JPS6016725B2 - Manufacturing method of voltage nonlinear resistor - Google Patents

Manufacturing method of voltage nonlinear resistor

Info

Publication number
JPS6016725B2
JPS6016725B2 JP55079311A JP7931180A JPS6016725B2 JP S6016725 B2 JPS6016725 B2 JP S6016725B2 JP 55079311 A JP55079311 A JP 55079311A JP 7931180 A JP7931180 A JP 7931180A JP S6016725 B2 JPS6016725 B2 JP S6016725B2
Authority
JP
Japan
Prior art keywords
present
nonlinear resistor
additives
nonlinear
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55079311A
Other languages
Japanese (ja)
Other versions
JPS575311A (en
Inventor
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP55079311A priority Critical patent/JPS6016725B2/en
Publication of JPS575311A publication Critical patent/JPS575311A/en
Publication of JPS6016725B2 publication Critical patent/JPS6016725B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、非直線抵抗体材料としての酸化物粉末の一部
と種々の添加物の全てとを予め加熱反応せしめて粉砕し
た後、これを残余の酸化物粉末と共に焼結することによ
って、晩結中素体にクラックが生じなく、しかも電気特
性が優れた素体を得るようにした電圧非直線抵抗体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a part of the oxide powder used as a non-linear resistor material and all of the various additives are heated and reacted in advance, and then pulverized, and then pulverized together with the remaining oxide powder. The present invention relates to a method for manufacturing a voltage nonlinear resistor in which, by sintering, an element body is free from cracks during late sintering and has excellent electrical properties.

従来より酸化物非直線抵抗体、例えば酸化亜鉛Zn○を
主成分とする非直線抵抗体はその非直線特性が優れてい
るところから、避電器などの非直線抵抗体として最適で
あるが、従来にあってはその製造方法が適当でなかった
ことから、焼結中に素体がひぴ割したり、電気的特性に
しても良好でないという欠点がある。
Conventionally, oxide nonlinear resistors, such as nonlinear resistors whose main component is zinc oxide Zn○, have excellent nonlinear characteristics and are therefore ideal for use as nonlinear resistors such as earth protectors. However, because the manufacturing method was not appropriate, the element body cracked during sintering and its electrical properties were poor.

即ち、非直線抵抗体は一般に高純度金属酸化物(例えば
ZNO)にビスマスBi,コバルトCo,マンガンMn
,アンチモンSは等の酸化物を徴量加えて混合、造粒、
成形し、素体の側面に高抵抗層を形成するための特殊処
理を行なった後、1000午○以上の高温で焼成するこ
とによって得られるが、秦体は加熱温度700〜100
0qoの間で大きく収縮し、また、その範囲内の温度で
は素体内部で種々の複雑な反応が起き少量の液相が形成
されるところから、秦体中での添加物分布が不均一にな
る他、素体自体にはクラックが生じ易くなるというもの
である。
That is, non-linear resistors are generally made of high-purity metal oxides (e.g. ZNO), bismuth Bi, cobalt Co, manganese Mn.
, Antimony S is mixed, granulated, etc. with the addition of oxides such as
After molding and special treatment to form a high-resistance layer on the sides of the element body, it is obtained by firing at a high temperature of 1000 pm or more.
There is a large contraction between 0qo and at temperatures within that range, various complex reactions occur inside the element body and a small amount of liquid phase is formed, so the distribution of additives in the element body becomes uneven. In addition, cracks are more likely to occur in the element itself.

また、秦体表面近傍と秦体中心部とにそれぞれ位置する
素体部分に形成される結晶相にしてもそれぞれ第1図a
,bに示す如くピークの大きさや数が異なる。これは反
応速度の相違が結晶相の相違となって現われてきたもの
である。更に非直線抵抗体材料としての酸化物粒子の粒
成長速度にバラッキが生じ、小電流領域より大電流領域
に百つて非直線特性が低下するという欠点を併せもつて
いる。本発明の目的は、暁緒中ひび割を生じさせること
なく、しかも非直線性が優れた非直線抵抗体を得る方法
を供するにある。
Furthermore, the crystal phases formed in the element bodies located near the surface of the Qin body and in the center of the Qin body are also shown in Figure 1a.
, b, the size and number of peaks are different. This is because the difference in reaction rate manifests as a difference in crystal phase. Furthermore, there are also disadvantages in that the grain growth rate of the oxide particles used as the nonlinear resistor material varies, and the nonlinear characteristics deteriorate more in the large current region than in the small current region. An object of the present invention is to provide a method for obtaining a nonlinear resistor with excellent nonlinearity without causing any cracks in the initial phase.

