形成された半
絶縁性窒化ガリウム層を有してなる発光素子及びその製
造方法において、上記単結晶基板の一部に凹凸領域を設
け、この凹凸領域に対応し、導電性及び半絶縁性窒化ガ
リウム層を貫通して表面に達する、導電性窒化ガリウム
層と導電型が同じで高い導電率を示す高導電性領域を形
成し、高導電性領域と半絶縁性窒化ガリウム層とから電
極を取り出すようにしたもので、この電極を直接ステム
に接続することが可能となり、結線用の金属ワイヤが必
要でなくなり、信頼性・量産性に優れる。
It is also possible to display characters by using a dot matrix instead of a numerical pattern. As described above, the present invention relates to a light-emitting device having a single crystal substrate, a conductive gallium nitride layer formed thereon, and a semi-insulating gallium nitride layer formed thereon, and its manufacture. In the method, an uneven region is provided in a part of the single crystal substrate, and the conductive gallium nitride layer corresponding to the uneven region penetrates the conductive and semi-insulating gallium nitride layer to reach the surface, and has the same conductivity type as the conductive gallium nitride layer. A highly conductive region exhibiting high conductivity is formed in the wafer, and an electrode is taken out from the highly conductive region and the semi-insulating gallium nitride layer, making it possible to connect this electrode directly to the stem, making it possible to connect There is no need for additional metal wires, resulting in excellent reliability and mass production.

またn型窒化ガリウム層からの電極の取り出しが容易と
なり、工程の簡略化がはかれる利点もある。
Further, there is an advantage that the electrode can be easily taken out from the n-type gallium nitride layer, and the process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の窒化ガリウム発光素子をステムに取りつ
けた状態の断面図、第2図aは本発明の窒化ガリウム発
光素子の斜視図、同bはaに示した素子をステムに取り
つけた状態を示す断面図、第3図1〜Vは本発明の窒化
ガリウム発光素子の製造工程を順に示す図、第4図aは
本発明の他の実施例の斜視図、同bは同断面図、第5図
a,bは本発明の素子を数字表示に応用した例を示す平
面図である。 1,11・・・・・・基板、2,21・・・…n型窒化
ガリウム層、3,31・・・・・・半絶縁性窒化ガリウ
ム層、41……n型オーミツク電極、51……i層電極
、91・・・・・・凹凸領域、92・・・・・・n型高
導電性領域、67……ステム。 第1図 第2図 (OJ (も) 第3図 (1) m’ ‘血 ‘村, 【V1 第4図 「〇, ‘bー 第5図 (は) (bー
FIG. 1 is a cross-sectional view of a conventional gallium nitride light emitting device attached to a stem, FIG. 3. 1 to 3 V are diagrams sequentially showing the manufacturing process of the gallium nitride light emitting device of the present invention, FIG. 4 a is a perspective view of another embodiment of the present invention, and FIG. FIGS. 5a and 5b are plan views showing an example in which the device of the present invention is applied to a numerical display. 1, 11... Substrate, 2, 21... N-type gallium nitride layer, 3, 31... Semi-insulating gallium nitride layer, 41... N-type ohmic electrode, 51... ...i-layer electrode, 91 ... uneven region, 92 ... n-type highly conductive region, 67 ... stem. Figure 1 Figure 2 (OJ (also) Figure 3 (1) m''Blood' Village, [V1 Figure 4 '〇, 'b-Figure 5 (ha) (b-

Claims (1)

