JPS6016687B2 - Extruded insulated cable continuous cooling device - Google Patents

Extruded insulated cable continuous cooling device

Info

Publication number
JPS6016687B2
JPS6016687B2 JP53061920A JP6192078A JPS6016687B2 JP S6016687 B2 JPS6016687 B2 JP S6016687B2 JP 53061920 A JP53061920 A JP 53061920A JP 6192078 A JP6192078 A JP 6192078A JP S6016687 B2 JPS6016687 B2 JP S6016687B2
Authority
JP
Japan
Prior art keywords
cooling
cable
liquid
phase
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53061920A
Other languages
Japanese (ja)
Other versions
JPS54153291A (en
Inventor
善輔 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP53061920A priority Critical patent/JPS6016687B2/en
Publication of JPS54153291A publication Critical patent/JPS54153291A/en
Publication of JPS6016687B2 publication Critical patent/JPS6016687B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は押出し絶縁ケーブルをその製造工程中において
連続的に冷却する押出し絶縁ケーブル連続冷却装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an extruded insulated cable continuous cooling device that continuously cools an extruded insulated cable during its manufacturing process.

例えば、架橋ポリエチレンケーブルを製造するに際して
は、押出機による押出し工程で得られたポリエチレン絶
縁ケーブルを冷やさないで直ちに架橋装置による架橋工
程に通して加熱架橋を行わせ「その後に冷却装置による
冷却工程に通して室温程度まで冷却している。
For example, when manufacturing a cross-linked polyethylene cable, the polyethylene insulated cable obtained in the extrusion process using an extruder is immediately passed through the cross-linking process using a cross-linking device without being cooled, and heat cross-linking is performed. It is cooled down to about room temperature.

しかしながら、従来は冷却装置で冷却水を用い、水の顕
熱を利用して冷却しているので、冷却効率が悪い欠点が
あり、またこの関係で冷却工程が長くなる欠点があった
However, conventionally, a cooling device uses cooling water and uses the sensible heat of the water for cooling, which has the disadvantage of poor cooling efficiency and, in this connection, the disadvantage that the cooling process becomes long.

これを改善するため冷却媒体として沸騰冷却用冷却媒体
を用いて押出し絶縁ケーブルを冷却することにより冷却
工程を短くする押出し絶縁ケーブル連続冷却装置が提案
されている。
In order to improve this problem, an extruded insulated cable continuous cooling device has been proposed that shortens the cooling process by cooling the extruded insulated cable using a boiling cooling medium as the cooling medium.

しかしながら、沸騰冷却用冷却媒体で押出し絶縁ケーブ
ルを冷却したのでは、加熱架橋された後ゴム、プラスチ
ック絶縁層の外側が急激に冷却されるので、表面に硬に
殻ができ、そのあと内部がゆっくり冷却されることにな
る。
However, when extruded insulated cables are cooled with a boiling cooling medium, the outside of the rubber or plastic insulating layer is rapidly cooled after being crosslinked by heating, resulting in a hard shell forming on the surface, and then the inside slowly cools down. It will be cooled down.

このため、外側に硬い殻の内側にボィドが発生し易く、
その結果内側の層の密度が小さくなり、耐電圧性能が低
下する欠点がある。また、このように急冷すると、ゴム
、プラスチック絶縁層に熱歪が残留し、その影響が使用
中に現われてきて好ましくない。更に、急冷時に表面に
硬い殻ができると、表面にクラックが発生するおそれが
あり好ましくない。また、従来の冷却装置では、沸騰冷
却部の様部のシール部では、その内外で1疎気圧以上の
圧力差があるので、このシール部から液相の冷却媒体が
高圧力で噴出する欠点があった。このため、従釆はシー
ル部の下に受タンクを設け、液を回収しようとしていた
が、高圧であるため液が飛び散り、回収し‘こくいと共
に作業環境が悪化する欠点があつた。本発明の目的は、
沸騰冷却用冷却媒体を用いても、急冷による弊害を防止
でき、且つシール部での液相の冷却媒体の噴出を抑制で
きる押出し絶縁ケーブル連続冷却装置を提供するにある
For this reason, voids are likely to occur inside the hard outer shell.
As a result, the density of the inner layer decreases, resulting in a disadvantage that the withstand voltage performance decreases. Moreover, such rapid cooling leaves thermal distortion in the rubber or plastic insulating layer, and this effect becomes apparent during use, which is undesirable. Furthermore, if a hard shell is formed on the surface during quenching, cracks may occur on the surface, which is undesirable. In addition, in conventional cooling devices, there is a pressure difference of more than one hydrophobic pressure between the outside and the outside of the sealed part of the boiling cooling part, so there is a drawback that the liquid phase cooling medium is ejected at high pressure from this sealed part. there were. For this reason, the subordinate installed a receiving tank under the seal to collect the liquid, but due to the high pressure, the liquid would scatter, making it difficult to collect and worsening the working environment. The purpose of the present invention is to
An object of the present invention is to provide a continuous cooling device for extruded insulated cables that can prevent harmful effects caused by rapid cooling even when a boiling cooling medium is used, and can suppress jetting of a liquid phase cooling medium at a seal portion.