この目的のため本発明は、非直線抵抗体材料としての酸
化物粉末の一部と添加物の全てとを予め加熱反応せしめ
てから粉砕し、しかる後にこれと残余の酸化物粉末とを
燐結するようにして目的の非直線抵抗体を得んとするも
のである。
For this purpose, the present invention first heats and reacts a part of the oxide powder as a nonlinear resistor material with all of the additives, then crushes the mixture, and then phosphorsizes this and the remaining oxide powder. In this way, the objective is to obtain a nonlinear resistor.

以下、酸化物は酸化亜鉛として本発明を第2図から第4
図により説明する。
Hereinafter, the present invention will be described in Figs. 2 to 4, assuming that the oxide is zinc oxide.
This will be explained using figures.

本発明によって非直線抵抗体を得るに際しては先ず酸化
亜鉛Zn0の一部に添加物としてのSQ03,Bj20
3,C0203,Mn02,Cr203,Si02など
が添加混合される。
When obtaining a non-linear resistor according to the present invention, first, SQ03 and Bj20 as additives are added to a part of zinc oxide Zn0.
3, C0203, Mn02, Cr203, Si02, etc. are added and mixed.

この場合の重量混合比は表1に示すが如くである。表
1 適当な重量比で十分混合されたZn○と添加物はその後
スラリーにされて乾燥され、乾燥後は700〜950o
oの温度で仮焼してから粉砕されるところとなる。
The weight mixing ratio in this case is as shown in Table 1. table
1. Zn○ and additives are thoroughly mixed in an appropriate weight ratio and then slurried and dried.
The material is calcined at a temperature of 0.000 m and then pulverized.

粉砕されたZn○と添加物にはその後残りのZn○が混
合され、更にその後バインダが加えられて造粒される。
造粒後加圧成形することによって成形体を得、この成形
体が1000〜1400ooで焼成されることによって
非直線抵抗体が得られるものである。ここでZn○と添
加物との反応を簡単に記せば添加物のうちSb203は
57000にてSb204となり、700℃付近よりB
i203,Zn○等と反応するようになって中間生成物
であるパィロクロア(Zn2S広Bi30,4)が形成
され、更に800〜900qoではスピネルSP(Zn
23Sbo.6704)に変化する。
The remaining Zn○ is then mixed with the pulverized Zn○ and additives, and then a binder is added and granulated.
A molded body is obtained by pressure molding after granulation, and a nonlinear resistor is obtained by firing this molded body at a temperature of 1000 to 1400 oo. Here, to briefly describe the reaction between Zn○ and additives, Sb203 of the additives becomes Sb204 at 57,000 degrees Celsius, and B
It reacts with i203, Zn○, etc. to form the intermediate product pyrochlore (Zn2S broad Bi30,4), and furthermore, at 800 to 900qo, spinel SP (Zn
23 Sbo. 6704).