【特許請求の範囲】 1 半導体または絶縁体の単結晶基板上に、導電性窒化
ガリウム層および半絶縁性窒化ガリウム層を形成してな
り、前記単結晶基板表面の一部に設けられた凹凸領域と
、この凹凸領域に対応し導電性及び半絶縁性窒化ガリウ
ム層を貫通して表面に達する、導電性窒化ガリウム層と
同導電型で高導電率を示す高導電性領域とを有し、前記
半絶縁性窒化ガリウム層と高導電性領域に電極を設けた
ことを特徴とする窒化ガリウム発光素子。 2 半導体または絶縁体の単結晶基板表面上の一部に、
スクライバまたはダイサ等により浅い切り溝またはひつ
かき傷等の凹凸領域を形成する工程と、前記凹凸領域を
含む基板全面に一導電性の窒化ガリウム層を形成する工
程と、その上に反対導電型不純物を添加した半絶縁性窒
化ガリウム層を形成する工程と、前記一導電性の窒化ガ
リウム層および半絶縁性窒化ガリウム層を形成する工程
により前記凹凸領域上に表面にまで達するよう形成され
た高導電性領域上と半絶縁性窒化ガリウム層上に電極を
形成する工程とを含むことを特徴とする窒化ガリウム発
光素子の製造方法。
[Claims] 1. A conductive gallium nitride layer and a semi-insulating gallium nitride layer are formed on a single crystal substrate of a semiconductor or an insulator, and an uneven region is provided on a part of the surface of the single crystal substrate. and a highly conductive region having the same conductivity type as the conductive gallium nitride layer and exhibiting high conductivity, which corresponds to the uneven region and reaches the surface by penetrating the conductive and semi-insulating gallium nitride layer, A gallium nitride light emitting device comprising a semi-insulating gallium nitride layer and an electrode provided in a highly conductive region. 2. On a part of the surface of a semiconductor or insulator single crystal substrate,
A step of forming an uneven region such as a shallow cut groove or scratch using a scriber or a dicer, a step of forming a gallium nitride layer of one conductivity on the entire surface of the substrate including the uneven region, and an impurity of the opposite conductivity type is formed on the gallium nitride layer of one conductivity. A highly conductive layer formed on the uneven region so as to reach the surface by the step of forming a semi-insulating gallium nitride layer doped with , and the step of forming the mono-conductive gallium nitride layer and the semi-insulating gallium nitride layer. 1. A method of manufacturing a gallium nitride light emitting device, the method comprising the step of forming an electrode on a semi-insulating gallium nitride layer and a semi-insulating gallium nitride layer.
JP54135641A 1979-10-19 1979-10-19 Gallium nitride light emitting device and its manufacturing method Expired JPS6016758B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54135641A JPS6016758B2 (en) 1979-10-19 1979-10-19 Gallium nitride light emitting device and its manufacturing method
US06/199,097 US4396929A (en) 1979-10-19 1980-10-20 Gallium nitride light-emitting element and method of manufacturing the same
US06/480,794 US4476620A (en) 1979-10-19 1983-03-31 Method of making a gallium nitride light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54135641A JPS6016758B2 (en) 1979-10-19 1979-10-19 Gallium nitride light emitting device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5660076A JPS5660076A (en) 1981-05-23
JPS6016758B2 true JPS6016758B2 (en) 1985-04-27

Family

ID=15156550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54135641A Expired JPS6016758B2 (en) 1979-10-19 1979-10-19 Gallium nitride light emitting device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6016758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072290Y2 (en) * 1987-09-15 1995-01-25 アイシン精機株式会社 Power seat equipment
CA2037198C (en) 1990-02-28 1996-04-23 Katsuhide Manabe Light-emitting semiconductor device using gallium nitride group compound
JP3679720B2 (en) 2001-02-27 2005-08-03 三洋電機株式会社 Nitride semiconductor device and method for forming nitride semiconductor

Also Published As

Publication number Publication date
JPS5660076A (en) 1981-05-23

Similar Documents

Publication Publication Date Title
US4396929A (en) Gallium nitride light-emitting element and method of manufacturing the same
US4476620A (en) Method of making a gallium nitride light-emitting diode
JP2803742B2 (en) Gallium nitride-based compound semiconductor light emitting device and method for forming electrode thereof
US6812502B1 (en) Flip-chip light-emitting device
US8143140B2 (en) Substrate having thin film of GaN joined thereon and method of fabricating the same, and a GaN-based semiconductor device and method of fabricating the same
EP1502286B1 (en) Method of fabricating vertical structure leds
US20090315069A1 (en) Thin gallium nitride light emitting diode device
US5804839A (en) III-V nitride compound semiconductor device and method for fabricating the same
US4080245A (en) Process for manufacturing a gallium phosphide electroluminescent device
KR20080015794A (en) Ingaaln light-emitting device and manufacturing method thereof
JPH06318731A (en) Semiconductor light emitting device
JPH11238913A (en) Semiconductor light-emitting device chip
EP0460710A3 (en) Gallium nitride group compound semiconductor and luminous element comprising it and the process of producing the same
KR100762003B1 (en) Method of manufacturing vertically structured nitride type light emitting diode
JPH11354841A (en) Fabrication of semiconductor light emitting element
JP3916726B2 (en) Compound semiconductor light emitting device
JP2987111B2 (en) Semiconductor device and manufacturing method thereof
JPS6016758B2 (en) Gallium nitride light emitting device and its manufacturing method
US20230163243A1 (en) Light-emitting device and method for manufacturing the same
KR20080076308A (en) Light emitting device and method for manufacturing thereof
JPH0638265U (en) Electrodes of gallium nitride-based light emitting device
JPH08335719A (en) Nitrate semiconductor light emitting diode
KR100407773B1 (en) GaN LIGHT EMITTING DEVICE AND THE PACKAGE THEREOF
KR101055778B1 (en) Light emitting diodes and method for manufacturing same
US10930831B2 (en) Light emitting chip and fabrication method thereof