本発明では、冷却容器内に収容する冷却媒体として沸騰
冷却用気液二相型冷却媒体を用い、移動しつつある押出
し絶縁ケーブルを先ずこの冷却媒体の気相中に導いて徐
冷した後液相中に導いて沸騰冷却させ、且つ移動中の押
出し絶縁ケーブルが冷却容器の多段のシール部を貫通す
るようにし、各段のシール部で液を溜めることにより、
気圧差を徐々に小さくし、液の噴出圧力を低下させると
共に併せて液の回収をするようにしたものである。
In the present invention, a vapor-liquid two-phase cooling medium for boiling cooling is used as a cooling medium housed in a cooling container, and a moving extruded insulated cable is first guided into the gas phase of this cooling medium and slowly cooled, and then the liquid is cooled. By guiding the liquid into the phase and boiling it to cool it, and by making the moving extruded insulated cable penetrate through the multi-stage seals of the cooling container, and collecting the liquid at each stage's seals,
The pressure difference is gradually reduced to lower the liquid ejection pressure and at the same time, the liquid is recovered.

沸騰冷却用気液二相型冷却媒体としては、例えばフロン
、フッ素油或はトリフロロェチルアルコール等を用いる
。この中で、例えばフロンのR−11(CC13F)、
R−112(CC12F・CC12F),R−113(
CC12F・CCIF2)等の平衡蒸気圧は第1図の如
くで、温度と圧力が一義的に決る。
As the gas-liquid two-phase cooling medium for boiling cooling, for example, fluorocarbon, fluorine oil, trifluoroethyl alcohol, or the like is used. Among these, for example, Freon R-11 (CC13F),
R-112 (CC12F/CC12F), R-113 (
The equilibrium vapor pressure of CC12F, CCIF2), etc. is as shown in Figure 1, and is uniquely determined by temperature and pressure.

従って、被冷却体であるケーブルがフロの容器内に入る
と、その温度が平衡温度より高い場合には、フロンが沸
騰し、ケーブルより蒸発潜熱を奪い気化する。従って、
ケーブルはフロンの潜熱を利用して効率よく冷却される
ことになる。この場合、ケーブルは気化された気相のフ
ロン中を先に通り徐冷された後、沸騰冷却されることに
なる。
Therefore, when the cable, which is an object to be cooled, enters the fluorocarbon container, if its temperature is higher than the equilibrium temperature, the fluorocarbon boils, absorbs latent heat of vaporization from the cable, and vaporizes. Therefore,
The cable will be efficiently cooled by using the latent heat of Freon. In this case, the cable first passes through the vaporized chlorofluorocarbon and is slowly cooled, and then is boiled and cooled.

フッ素油としては、例えばC8F,60,C8F,6,
C7F,4,Cよは, C,oF,8,C,2F27N
等を用いることができる。
Examples of fluorine oil include C8F,60, C8F,6,
C7F, 4, C Yoha, C, oF, 8, C, 2F27N
etc. can be used.