また、Bi203はCr203と反応し750q0付近
よりBi−Cr−○系酸化物を形成し、更に高温になれ
ば液相となりZn○の粒成長を促進するよう機能する。
Sj02はまた70000付近よりZn○と反応してケ
イ酸亜鉛(Zn2Si04)を形成するようになる。と
ころで秦体は700〜1000℃において急激に収縮す
る一方、その内部では上記の如くの複雑な反応が起きる
ことから、従来方法によれば素体全体が均一に反応いこ
くくなる。既に説明した第1図a,bは90ぴ0の温度
下での蓬がlow舷、厚さが32肋の素体についてのも
のであるが、これからも反応が不均一であることが判る
。成形時におけるこのような急激な収縮と反応の不均一
は歪となって素体に割れを生じさせ、また反応生成物の
形成差による液相状態の相違はZn0粒成長速度に差を
生じさせる結果Zn○粒子の粒径がばらつくようになる
わけである。素体内部に粒径が大きいZn0粒子が存在
すると、電流は非オーム特性を有した高抵抗の粒界層を
避けて粗大Znq結晶粒の部分に集中するところから、
非直線特性も低下するようになるものである。そこで本
発明は既述した如くに非直線抵抗体を製造することによ
って従釆見受けられていた欠点を解消せんとするもので
ある。
Further, Bi203 reacts with Cr203 to form a Bi-Cr-○-based oxide from around 750q0, and when the temperature is further increased, it turns into a liquid phase and functions to promote grain growth of Zn○.
Sj02 also starts to react with Zn◯ from around 70,000 to form zinc silicate (Zn2Si04). By the way, while the Qin body rapidly contracts at 700 to 1000°C, the above-mentioned complicated reactions occur inside the Qin body. Accordingly, according to the conventional method, the entire body becomes unable to react uniformly. Figures 1a and b, which have already been explained, are for an element body with a low side and a thickness of 32 ribs at a temperature of 90 psi, and it can be seen from these that the reaction is non-uniform. Such rapid shrinkage and non-uniform reaction during molding cause distortion and cracks in the element body, and differences in the liquid phase state due to differences in the formation of reaction products cause differences in the growth rate of Zn0 grains. As a result, the particle size of the Zn◯ particles comes to vary. When large-sized Zn0 particles exist inside the element, the current avoids the high-resistance grain boundary layer with non-ohmic characteristics and concentrates on the coarse Znq crystal grains.
Nonlinear characteristics also deteriorate. SUMMARY OF THE INVENTION Therefore, the present invention aims to eliminate the drawbacks that have been observed in the past by manufacturing a non-linear resistor as described above.

即ち、添加物とZn○の一部とを予め反応せしめておく
ことによって焼成時での収縮量、したがって収縮率を小
さく抑えるとともに、その予めの反応によってスピネル
SP、パイロクロア、ケイ酸亜鉛の形成に必要なZn○
を反応せしめておくことにより焼成体の粒界層を形成す
る結晶相に近いものを予め成形体に含ませることが可能
となり、これを以て反応の均一化を図らんとするもので
ある。以下、本発明を引き続き説明すれば、第2図a〜
dはそれぞれ表1に記した重量混合比A〜Dに対する結
晶構造の差異を示す。
In other words, by reacting the additive with a portion of Zn○ in advance, the amount of shrinkage during firing, and thus the shrinkage rate, can be suppressed to a small level, and the pre-reaction also suppresses the formation of spinel SP, pyrochlore, and zinc silicate. Necessary Zn○
By allowing these to react, it is possible to preliminarily include in the compact a substance similar to the crystalline phase that forms the grain boundary layer of the fired product, thereby making the reaction uniform. Hereinafter, to continue explaining the present invention, FIGS.
d indicates the difference in crystal structure for the weight mixing ratios A to D listed in Table 1, respectively.

結晶構造は重量混合比によって異なるが、非直線抵抗体
の特性は添加物の成分組成によっても異なるから、目的
に応じ適当な混合比、添加物を選択すべきである。尚、
第2図a〜d中におけるBi−Q−0は酸化ビスマスと
酸化クロムの各種化合物を一括したものである。また、
第3図は、重量混合比Bの条件下で900℃、2時間加
熱した後粉砕されたものに残余のZn○を混合して得ら
れた素体と従来方法に係る素体の加熱温度に対する厚さ
方向収縮量を示したものである。
Although the crystal structure differs depending on the weight mixing ratio, the characteristics of the nonlinear resistor also differ depending on the component composition of the additives, so a suitable mixing ratio and additives should be selected depending on the purpose. still,
Bi-Q-0 in FIGS. 2a to 2d collectively represents various compounds of bismuth oxide and chromium oxide. Also,
Figure 3 shows the heating temperature of the element body obtained by mixing the remaining Zn○ with the pulverized material after heating at 900°C for 2 hours under the condition of weight mixing ratio B, and the heating temperature of the element body according to the conventional method. This shows the amount of shrinkage in the thickness direction.