このようなフッ素油中のC8F,60(パーフルオロサ
イクリツクエーテルミツクスチヤ)の物理特性を示すと
次の通りである。C8F,60の物理特性 沸点 102.が○ 流動点 一93℃ 蒸気圧 25C0で3比肋Hgabs比重
260で1.76粘度
2デ0で0.8センチトークス蒸発潜熱 2
1Kcal/g比熱 0.2&al/g℃ 絶縁耐圧 260で21.7KV/肋ねn6
、、 25ooで3×10‐4以上誘電率
1.87次に、トリフロロェチルアルコール
は沸点が75℃であるが、これは単体で用いてもよいが
、水と混合して用いることもできる。
The physical properties of C8F,60 (perfluorocyclic ether mixture) in such fluorine oil are as follows. Physical properties boiling point of C8F,60 102. ○ Pour point 193℃ Vapor pressure 25C0 3 specific gravity Hgabs
1.76 viscosity at 260
0.8 centitokes latent heat of vaporization at 2de0 2
1Kcal/g Specific heat 0.2&al/g℃ Dielectric strength voltage 21.7KV at 260/spring n6
,, dielectric constant of 3×10-4 or more at 25oo
1.87 Next, trifluoroethyl alcohol has a boiling point of 75°C, and it may be used alone or in a mixture with water.

例えば、トリフロロェチルアルコール85重量%に水1
5重量%を混合したものを用いる。第2図は本発明に係
る押出し絶縁ケーブル連続冷却装置を含む絶縁ケーブル
製造装置の一例を示したものである。
For example, 85% by weight of trifluoroethyl alcohol and 1 part of water.
A mixture of 5% by weight is used. FIG. 2 shows an example of an insulated cable manufacturing apparatus including an extruded insulated cable continuous cooling device according to the present invention.

図示のように、ケーブル心線1はターンシープ2を経て
押出機のクロスヘッド3に入り、外周に努藷橋剤入り未
努薪喬のゴム、プラスチック絶縁材が押出し被覆され、
押出し絶縁ケーブル4となる。絶縁ケーブル4は、直ち
に架橋装置5の架橋筒6の中に入り架熱努薪喬される。
As shown in the figure, the cable core 1 passes through the turn sheep 2 and enters the crosshead 3 of the extruder, and the outer periphery is coated with extruded rubber and plastic insulation material containing a crosslinking agent.
This becomes an extruded insulated cable 4. The insulated cable 4 immediately enters the bridging tube 6 of the bridging device 5 and is heated.

架橋は、例えば不活性ガスを用いたり、赤外線や超音波
等を用いたりして行なう。架橋済の押出し絶縁ケーブル
4は、次いで本発明に係る絶縁ケーブル連続冷却装置7
に入り、室温程度まで冷却される。
Crosslinking is carried out using, for example, an inert gas, infrared rays, ultrasonic waves, or the like. The crosslinked extruded insulated cable 4 is then subjected to an insulated cable continuous cooling device 7 according to the present invention.
and cooled to room temperature.

この冷却装置7は、沸騰冷却用気液二相型冷却媒体8の
気相中で押出し絶縁ケーブル4を徐冷し次いで液相中で
沸騰冷却する気液二相型沸騰冷却部9と、この気液二相
型沸騰冷却部9のケーブル貫通部分から沸騰冷却用気液
二相型冷却媒体8が外部に漏れ出さないように多段にシ
ールすると共に漏れ液を回収するシール部10とを含ん
で機成されている。気液二相型沸騰冷却部9は、架橋筒
6に連続して設置された縦長で円筒状をした冷却容器1
1を備え、この冷却容器11内には沸騰冷却用気液二相
型冷却媒体8としてフロン8が充填されている。
This cooling device 7 includes a gas-liquid two-phase evaporative cooling section 9 that gradually cools the extruded insulated cable 4 in the gas phase of a vapor-liquid two-phase cooling medium 8 for evaporative cooling, and then evaporates and cools it in the liquid phase. It includes a sealing part 10 for sealing in multiple stages to prevent the vapor-liquid two-phase cooling medium 8 for boiling cooling from leaking to the outside from the cable penetration part of the vapor-liquid two-phase boiling cooling part 9, and for collecting leaked liquid. It is organized. The gas-liquid two-phase boiling cooling unit 9 includes a vertically long cylindrical cooling container 1 that is installed continuously on the bridge tube 6.
1, and this cooling container 11 is filled with Freon 8 as a vapor-liquid two-phase cooling medium 8 for boiling cooling.

架橋された高温の押出し絶縁ケーブル4が冷却容器11
内に入り、フロン8(例えば、R−113))の液にふ
れると、フロン8は沸騰し、押出し絶縁ケーブル4が蒸
発潜熱を奮って気化し、気相となる。従って、冷却容器
11内は下部にフロン8が液相で存在し、上部にフロン
8が気相で存在する気液二相型の冷却媒体8で満たされ
る。押出し絶縁ケーブル4はフロン8の蒸発潜熱により
効率よく冷却されることになる。この際、フロン8の気
相の区間が適当にとられ、押出し絶縁ケーブル4は液相
のフロン8に至るまでに気相のフロン8により徐袷され
、従って押出し絶縁ケーブル4が急激に冷却されるのを
防止できる。これは、気相フロン8とケーブル4間の熱
伝達と、液相のフロン8とケーブル4間の熱伝達と、液
相のフロン8とケーブル4間の熱伝達とを比較した場合
、桁違いに後者の方が熱伝達効果が大きいことによる。
気相での冷却は、液の蒸発の強さが大きくなると、気相
の流速が大きくなり、徐冷効果が大きくなるので、徐冷
が不十分な場合にはこれを改善する方向に作用するメリ
ットがある。気液二相型沸騰冷却部9の冷却容器11に
はバイパス路13を設け、このバイパス路13には凝縮
器14を設け、気相となったフロン8をこの凝縮器14
に導き、再液化し、冷却容器11に戻している。
The cross-linked high temperature extruded insulated cable 4 is placed in the cooling container 11
When the Freon 8 enters the interior and comes into contact with the liquid of Freon 8 (for example, R-113), the Freon 8 boils and the extruded insulated cable 4 is vaporized by the latent heat of vaporization, becoming a gas phase. Therefore, the inside of the cooling container 11 is filled with a gas-liquid two-phase cooling medium 8 in which the fluorocarbon 8 exists in a liquid phase in the lower part and the fluorocarbon 8 exists in a vapor phase in the upper part. The extruded insulated cable 4 is efficiently cooled by the latent heat of vaporization of the freon 8. At this time, an appropriate section is set for the gas phase of the Freon 8, and the extruded insulated cable 4 is gradually covered by the gaseous Freon 8 before reaching the liquid phase of the Freon 8, so that the extruded insulated cable 4 is rapidly cooled. You can prevent this from happening. This is an order of magnitude higher when comparing the heat transfer between the gas phase Freon 8 and the cable 4, the heat transfer between the liquid phase Freon 8 and the cable 4, and the heat transfer between the liquid phase Freon 8 and the cable 4. This is because the latter has a greater heat transfer effect.
In gas phase cooling, as the intensity of liquid evaporation increases, the flow velocity of the gas phase increases and the slow cooling effect increases, so if slow cooling is insufficient, it works to improve this. There are benefits. A bypass passage 13 is provided in the cooling container 11 of the gas-liquid two-phase boiling cooling unit 9, and a condenser 14 is provided in the bypass passage 13, and the freon 8 in the gas phase is transferred to the condenser 14.
The liquid is then reliquefied and returned to the cooling container 11.

凝縮器14では、水のような冷却媒体を用い、フロンガ
スと熱交換を行っている。冷却容器11内の圧力は、凝
縮器14の交換熱量とケーブル4の温度で決る冷媒温度
で第1図のような平衡蒸気圧曲線から一義的に決る。
The condenser 14 uses a cooling medium such as water to exchange heat with the fluorocarbon gas. The pressure inside the cooling container 11 is uniquely determined by the refrigerant temperature, which is determined by the amount of heat exchanged by the condenser 14 and the temperature of the cable 4, from an equilibrium vapor pressure curve as shown in FIG.