この場合の素体あるいは成形体は重量が35夕で、蓬す
が38肋のもので、250k9の加圧力を加えたときの
ものである。図示の如く本発明に係る素体は実線表示よ
り初期厚さが小さいことは当然ながら、加熱温度の上昇
に従い緩かに収縮し、最終厚さも従来方法に係るものに
比して小さいことが判る。
The weight of the element or molded body in this case is 35 kg, the folding plate has 38 ribs, and a pressing force of 250 k9 is applied. As shown in the figure, it is obvious that the initial thickness of the element body according to the present invention is smaller than that shown by the solid line, but it also shrinks slowly as the heating temperature increases, and the final thickness is also smaller than that of the element body according to the conventional method. .

因みにこの場合での最終収縮率は本発明に係るものにお
いて19.3%、従来方法に係るものにおいて21.2
%であつた。最後に本発明、従釆方法それぞれによって
得られた非直線抵抗体の二次電子像による微細構造を具
体的に第4図a,bにより説明する。
Incidentally, the final shrinkage rate in this case was 19.3% in the case of the present invention and 21.2% in the case of the conventional method.
It was %. Finally, the microstructures of nonlinear resistors obtained by secondary electron images obtained by the present invention and the secondary method will be specifically explained with reference to FIGS. 4a and 4b.

第4図a,bはそれぞれ従来方法、本発明方法に係る二
次電子像を示したものであるが、本発明による場合は比
較的Zn○粒径が揃っている一方、従来方法によるもの
は中央部に比較的大きな径のZn0粒子が存在している
ばかりか、気孔も比較的多いことが判る。この相違は電
気的特性の良否となって現われてくるものである。本発
明に係る非直線抵抗体と従来方法に係る非直線抵抗体と
の電気的特性の一例を表2に示すが、本発明に係るもの
は非直線性良好にして放電耐量が大きいことが判る。但
し、特性は径が64柵、厚さが22肋の試料についての
ものである。表 2 曲:V,mA:lmAの抵抗分電流が流れるときの印加
電圧波高値、V,。
FIGS. 4a and 4b show secondary electron images obtained by the conventional method and the method of the present invention, respectively. In the case of the method of the present invention, the Zn○ particle size is relatively uniform, whereas in the case of the conventional method, It can be seen that not only are Zn0 particles with relatively large diameters present in the center, but also there are relatively many pores. This difference manifests itself in the quality of electrical characteristics. Table 2 shows an example of the electrical characteristics of the nonlinear resistor according to the present invention and the nonlinear resistor according to the conventional method, and it can be seen that the resistor according to the present invention has good nonlinearity and a large discharge withstand capacity. . However, the characteristics are for a sample with a diameter of 64 bars and a thickness of 22 bars. Table 2 Song: V, mA: Peak value of applied voltage, V, when a resistance current of lmA flows.

KA:10KAの抵抗分電流が流れるときの印加電圧波
高値)本発明は以上のようなものであるが、添加物に対
するZdoの混合量は少なくともSb2Q添加モル量の
3.5倍、Bi2Q添加モル量の1.3倍必要であり、
Si02を添加する場合には更にSj02添加モル量の
2倍のZn0を予め添加物と加熱しておくことが望まし
い。
KA: Applied voltage peak value when a resistance current of 10 KA flows) The present invention is as described above, but the amount of Zdo mixed with the additive is at least 3.5 times the molar amount of Sb2Q added, and the molar amount of Bi2Q added. 1.3 times the amount is required,
When adding Si02, it is further desirable to heat Zn0 with the additive in an amount twice the molar amount of Sj02 added.