また、冷却容器11内の温度は、気相、液相ともほ)、
同一温度になっている。冷却容器11の底部側に設けら
れたシール部10Gま、冷却容器11内に多段に鞍設さ
れたゴム弾性のシール材15,,152,153,15
4…を備え、これらシール材15,,152…をケーブ
ル4が順次通過して外部に出るようになっている。
In addition, the temperature inside the cooling container 11 may be in a gas phase or a liquid phase),
are at the same temperature. A seal portion 10G provided on the bottom side of the cooling container 11, and rubber elastic sealing materials 15, 152, 153, 15 provided in multiple stages inside the cooling container 11.
4..., and the cable 4 sequentially passes through these sealing materials 15, 152... to exit to the outside.

各シール材15,,152・・・は、冷却容器11の内
面から張り出した仕切板16,,162,163,16
4…にそれぞれ取付けられている。また、各シール材1
5,,152…はケーブル4に密着されるようにバネ等
の付勢体17,,172,173,174・・・で付勢
されている。各段のシ−ル材上に漏出液を溜めるように
すると、各段のシール部材の内外間の圧力差が徐々に小
さくなり、液の噴出圧力を弱めることができる。上の段
のシール材15,から漏れ出して下の段のシール材の上
に溜った液相のフロン8を回収するため、下の段のシー
ル材152,153の上とその上方の冷却容器11内と
を蓮適する回収パイプ18を設け、シール材152,1
53の上に溜ったフロン8をポンプ19で吸い上げて冷
却容器11内に戻している。従って、高価な沸騰冷却用
気液二相型冷却媒体8が高圧力で外部に噴出して逸出さ
れてしまうのを防止し、再使用することができる。後段
の回収パイプ18を前段の回収パイプ18に蓮通接続す
る部分には逆止弁20を設け、前段の回収パイプ18か
ら後段の回収パイプ18に冷却媒体が流するのを防止し
ている。上記実施例では、架橋後に冷却を行う場合につ
いて説明したが、本発明はこれに限定されるものではな
く、例えば架橋を行わない場合には押出し後、直ちに冷
却をする押出し絶縁ケーブルの製造にも適用できること
は勿論である。
Each sealing material 15, 152... is a partition plate 16, 162, 163, 16 extending from the inner surface of the cooling container 11.
4... are installed respectively. In addition, each sealing material 1
5, 152, . . . are biased by biasing bodies 17, 172, 173, 174, etc. such as springs so as to be brought into close contact with the cable 4. By collecting the leaked liquid on the sealing material of each stage, the pressure difference between the inside and outside of the sealing member of each stage gradually decreases, and the jetting pressure of the liquid can be weakened. In order to collect the liquid phase Freon 8 that leaked from the upper sealing material 15 and accumulated on the lower sealing material, a cooling container is placed above the lower sealing material 152, 153 and above it. A recovery pipe 18 is provided to connect the inside of the sealing material 152,1.
The freon 8 accumulated on the top of the cooling container 53 is sucked up by a pump 19 and returned into the cooling container 11. Therefore, the expensive vapor-liquid two-phase cooling medium 8 for boiling cooling can be prevented from being spouted out to the outside under high pressure and can be reused. A check valve 20 is provided at a portion where the downstream recovery pipe 18 is connected to the upstream recovery pipe 18 to prevent the cooling medium from flowing from the upstream recovery pipe 18 to the downstream recovery pipe 18. In the above embodiments, the case where cooling is performed after crosslinking has been described, but the present invention is not limited to this. For example, in the case where crosslinking is not performed, extruded insulated cables that are cooled immediately after extrusion can also be manufactured. Of course, it can be applied.

以上説明したように本発明に係る押出し絶縁ケーブル連
続冷却装置は、冷却器に収容する冷却媒体として沸騰冷
却用気液二相型冷却媒体を用い、ケーブルを先ずこの冷
却媒体の気相中に導いて徐冷するので、ケーブルのゴム
、プラスチック絶縁層が急冷されるのを防止できる。
As explained above, the extruded insulated cable continuous cooling device according to the present invention uses a vapor-liquid two-phase cooling medium for boiling cooling as the cooling medium housed in the cooler, and first guides the cable into the gas phase of this cooling medium. Since the cable is cooled slowly, the rubber and plastic insulation layers of the cable can be prevented from being cooled too quickly.

従って、ゴム、プラスチック絶縁層の外側だけが先に殻
状に硬化されなくなり、ボイドの発生を防止でき、耐電
圧性能の低下を防止することができる。また、コム、プ
ラスチック絶縁層内に熱歪が残るのを防止でき、且つ表
面にクラックが生じるのを防止することができる。更に
、気液二相型の冷却媒体を用い、その気相中で徐冷を行
うと、別な徐冷用冷却媒体を用いる必要がなくなって装
置の構成が簡単になる。かつまた、ケーブルの温度が高
くなって液の蒸発の強さが大きくなると気相の流速が大
きくなって徐冷効果が大きくなるので、沸騰冷却効果に
応じて自動的に徐袷効果を可変できる利点がある。次に
、本発明では、冷却器のシール部が多段構成になってい
て「各段で漏出液を溜めるようにしているので、各シー
ル段の内外の圧力差が徐々に小さくなり、液の噴出圧力
を弱めることができ、液の逸散を防止することができる
。また、シール段で液を回収しているので、閉じた空間
での液の回収となり、空中への噴出がなくなり、回収を
良好に行えると共に作業環境の悪化を防止することがで
きる。
Therefore, only the outer side of the rubber or plastic insulating layer is not hardened into a shell shape first, thereby preventing the generation of voids and reducing the withstand voltage performance. Further, it is possible to prevent thermal strain from remaining in the comb and plastic insulating layer, and also to prevent cracks from forming on the surface. Furthermore, if a gas-liquid two-phase cooling medium is used and slow cooling is performed in the gas phase, there is no need to use a separate cooling medium for slow cooling, which simplifies the configuration of the apparatus. Furthermore, as the temperature of the cable increases and the strength of liquid evaporation increases, the flow velocity of the gas phase increases and the gradual cooling effect increases, so the gradual cooling effect can be automatically varied according to the boiling cooling effect. There are advantages. Next, in the present invention, the seal part of the cooler has a multi-stage configuration, and the leaked liquid is stored in each stage, so the pressure difference between the inside and outside of each seal stage gradually decreases, causing the liquid to gush out. It is possible to weaken the pressure and prevent the liquid from escaping.Also, since the liquid is collected in the seal stage, the liquid is collected in a closed space, eliminating the possibility of spouting into the air. It is possible to perform the work well and to prevent deterioration of the working environment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却媒体としてフロンの温度−圧力特性図、第
2図は本発明の冷却装置を用いた押出し絶縁ケ−ブル製
造装置の概略断面図である。 7・・・連続冷却装置、8・・・沸騰冷却用冷却媒体、
9・・。 沸騰冷却部、10…シール部、】1・・・冷却客器、1
5,〜154…シール材、16.〜164…仕切板、1
8・・・回収パイプ、19…ポンプ、20…逆止弁。第
1図 第2図
FIG. 1 is a temperature-pressure characteristic diagram of fluorocarbon as a cooling medium, and FIG. 2 is a schematic sectional view of an extruded insulated cable manufacturing apparatus using the cooling device of the present invention. 7... continuous cooling device, 8... cooling medium for boiling cooling,
9... Boiling cooling section, 10...Sealing section, ]1... Cooling device, 1
5, to 154...Sealing material, 16. ~164...Partition plate, 1
8...Recovery pipe, 19...Pump, 20...Check valve. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 製造された押出し絶縁ケーブルを連続的に通して冷
却する押出し絶縁ケーブル連続冷却装置において、冷却
容器の中に沸騰冷却用気液二相型冷却媒体を収容してい
て先ず前記ケーブルをその気相中に通して徐冷した後、
その液相中に通して沸騰冷却させる気液二相型沸騰冷却
部と、前記気液二相型沸騰冷却部の冷却容器におけるケ
ーブル貫通部から前記冷却媒体が外部に漏れ出さないよ
うにシールするシール部とを具備し、前記シール部は前
記ケーブルの通過方向に沿つて多段に配設されていて前
記ケーブルの貫通部分をシールするシール材と、前段の
シール材から後段のシール材の前に漏出された前記冷却
媒体を前記冷却容器に回収パイプ及び回収ポンプとを備
えていることを特徴とする押出し絶縁ケーブル連続冷却
装置。 2 前記シール部は、後段の回収パイプを前段の回収パ
イプに連通接続する部分に接続されている逆止弁を備え
ていることを特徴とする特許請求の範囲第1項に記載の
押出し絶縁ケーブル連続冷却装置。
[Claims] 1. In an extruded insulated cable continuous cooling device that continuously cools a manufactured extruded insulated cable by passing it through the extruded insulated cable continuously, the cooling container contains a gas-liquid two-phase cooling medium for boiling cooling. After slowly cooling the cable by passing it through the gas phase,
A gas-liquid two-phase evaporative cooling unit that evaporates and cools the cooling medium by passing through the liquid phase, and a cable penetration portion in a cooling container of the gas-liquid two-phase evaporative cooling unit to seal the cooling medium from leaking to the outside. a sealing part, the sealing part is arranged in multiple stages along the passing direction of the cable, and includes a sealing material for sealing the penetrating part of the cable, and a sealing material for sealing the penetration part of the cable, and a sealing material for sealing from the previous stage sealing material to the rear stage sealing material. A continuous cooling device for extruded insulated cables, comprising a pipe and a recovery pump for collecting the leaked cooling medium into the cooling container. 2. The extruded insulated cable according to claim 1, wherein the seal portion is provided with a check valve connected to a portion that communicates and connects a recovery pipe at a later stage to a recovery pipe at a front stage. Continuous cooling device.
JP53061920A 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device Expired JPS6016687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53061920A JPS6016687B2 (en) 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53061920A JPS6016687B2 (en) 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device