以上説明した如く本発明は、非直線抵抗体材料である金
属酸化物の一部と添加物の全てとを予め加熱処理してお
くものであるから、焼成時における収縮率が小さくひび
割れが生じないばかりか、気孔少なくして反応が均一と
なって金属酸化物の粒径が揃うことから、その電気的特
性が向上するといった効果がある。
As explained above, in the present invention, a part of the metal oxide that is the nonlinear resistor material and all of the additives are heat-treated in advance, so that the shrinkage rate during firing is small and no cracks occur. Not only that, but the reduction in pores makes the reaction more uniform and the particle size of the metal oxide is uniform, which has the effect of improving its electrical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは、同一素体であっても部分によっては結
晶相が異なることの説明図、第2図a〜dは、本発明に
よって金属酸化物の一部と添加物の全てとを各種重量混
合比で混合した場合での結晶構造を説明するための図、
第3図は、本発明に係る素体と従来方法に係る素体の加
熱温度に対する厚さ方向収縮量を説明するための図、第
4図a,bは、同じく微細構造の差異を説明するための
図である。 第1図 第2図 第2図 第3図 第4図
Figures 1a and b are explanatory diagrams showing that even in the same element, the crystal phase differs depending on the part, and Figures 2a to d are diagrams showing that part of the metal oxide and all of the additives are combined according to the present invention. A diagram to explain the crystal structure when mixed at various weight mixing ratios,
FIG. 3 is a diagram for explaining the amount of shrinkage in the thickness direction with respect to the heating temperature of the element body according to the present invention and the element body according to the conventional method, and FIGS. 4 a and b are diagrams for explaining the difference in microstructure. This is a diagram for Figure 1 Figure 2 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 適当な重量比で混合された非直線抵抗体材料として
の金属酸化物粉末の一部と添加物の全てとを予め加熱反
応せしめてから粉砕した後、該粉砕に係るものに残余の
金属酸化物粉末を加えて混合、造粒、成形し、素体側面
に高抵抗層形成のための処理を行なつてから適当な高温
温度下で焼成することを特徴とする、電圧非直線抵抗体
の製造方法。
1 A part of the metal oxide powder as a non-linear resistor material mixed in an appropriate weight ratio and all of the additives are heated and reacted in advance and then pulverized, and the remaining metal oxide is removed from the pulverized material. A voltage nonlinear resistor, which is characterized by adding a substance powder, mixing, granulating, and molding, processing to form a high resistance layer on the side surface of the element, and then firing at an appropriate high temperature. Production method.
JP55079311A 1980-06-12 1980-06-12 Manufacturing method of voltage nonlinear resistor Expired JPS6016725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55079311A JPS6016725B2 (en) 1980-06-12 1980-06-12 Manufacturing method of voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55079311A JPS6016725B2 (en) 1980-06-12 1980-06-12 Manufacturing method of voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS575311A JPS575311A (en) 1982-01-12
JPS6016725B2 true JPS6016725B2 (en) 1985-04-27

Family

ID=13686304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55079311A Expired JPS6016725B2 (en) 1980-06-12 1980-06-12 Manufacturing method of voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS6016725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516179Y2 (en) * 1988-04-11 1993-04-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516179Y2 (en) * 1988-04-11 1993-04-28

Also Published As

Publication number Publication date
JPS575311A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
US2294756A (en) Method of manufacturing electrical resistors having negative temperature characteristics
EP0404981B1 (en) Process for production for a varistor material
US4111852A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
JPS6016725B2 (en) Manufacturing method of voltage nonlinear resistor
CN100562951C (en) A kind of preparation method of zinc oxide nonlinear resistance slice used for lightning arrester
JP2522522B2 (en) Non-linear resistor manufacturing method
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JPS59172201A (en) Method of forming insulating film of voltage nonlinear resistor element
JPH09213506A (en) Manufacture of voltage non-linear resistor
JPS62237708A (en) Manufacture of voltage nonlinear resistance element
JPS63133502A (en) Nonlinear resistor and manufacture of the same
JPS63117402A (en) Manufacture of nonlinear resistor
JP2566571B2 (en) Mixed sintered porcelain and manufacturing method thereof
JP2917335B2 (en) Manufacturing method of ceramic electronic components
JPH08138909A (en) Manufacture of voltage non-linearity resistor
KR20040078915A (en) Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor
JPS62237706A (en) Manufacture of voltage nonlinear resistance element
JPH0541305A (en) Manufacture of zinc oxide nonlinear resistor
JPH09270304A (en) Manufacture of nonlinear resistor
JPS62237707A (en) Manufacture of voltage nonlinear resistance element
JPS5812721B2 (en) voltage nonlinear resistance
JPS6330766B2 (en)
JPS6015132B2 (en) Manufacturing method of non-linear resistor
JPS61204902A (en) Manufacture of voltage non-linear resistor
JPS625321B2 (en)