Publications (2)

Publication Number Publication Date
JPS54153291A JPS54153291A (en) 1979-12-03
JPS6016687B2 true JPS6016687B2 (en) 1985-04-26

Family

ID=13185075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53061920A Expired JPS6016687B2 (en) 1978-05-24 1978-05-24 Extruded insulated cable continuous cooling device

Country Status (1)

Country Link
JP (1) JPS6016687B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0621470A2 (en) 2006-12-05 2011-12-13 Glycoscience Lab Inc therapeutic agent for degenerative arthritis

Also Published As

Publication number Publication date
JPS54153291A (en) 1979-12-03

Similar Documents

Publication Publication Date Title
US3948316A (en) Process of and device for using the energy given off by a heat source
CA2134086C (en) Plate type heat transfer device
US4258780A (en) Dual cycle heat pipe-method and apparatus
JPS61208490A (en) Heat transfer method, which use mixed fluid as heat-dissipating agent, to cold fluid from hot fluid and device thereof
Pettersen et al. Heat transfer and pressure drop characteristics of evaporating carbon dioxide in microchannel tubes
Sokolov et al. Performance indicators for solar pipes with phase change storage
Elmosbahi et al. An experimental investigation on the gravity assisted solar heat pipe under the climatic conditions of Tunisia
EP1297287B1 (en) Adsorption refrigerating device
Chang et al. Natural convection for the melting of ice in porous media in a rectangular enclosure
JPS6016687B2 (en) Extruded insulated cable continuous cooling device
US4286650A (en) Method for charging or discharging a heat accumulator
Shiraishi et al. Visual study on flow behavior in an inclined two-phase closed thermosyphon
Shekarriz et al. Enhancement of film condensation using porous fins
Sim et al. Pool boiling performance of notched tubes in lithium bromide solution
SE419486B (en) PROCEDURE FOR COOLING A SELF-HEATED ELECTRICAL APPLIANCE AND SELF-POWERED COOLING SYSTEM FOR AN ELECTRIC APPLIANCE
Zhang et al. Experimental investigation of effects of extremely low pumping speed on isothermal performance and filling ratio of sintered copper heat pipe
JPS6011408B2 (en) Extruded insulated cable continuous cooling device
Loehrke et al. Measurements of the performance of an electrohydrodynamic heat pipe
JPS6016685B2 (en) Manufacturing method of extruded insulated cable
KR102285460B1 (en) Device for heat conduction
Tanaka et al. Experimental study on transient boiling heat transfer in an annulus with a narrow gap
JPH05248778A (en) Composite heat pipe
Joudi et al. Improved heat transport of heat pipes with an internal wall separating liquid and vapour streams
Mederic et al. Complete convective condensation inside small diameter horizontal tubes
CA1120359A (en) Dual cycle heat pipe-method and apparatus